
BOUNDS ON THE GENERALIZED PRIME NUMBER SYSTEM

Y. A. RATHER

Abstract. Consider the sequence 1 < p1 ≤ p2 ≤ p3 ≤ ... of real numbers

with pn → ∞ and such that the multiplicative semigroup has N(x) ≈ Ax
elements less or equal to x, counting with multiplicities. Beurling showed that

if N(x) = Ax + O(x/ ln x)η), where η > 3/2 then the number of pn ≤ x is

equal to x/ ln x+o(x/ ln x). In this paper we prove a generalization of Merten’s
theorem to Beurling primes and discuss a problem as how small |N(x) − [x]|
can be made for a Beurling prime number system.

1. Introduction

The sequence 1 < p1 ≤ p2 ≤ p3 ≤ ... of real numbers with pn → ∞ the
sequence pn satisfies the prime number theorem it is called a Beurling prime number
system. Beurling showed that η > 3/2 is necessary in the sense that there is a
“continuous analog” of a prime number system such that η = 3/2 and the prime
number theorem does not hold. Diamond [2] used this idea later to produce a
Beurling prime system with this property. The usual interpretation of the theorem
of Beurling is that the prime number theorem does not rely on the additive structure
of the natural numbers. Our ambition is to generalize a theorem of Mertens [8] to
Beurling prime number systems, giving a simple formula for calculating A given
only the Beurling primes p. Unless otherwise stated we will always assume that
N(x) = Ax + o(x), where A is a real number larger than 0.

Theorem 1.1. Let P be a generalized prime number system for which N(x) =
Ax + o(x), then

lim
n→∞

1

ln n

∏
p≤n

(
1− 1

p

)−1
= Aeγ .

This theorem gives a formula for the asymptotic number of ideals with norms
less than x in the ring of integers of a fixed algebraic number field. To the end of this
paper, we discuss a problem posed by Beurling [3] concerning the smallest possible
non-zero size of |N(x)− [x]|. We conjecture the following:

Conjecture 1.2. If P represents a Beurling prime system different from the set of
rational primes, then

lim sup
x→∞

|N(x)− [x]|
ln x

> 0.
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2 Y. A. RATHER

We shall prove this for some Beurling systems and give some indications
of why one should expect this. If the conjecture is true, then it is sharp in the
following manner:

Theorem 1.3. For every c > 0 there exists a generalized prime number system
other than the rational primes for which

|N(x)− [x]| < c ln x

for all x ≥ 1.

2. Merten’s theorem

In this section, we will prove Theorem 1.1.The proof will also make frequent
use of the following lemma which is just a special case of integration by parts for
Stieltjes integrals:

Lemma 2.1. Suppose that λn; n = 1, 2, ... is a non decreasing sequence such that
λn →∞ when n→∞. Define C(t) =

∑
λn≤t cn and let φ(t) be a function which is

defined and has a continuous derivative for t ≤ λ1. Then ¸∑
λn≤t

cnφ(λn) = C(x)φ(x)−
∫ x

λ1

C(t)φ′(t)dt.

Let us define what we mean by the Beurling integers corresponding to the
Beurling primes pn:

Definition 2.2. The Beurling integers are all commutative monomials in the vari-
ables pn and the value of the Beurling integer is the corresponding product of the
values of pn. Furthermore, let N(x) denote the number of Beurling integers such
that their value is less or equal to x. Let us stress that we think of two Beurl-
ing integers (two monomials) as different, even though their values (seen as real
numbers) are the same. We can of course just as well think of the Beurling integers
as real numbers with multiplicities, but we will adopt this equivalent formulation.

Definition 2.3. Given P. For Re(s) > 1 we define

ζP(s) =

∞∑
1=1

1

nsi
.

where ni are the values of all Beurling integers.

Since the Beurling integers obey unique factorization by construction, the
zeta function has the usual Euler product

ζP(s) =
∏
p

(
1− 1

ps

)−1
.

Looking at Theorem 1.1 it is easy to realize that the theorem is related to the
behavior of ζP(s) near s = 1. Let us therefore study this behavior:

Lemma 2.4. If P is a generalized prime number system for which N(x) = Ax+o(x),
then

lim
s→1+

(s− 1)ζP(s) = A.
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BOUNDS ON THE GENERALIZED PRIME NUMBER SYSTEM 3

Proof. Let R(x) = N(x) − A(x) = o(x). Choose X so that |R(x)| < εx/2 for x > X,
and s > 1 so that

s− 1 <
ε

2
∫ X

1

|R(t)|
t2

dt

we have ∣∣∣∣(s− 1)

∫ ∞
1

R(t)

ts+1
dt

∣∣∣∣ ≤ ∣∣∣∣(s− 1)

∫ X

1

R(t)

ts+1
dt

∣∣∣∣+

∣∣∣∣(s− 1)

∫ ∞
X

R(t)

ts+1
dt

∣∣∣∣
≤ ε

2
+ (s− 1)

∫ ∞
X

ε

2ts
dt <

ε

2
+
ε

2
= ε,

and therefore

lim
s→1+

(s− 1)

∫ ∞
1

R(t)

ts+1
dt = 0.

Using Lemma 2.1 we have

lim
s→1+

(s− 1)ζP(s) = lim
s→1+

(s− 1)s

∫ ∞
1

N(t)

ts+1
dt

= A = lim
s→1+

(s− 1)s

[ ∫ ∞
1

A

ts
dt +

∫ ∞
1

R(t)

ts+1
dt

]
= lim

s→1+

[
sA + (s− 1)

∫ ∞
1

R(t)

ts+1
dt

]
= A.

�

To prove Theorem 1.1 we need some estimate on the density of the set of
primes. It would for instance be enough to have the prime number theorem, but
due to the work done by Beurling [1] and Diamond [2], which we mentioned in
the introduction, we know that this is too much to hope for. Instead of counting
each prime with weight 1 we will count each prime with the weight ln p/p. This
gives us a weaker asymptotic formula, but this asymptotic formula will be enough.
The proof of the lemma uses the estimate π(x) = o(x). Even though this may be
thought of as well known to experts on Beurling primes, we have still added a proof
of this claim for the readers convenience.

Lemma 2.5. If P is a generalized prime number system then

lim
n→∞

1

ln n

∑
p≤n

ln p

p
= 1.

Proof. Let N(x) = Ax + R(x), where R(x) = o(x). If xn denote the values of all
Beurling integers, we define T(x) to be

T(x) = ln

( ∏
xn≤x

xn

)
=
∑
xn≤x

ln xn = N(x) ln x−
∫ x

1

N(t)

t
dt = Ax ln x + o(x ln x).
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4 Y. A. RATHER

Counting the times exp{T(x)} is divisible by the primes p we get the estimate

T(x) =
∑
p≤x

(
N

(
x

p

)
+ N

(
x

p2

)
+ ...

)
ln p =

∑
p≤x

N

(
x

p

)
+ O(x).

It follows that

Ax
∑
p≤x

ln p

p
=
∑
p≤x

N

(
x

p

)
ln p =

∑
p≤x

(
Ax

p
− N

(
x

p

))
ln p

= Ax ln x−
∑
p≤x

R

(
x

p

)
ln p + o(x ln x)

and therefore we are done, if we can show that∑
p≤x

R

(
x

p

)
ln p = o

(
x
∑
p≤x

ln p

p

)
+ o(x ln x). (4.1)

From Lemma 2.2 and the Euler product we may deduce that
∏

p

(
1− 1

p

)−1
is

divergent. Let p1, p2, ..., pr be the first Beurling primes and let Hr(x) be the number
of generalized integers less than x which are not divisible by pj for any j = 1, 2, ..., r.
Using the inclusion-exclusion principle we may write

Hr(x) = N(x)−
r∑
j=1

N

(
x

pj

)
+

r∑
j=2

j−1∑
k=1

N

(
x

pjpk

)
+ ...+ (−1)rN

(
x

p1p2...pr

)

= Ax
r∏
j=1

(
1− 1

pj

)
+ or(x)

and if we first choose r large enough and then x large enough this is less than εx.
But the Beurling primes pr+1, pr+2, ..., pπ(x) are less than x and not divisible by any
pj with j = 1, 2, ..., r and this gives the estimate

π(x)

x
≤ Hr(x)

x
+
r

x
.

This shows that π(x)/x = o(1) and we now have the tools needed to prove equation
(4.4). Take ε > 0. Since R(x) = o(x) there exists a x0 such that |R(x)| ≤ εx for
all x ≥ x0. R(x) is of course bounded on the interval [1, x0] and we assume that
|R(x)| < C. We also assume Cπ(x) ≤ εx. This gives us∑

p≤x

R

(
x

p

)
ln p =

∑
x/x0≤p≤x

R

(
x

p

)
ln p +

∑
p<x/x0

R

(
x

p

)
ln p

≤ εx
∑

x/x0≤p≤x

ln p

p
+ C

∑
p<x/x0

ln p ≤ εx
∑
p≤x

ln p

p
+ Cπ(x) ln x

≤ εx
∑
p≤x

ln p

p
+ εx ln x.

�

90



BOUNDS ON THE GENERALIZED PRIME NUMBER SYSTEM 5

Using the previous lemma it is possible to follow the proof of Mertens’ the-
orem from [5] closely:

Proof of Theorem 1.1. Take s > 1, φ(t) = ln(1− t−s) and let x→∞ in lemma 2.1
to get

ln ζP(s) = −
∑
p

ln(1− p−s) = s

∫ ∞
p1

π(t)

t(ts − 1)
dt

= s

∫ ∞
p1

(
π(t)− t

ln t

)
t−s−1dt + s

∫ ∞
p1

π(t)

ts+1(ts − 1)
dt + s

∫ ∞
p1

t−s

ln t
dt

= s

∫ ∞
p1

(
π(t)− t

ln t

)
1

t2
t−(s−1)dt + s

∫ ∞
p1

π(t)

t2(t− 1)
dt

+ ln

(
1

(s− 1)

)
− ln(ln p1)− γ + o(1)

as s → 1+. This means that I(s − 1) =
∫∞
p1

(
π(t) − t/ ln t

)
t−2t−(s−1)dt can be

estimated using Lemma 4.3.3 as follows

sI(s− 1) = ln ζP (s)−
∫ ∞
p1

π(t)

t2(t− 1)
dt− ln

(
1

s− 1

)
+ ln(ln p1) + γ + o(1)

= lnA−
∫ ∞
p1

π(t)

t2(t− 1)
dt + ln(ln p1) + γ + o(1).

To prove that I(0) is convergent we want to use a Tauberian theorem from [5]
stating that: �

Lemma 2.6. Let a > 1 and assume that the integral

I(δ) =

∫ ∞
a

x−δf(x)dx

is convergent for all δ > 0, that I(δ)→ l when δ → 0+ and that the
∫ x

a
ln(t)f(t)dt =

o(ln x) when x → ∞. Then I(0) is convergent as a generalized Riemann integral
and I(0) =

∫∞
a

f(x)dx = l.

Proof. We see that the only thing we need to verify in order to use the Lemma 2.4
is that for f(t) = (π(t) − t/ ln t)t−2 and we have

∫ x

p1
ln(t)f(t)dt = o(ln(x)). Using

that π(x) = o(x) together with Lemma 2.3 and Lemma 2.1 we see that∫ x

p1

ln(t)f(t)dt =

∫ x

p1

π(t) ln t

t2
dt−

∫ x

p1

dt

t
=
∑
p≤x

ln p

p
+ o(ln x)− ln x = o(ln x),

which means that

I(0) = lnA−
∫ ∞
p1

π(t)

t2(t− 1)
dt + ln(ln p1) + γ.
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6 Y. A. RATHER

Once again using Lemma 2.1 we get

lim
n→∞

[∑
p≤x

ln

(
1− 1

p

)
+ ln(ln n)

]

= lim
n→∞

[
− π(n)

n
−
∫ n

p1

(
π(t)− t

ln t

)
t−2dt

−
∫ n

p1

π(t)

t2(t− 1)
dt−

∫ n

p1

dt

t ln t
dt+ ln(ln n)

]
= −I(0)−

∫ n

p1

π(t)

t2(t− 1)
dt + ln(ln p1) = − lnA− γ.

After changing signs and exponentiating we obtain

lim
n→∞

1

ln n

∏
p≤n

(
1− 1

p

)−1
= Aeγ .

�

By taking logarithms in Theorem 1.1, Taylor expanding − ln(1 − 1/p) and
then using Möbius inversion, one reaches the equivalent form

M = lim
n→∞

[∑
p≤n

1

p
− ln(ln n)

]
= γ + lnA +

∞∑
k=2

µ(k)

k
ln ζP(k).

For rational primes Mertens calculated the limit to be M ≈ 0.2614972128 in his
article [8] from 1874.This limit is often known as Meissel’s constant since E. Meissel
as early as 1866 announced that∑

p

1

p(ln p)α
≈ 1

α
+ 0.2614972128

for “very small” α. The resemblence of the numerical constants is of course no
coincidence and that they really coincide and was proven by Schinzel [9]. Now we
generalize Schinzel’s theorem to Beurling primes.

Theorem 2.7. If M is defined as above, then

lim
α→0+

[∑
p

1

p(ln p)α
− 1

α

]
= M.

Proof. Let Li(x) be the function defined for x > 1 by

Li(x) = lim
ε→0+

∫ 1−ε

0

dt

ln t
+

∫ x

1−ε

dt

ln t
.

Put π(x) = Li(x) + R(x) and use Lemma 2.1 to get

M = lim
n→∞

∑
p≤n

1

p
− ln(ln n)

 =
Li(p1)

p1
− ln(ln p1) +

∫ ∞
p1

R(t)

t2
dt.

92



BOUNDS ON THE GENERALIZED PRIME NUMBER SYSTEM 7

Using Lemma 2.1 again we have that∑
p

1

p(ln p)α
=

∫ ∞
p1

π(t)

t2(ln t)α
dt + α

∫ ∞
p1

π(t)

t2(ln t)α+1
dt = I(α) + αI(α+ 1).

Since both
∫∞
p1

Li(t)t−2(ln t)−αdt and
∫∞
p1

R(t)/t2dt are convergent for α > 0, we

see that I(α) is convergent for α > 0 . Defining J(α) =
∫∞
p1

Li(t)t−2(ln t)−αdt and

using integration by parts we get that

J(α+ 1) =
1

α

1

(ln p1)α
Li(p1)

p1
+

1

α2

1

(ln p1)α
− 1

α
J(α).

This means that

lim
α→0+

[∑
p

1

p(ln p)α
− 1

α

]
= lim
α→0+

[
I(α)− 1

α

]
= lim
α→0+

[
J(α)− 1

α

]
+ M− Li(p1)

p1
+ ln(ln p1)

= lim
α→0+

[
− αJ(α+ 1) +

1

(ln p1)α
Li(p1)

p1

+
1

α

(
1

(ln p1)α
− 1

)]
+ M− Li(p1)

p1
+ ln(ln p1) = M.

�

3. Beurling’s conjecture

Finally we shall study a problem posed by Beurling [3]. The problem can be
stated as follows:
Which estimation functions E(x) are such that |N(x)− [x]| < E(x) implies that P is
in fact the rational primes?

This question is of course still a bit vague, for instance, do we want the
estimate to hold for all x, or just for x large enough? Theorem 1.3 however shows
that E(x) = c ln x do not have this property for any c > 0, even if we demand it for
all x ≥ 1. This means that if Conjecture 1.2 is true, the question of for which x the
estimate should hold is not essential.

Proof of Theorem 1.3. Given c > 0 we choose two rational primes pi and pj such
that the number q = pipj/(pi + pj − 1) satisfies that ln q > 8/c. We want to prove
that the system composed of the rational primes without pi and pj , but with q
instead, satisfies |N(x)− [x]| < c ln x. Let N1(x) be the number of positive integers
relatively prime to
mathfrakpipj , this is of course

N1(x) = [x]−
[
x

pi

]
−
[
x

pj

]
+

[
x

pipj

]
,
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8 Y. A. RATHER

which can be seen using inclusion-exclusion principle. Summing over the different
powers of q we get

N1(x) =

∞∑
a=0

N1

(
x

qa

)
.

This means that

N1(x)− [x] = f

(
x

q

)
− f

(
x

pi

)
− f

(
x

pj

)
+ f

(
x

pipj

)
,

where f(x) =
∑∞

a=0

[
x

qa

]
, We can estimate f(x) by

f(x) =

∞∑
a=0

[
x

qa

]
<

∞∑
a=0

x

qa
=

xq

q− 1

and

f(x) =

∞∑
a=0

[
x

qa

]
=

[ ln x
ln q ]∑
a=0

[
x

qa

]
>

[ ln x
ln q ]∑
a=0

x

qa
− 1

>
xq

q− 1
− ln x

ln q
− 1− q

q− 1
=

xq

q− 1
− ln x

ln q
− 2− 1

q− 1

≥ xq

q− 1
− ln x

ln q
− 4.

Using these estimates we get

N1(x)− [x] = f

(
x

q

)
− f

(
x

pi

)
− f

(
x

pj

)
+ f

(
x

pipj

)

>
q

q− 1

(
x

q
− x

pi
− x

pj
+

x

pipj

)
−

ln
(

x
q

)
ln q

− 4−
ln
(

x
pipj

)
ln q

− 4

= − 2

ln q
ln x− 7 +

ln(pipj)

ln q
> − 2

ln q
ln x− 5,

and in the same way N(x) − [x] < 2
ln q ln x + 6. This means that |N(x) − [x]| <

2
ln q ln x+ 6. Since q < pi, pj we have that N(x)− [x] = 0 for x < q and this gives us

|N(x)− [x]| < 2

ln q
ln x +

6

ln q
ln x < c lnx.

�

The most natural object to study in order to try to estimate the difference
R(t) = N(t)− [t] is the difference between ζP(s) and ζ(s), where ζ(s) is the Riemann
zeta function. Using Lemma 2.1 we see that

ζP(s)− ζ(s) = s

∫ ∞
1

R(t)

ts+1
dt (4.2)

for Re(s) > 1. We are interested in the case when R(t) is small and in this case
the right hand side of (4.2) is well defined for larger half planes. If we for instance
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BOUNDS ON THE GENERALIZED PRIME NUMBER SYSTEM 9

assume that R(t) = O((ln t)n)for some n, then the right hand side gives an analytic
continuation to Re(s) > 0. However, it is not possible to get estimates that would
allow us to pass even further to the left. This can be seen through the following
proposition:

Proposition 3.1. Let Q be a system of Beurling primes. We have that N(t)− [t] =
o(1) if and only if Q = P, where P is the rational primes.

Proof. Let R(t) = N(t) − [t]. Since R(t) is integer valued the only possibility to
get R(t) = o(1) is if R(t) = 0 for all t ≥ t0. This implies that the value of all
Beurling integers must be rational integers, since if some Beurling integer is not an
integer, then there exists arbitrarily large Beurling integers, which are non-integers
and that is a contradiction. In the same way we see that no integer can appear as
a Beurling integer twice. Using these observations we see that R(t) = o(1) imply
Q = P and the other implication is obvious. �

Proposition 4.3.1 shows that one needs something more than just an estimate
on R(t) if one wants to make a meromorphic continuation of ζP(s) to something
larger than Re(s) > 0. Thus the line Re(s) = 0 can be thought of as some kind
of natural boundary for the zeta functions. The general idea is of course that the
further to the left we can push the analytic continuation, the better asymptotics we
will get and nice boundary behavior will also lead to good asymptotics. Our main
belief is that it is not possible to extend the function (ζP(s) − ζ(s))/s analytically
beyond the line Re(s) = 0 and that the behavior at Re(s) = 0 is never better than
an infinite number of simple poles and that this gives the property in Conjecture
1.2.

Let us look at a specific kind of Beurling systems Q constructed as

Q = (P\{p1, p2, ..., pm})
⋃
{q1, q2, ...qn}. (4.3)

where P is the set of rational primes and qj are real numbers larger than 1. It was
a system of this kind that we used to show Theorem 1.3 and since we believe this
theorem to be sharp, we believe that these systems give the best possible estimates.
Similar systems, but where the “added primes” are integers, have been studied by
Lagarias in [6]. His main result states that all Beurling prime systems, such that
all Beurling integers are integers themselves and such that the system have the so
called Delone property, are systems of this type, i.e., the Beurling primes are given
by (4.3), where P is the set of rational primes and qj are integers. The Delone
property is the property that all gaps between two consecutive Beurling integers
are bounded and bounded away from zero. In the case of integers, the last property
is of course the same as the property that two different Beurling integers always
have different values (unique factorization as Lagarias calls it). We should observe
that if two different Beurling integers have the same value α, then there are at least
n + 1 different Beurling integers having the value αn, hence the remainder term is
of at least logarithmic growth. This shows that a counterexample to Conjecture 1.2
must consist of Beurling integers which all have different values. One can develop
this idea further to show that a counterexample to Conjecture 1.2 must have really
bad Diophantine approximation properties, but to show the conjecture in such a
way seems very hard. There is an open problem (given by Lagarias) of classifying
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10 Y. A. RATHER

all Beurling systems with the Delone property. To prove that there are no Beurling
systems with Delone property such that some Beurling integer is a non-integer
(and thereby answering Lagarias question) seems like a first step towards the kind
of Diophantine approximation properties one would need.

Let us try to illustrate the connection between the boundary behavior of ζP
and the size of R(t). We use the simple case of when we throw away a finite number
of primes and add a finite number of Beurling primes. First of all we may observe
that ζQ(s) = ψ(s)ζ(s), where ζ(s) is the Riemann zeta function and

ψ(x) =

∏m
i=1

(
1− 1

psi

)
∏n
i=1

(
1− 1

qs
i

) .
We see that ψ(x) has poles on Re(s) = 0 with a few exceptions. If there exists an

injection j such that for all qi there is a corresponding pj(i) such that qkii = pj(i)
for some positive integer ki, then ψ(x) has no poles, but otherwise we have an
infinite sequence of simple poles on the line Re(s) = 0. Let us try to understand
this injection criterion a little better. First of all it is easy to realize that if such an
injection exists then N(x) = Ax + O(1). Let us prove this: We let Z be all integers
which are products of the primes

(P\{p1, p2, ..., pm})
⋃
{pj(1), pj(2), ...pj(n)}.

Z is nothing but all integers relatively prime to some product of thrown away primes.
It is easy to see that the number of elements in Z less than x is A1x + O(1). Let B
denote the finite set

B =

{
n∏
i=1

qlii ; 0 ≤ li ≤ ki

}
.

Our full system of Beurling integers is BZ, and this clearly has Ax+O(1) elements
less than x. In Lemma 4.3.2 we will show that A 6= 1 if the injection exists.

If j is not injective, then we will have two different Beurling integers with the
same value and by the argument above this gives that N(x)− A[x] grows like C ln x
for a sequence of x. The more interesting case is if we add a new Beurling prime
q, which is not the k:th root of one of the pi. Also in this case R(x) = N(x)− A[x]
will be of the order C ln x for an infinite sequence of x. To see this we use the
inclusion-exclusion principle to write

N(x) =
∑

d|
∏m

i=1 pi

∑
k≥0

µ(d)

[
x

qkd

]
,

where we have used the multi-index notation qk =
∏m
i=1 q

ki
i and µ(d) denotes the

Möbius function. Since

A =
∑

d|
∏m

i=1 pi

∑
k≥0

µ()
1

qkd
=
∑
qkd<x

µ(d)
1

qkd
+ O

(
1

x

)
,
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this implies that

R(x) =
∑
qkd<x

µ(d)

{
1

qkd

}
+ O(1), (4.4)

where {y} denotes the fractional part of y. If qk = pi, the identity qk×d = 1× (pid)
gives large cancellation in the sum above, but otherwise we can choose x so that
the cancellation is small. Since the sum contains C(ln x)n terms asymptotically, we
will get rather large R(x) for some x. In other words, in general we have that

N(x)− Ax = R(x) = O((ln x)n), (4.5)

but if there are no identities of the form qk = pi, then for some x, this is a good
approximation. Let us make this even simpler, just to illustrate what happens. Let
us look at two different Beurling prime systems, in both systems we have thrown
away the prime 2, but in the first case we add the prime

√
2 and in the second

case we add the prime 4. In the first case we have ζQ(s) = ζ(s)(1 + 2−s/2), a zeta

function without poles on Re(s) = 0 and the Beurling integers are Z ∪
√

2Z, which

gives N(x) = [x] + [x/
√

2]. In the second case ζQ(s) = ζ(s)(1 + 2−s)−1, which have
poles for s = iπn/ ln 2, where n is an odd integer. The Beurling integers are the
ordinary integers such that the number of times they are divisible by 2 is even.
Equation (4.4) shows that we have

N(s) =
2

3
x +

[log2 x]∑
k=0

(−1)k
{ x

2k

}
+ O(1).

Choosing x written in binary notation as 1010...10 gives |N(x)− 2/3x| ≈ 1/6 log2 x.
Let us prove that the zeta functions of systems discussed above have poles

on Re(s) = 0 as long as N(x) = x + o(x):

Lemma 3.2. Let p1, p2, ..., pm be rational primes and let q1, q2, ..., qn be ordinary
real numbers larger than one. Define ψ(s) to be

ψ(x) =

∏m
i=1

(
1− 1

psi

)
∏n
i=1

(
1− 1

qs
i

)
and assume that ψ(1) = 1 and that ψ(s) 6≡ 1. Then ψ(s) has a pole ρ with Re(ρ) = 0.

Proof. Proof. If n = 0, then ψ(1) = 1 shows that m = 0, which gives ψ(s) ≡ 1. Thus
we may assume that n > 0. Furthermore, we assume that ψ(s) has no pole ρ with
Re(ρ) = 0. We can without loss of generality assume that pi 6= qjfori = 1, ...,m
and j = 1, ..., n. ψ(s) will have a pole at s = 2πi/ ln qj unless one of the pi fulfill

pi = qkj , where k ≥ 2. If pi = qk1j = qk2l then (1 − pi)
−s(1 − q−sj )−1(1 − q−sl )−1 will

have a pole at s = 2πk1k2/ ln pi and therefore we may order pi in a way so that

pi = qkii for i = 1, ..., n and ki ≥ 2. From this it is obvious that we must have
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m ≥ n. The condition ψ(1) = 1 can now be rewritten as

m∏
i=n+1

(
1− 1

pi

)−1
=

n∏
i=1

1− 1

q
ki
i

1− 1
qi

=

m∏
i=n+1

(
1 +

1

qi
+ ....+

1

qki−1i

)

=

k1−1∑
a1=0

k2−1∑
a2=0

...

kn−1∑
an=0

1∏n
i=1 q

ai
i

=
1∏n

i=1 q
ki−1
i

k1−1∑
a1=0

k2−1∑
a2=0

...

kn−1∑
an=0

n∏
i=1

qαi
i .

We observe that
∏n
i=1 q

ki−1
i is the natural basis for the field extension Q(q1, q2, ..qn)

and in particular the right hand side must be an irrational number. But the left
hand side is obviously rational and therefore we have a contradiction and we draw
the conclusion of the theorem. �

We have tried to illustrate that a close analysis of the behavior of the zeta
functions on the line Re(s) =0 might be the key to proving Conjecture1.2.

Proposition 3.3. There are no Beurling prime number systems such that ζP has
a pole of order n at s = 0 and such that |N(x)− [x]| = O((ln x)n).

Proof. Assume that |N(x)− [x]| = O((ln x)n). For Re(s) > 0 we have that

ζP(s)=ζ(s) + s

∫ ∞
1

N(t)− [t]ts+1

d
t,

and the estimate above and the fact that ζ(s) does not have a pole at s = 0
immediately gives

ζP(s)=o

(
s

∫ ∞
1

(ln t)n

ts+1

)
dt = o(s−n)

as s→ 0+ This clearly shows that ζP can not have a pole of order n at s = 0. �

An analogous calculation shows that if the zeta function of a Beurling sys-
tem has a pole of order n at s ∈ iR, then it does not have the property that
|N(x)− [x]| = O((ln x)n−1). Unfortunately we can no longer rule out that |N(x)− [x]| = o((ln x)n),
which is what we want to rule out. To get a better theorem we will have to use
that the number of poles is infinite. However, in some cases Proposition 4.3.3 is
enough and gives us the estimates we argued for above more directly:

Corollary 3.4. Let Q = (P\{p1, p2, ..., pm})
⋃
{q1, q2, ...qn}, where P is the rational

primes, m < n and qj > 1 for j = 1, 2, ..., n. Then we have

lim sup
x→∞

|N(x)− [x]|
ln x

> 0.

Proof. We have that ζQ(s) = ψ(s)ζ(s), where ζ(s) is the Riemann zeta function and

ψ(x) =

∏m
i=1

(
1− 1

psi

)
∏n
i=1

(
1− 1

qs
i

) .
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�

Since ψ(s) has a pole at s = 0 and ζ(0) 6= 0 we are done.
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