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Abstract. The problem of estimation of s-out-of-k system reliability in

stress-strength setup is studied. The reliability of the system is derived as-

suming strength and stress variables to follow new Weibull-Pareto distribu-
tion. Maximum likelihood and Bayesian approaches are used to estimate

system reliability. Approximate Bayes estimators are obtained using Lind-

ley’s approximation technique. The mean squared errors of the estimators of
reliability are computed using simulation and the estimators are compared

using mean squares error criteria. The estimation procedures are illustrated

using real data analysis.
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1. Introduction

The stress-strength model has Vast practical applications in the field of En-
gineering and other disciplines of science. The estimation of stress-strength re-
liability for s out of k system has received much attention by researchers. Rao
and Kantam (2010) addressed the estimation of reliability of such a system when
the underlying distribution of the stress and strength variables are log-logistic
distribution, followed by Rao (2014) for Rayleigh distribution. The estimation of
multicomponent stress-strength reliability for parallel and series systems is studied
by Pandit and Kantu (2013) when strength and stress variables follow exponential
distribution. Kizilaslan and Nadar (2015,2016) studied the problem of estimating
stress-strength reliabilityof an s out of k system when the underlying distributions
are Weibull and bivariate Kumarswamy.
In this paper, s-out-of-k system in stress-strength environment which has k inde-
pendent and identical strength components and a common stress is studied. These
kinds of situations may occur in real life. For example, in an electrical power sta-
tion containing eight generating units which produce the electricity only if at least
six units are working; the demand for the electricity of a district is fulfilled only
if s-out-of-k wind rose are operating at all times and in a communication system
for a navy can be successful only if six transmitters out of ten are operational to
cover a district (refer Nadar, M.and Kizilaslan, F (2015)). The application of s
out of k system can be seen in many real life situations, particularly in industry
and military(refer Kuo and Zuo (2003)).
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This paper considers stress strength reliability of s out of k system when the un-
derlying distribution is new Weibull-Pareto. Tahir et. al (2014) introduced new
Weibull-Pareto distribution and it is further studied by Nasiru and Luguterah
(2015).probability density function and Cumulative distribution function of new
Weibull-Pareto distribution respectively are given below:

f(x) =
βδ

θ
(
x

θ
)β−1 e−δ(

x
θ )
β

; x > 0, δ, β θ > 0

and

F (x) = 1 − e−δ(
x
θ )
β

; x > 0, δ, β θ > 0

This distribution has constant failure rate when β = 1 and increasing (decreasing)
failure rates when β > 1(β < 1).
Rest of the paper is organized as follows. In section 2, maximum likelihood esti-
mation of Rs,k is considered. Approximate Bayes estimators of Rs,k is obtained
by using Lindley’s approximation method in section 3. In section 4, simulation
study is conducted by estimating MSEs to compare the estimators of reliability
and real data analysis is given in section 5. Section 6 contains the summary and
conclusions.

2. Maximum likelihood estimation of System reliability

First, the system reliability of s out of k system is presented. Let the random
variables Y,X1, X2, ..., Xk be independent, G(y) be the cummulative distribution
function of Y and F (x) be the common cummulative distribution function of
X1, X2, ..., Xk. The reliability in a multicomponent stress-strength model devel-
oped by Bhattacharyya and Johnson (1974) is

Rs,k = P (at least s of the (X1, X2, ..., Xk) exceed Y )

=

k∑
i=s

(
k

i

)∫ ∞
−∞

(1 − F (y))i(F (y))k−idG(y) (1)

The system with k identical components functions if s (1 ≤ s ≤ k) or more
components simultaneously operate. Now, the system is subjected to a stress Y
which is a random variable with distribution function G(.). The strengths of the
components, that is the minimum stresses to cause failure, are indendently and
identically distributed random variables with distribution function F (.). Then the
reliability of the system is given in equation (1).
In our case, multicomponent system reliability when X1, X2, ..., Xk follow new
Weibull Pareto distribution with parameters (δ1, θ, β) and Y follow new Weibull
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Pareto distribution with parameters (δ2, θ, β)

Rs,k =

k∑
i=s

(
k

i

)∫ ∞
0

δ2β

θ
[1 − (1 − e−δ1(

y

θ
)β)]i

[1 − e−δ1(
y

θ
)β ]k−i(

y

θ
)β−1e−δ2(

y

θ
)βdy

=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i

j

)
(−1)j

δ2
[δ1(i+ j) + δ2]

Next, we consider the estimation of system reliability using method of maximum
likelihood.
Let X1, X2, ..., Xn and Y1, Y2, ..., Ym be two random samples of size n,m respec-
tively. Here, strength and stress variables from NWP distribution with parameters
δ1, δ2, θ and β, then the likelihood function is given by

Ls(δ1, δ2, θ, β) =
δn1 δ

m
2 β

n+m

θn+m

 n∏
i=1

(xi
θ

) m∏
j=1

(yj
θ

)β−1 eδ1 ∑n
i=1(

xi
θ )

β

eδ2
∑m
j=1(

yj
θ )

β

Then, the log-likelihood function of δ1, δ2, θ and β is

logLs(δ1, δ2, θ, β) = nlogδ1 +mlogδ2 + (n+m)logβ − (n+m)logθ

+ (β − 1)

n∑
i=1

log
(xi
θ

)
+ (β − 1)

m∑
j=1

log
(yj
θ

)
− δ1

n∑
i=1

(xi
θ

)β
− δ2

m∑
j=1

(yj
θ

)β
The likelihood equations are

∂logLs
∂δ1

= 0⇒ n

δ1
−

n∑
i=1

(xi
θ

)β
∂logLs
∂δ2

= 0⇒ m

δ2
−

m∑
j=1

(yj
θ

)β
∂logLs
∂θ

= 0⇒ −n+m

θ
− n(β − 1)

θ
− m(β − 1)

θ
+ δ1

n∑
i=1

β
xi
θ2

[
xi
θ

β
− 1

]

+ δ2

m∑
j=1

β
yj
θ2

[
yj
θ

β
− 1

]
∂logLs
∂β

= 0⇒ −n+m

β
+

n∑
i=1

log
[xi
θ

]
+

m∑
j=1

log
[yj
θ

]
− δ1

n∑
i=1

log
xi
θ

[xi
θ

]β
− δ2

m∑
j=1

log
yj
θ

[yj
θ

]β
The MLEs of δ1, δ2 are obtained as functions of β and θ.
The maximum likelihood equations are

δ̂1 =
n∑n

i=1(xi
θ

)β
, δ̂2 =

m∑m
j=1(

yj
θ

)β
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where β̂ and θ̂ are the solution of the nonlinear equation of the form, h(β) = β.

h(β) = (n+m)

[
−

n∑
i=1

log
(xi
θ

)
−

m∑
j=1

log
(yj
θ

)
+ δ1

n∑
i=1

log
(xi
θ

)(xi
θ

)β
+ δ2

m∑
j=1

log
(yj
θ

)(yj
θ

)β]−1

and h(θ) = θ.

h(θ) = (n+m)

[
n(β − 1)

θ
− m(β − 1)

θ
+ δ1

n∑
i=1

β
xi
θ2

[
xi
θ

β
− 1

]
+ δ2

m∑
j=1

β
yj
θ2

[
yj
θ

β
− 1

]]−1

Here, β̂ and θ̂ can be obtained by using any iterative scheme like Newton-Raphson method
and then using invariance principle, the MLEs of δ1 and δ2 are obtained from (3).

Hence, the MLE of ˆRs,k is given by,

R̂s,k =

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j

δ̂2

[δ̂1(i+ j) + δ̂2]

3. Bayes estimation of Rs,k

Here,we assume that all parameters δ1, δ2, θ and β are random variables and have
independent gamma prior with parameters (ci, di), i = 1, 2, 3, 4 respectively. The pdf of
a gamma random variable X with parameters (ci, di) is

f(x) =
dcii

Γ(di)
xci−1e−xdi ; x > 0, ci, di > 0

where ci, di > 0, i = 1, 2, 3, 4 . Thus the joint prior δ1 , δ2, θ and β is

g(δ1, δ2, θ, β) =
dc11

Γ(c1)

dc22
Γ(c2)

dc33
Γ(c3)

dc44
Γ(c4)

δc1−1
1 δc2−1

2 θc3−1βc4−1e−d1δ1

e−d2δ2e−d3θe−d4β ;

δ1, δ2, θ, β > 0, ci, di > 0, i = 1, 2, 3, 4

The corresponding joint posterior distribution is given by

π(δ1, δ2, θ, β|X,Y ) =
g(δ1, δ2, θ, β)Ls(δ1, δ2, θ, β)∫∞

0

∫∞
0

∫∞
0

∫∞
0
g(δ1, δ2, θ, β)Ls(δ1, δ2, θ, β)dδ1dδ2dθdβ

=
A∫∞

0

∫∞
0

∫∞
0

∫∞
0
Adδ1dδ2dθdβ

where

A = δn+c1−1
1 δm+c2−1

2 θ−(n+m)+c3−1βn+m+c4−1
n∏
i=1

xβ−1
i

m∏
j=1

yβ−1
j

exp−δ1

(
n∑
i=1

(xi
θ

)β
+ d1

)
exp−δ2

(
m∑
j=1

(yj
θ

)β
+ d2

)
exp− d3θ exp− d4β

Here, the bayes estimator of R is obtained as the posterior expectation of reliability under
squared error (SE) loss function

R̂Bs,k =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Rs,kπ(δ1, δ2, θ, β|X,Y ) dδ1dδ2dθdβ

The evaluation of posterior mean is not tractable. However, approximate posterior mean
can be obtained using Lindley’s approximation method.
The simplest method to approximate is Lindley’s (Lindley (1980)) approximation method.
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The Lindley’s approximation method evaluates the ratio of the integrals as a whole and-
produces a single numerical result.
The Bayes estimator under squared error loss function is

R̂B = u+ (u1a1 + u2a2 + a5 + a6) +
1

2
[A(u1σ11 +B(u2σ22) + C(u1σ31 + u2σ32 +D(u1σ41 + u2σ42)]

where

a1 = ρ1σ11 + ρ3σ13 + ρ4σ14, a2 = ρ2σ22 + ρ3σ23 + ρ4σ24

a6 =
1

2
(u11σ11 + u22σ22 + u33σ33 + u44σ44),

A = σ11L111 + σ33L331 + 2σ34L341 + 2σ44L441,

B = 2σ13L132 + 2σ14L142 + 2σ23L232 + σ24L242 + σ22L222σ33L332 + 2σ34L342 + σ44L442,

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ14L143 + 2σ23L233 + 2σ24L243 + σ22L223 + σ33L333 + 2σ34L343 + σ44L443,

D = σ11L114 + 2σ12L124 + 2σ13L134 + 2σ14L144 + 2σ23L234 + 2σ24L244 + σ22L224 + σ33L334 + 2σ34L344 + σ44L444,

here

ρ1 =
∂ρ

∂δ1
=
c1 − 1

δ1
− d1, ρ2 =

∂ρ

∂δ2
=
c2 − 1

δ2
− d2,

ρ3 =
∂ρ

∂θ
=
c3 − 1

θ
− d3, ρ4 =

∂ρ

∂β
=
c4 − 1

β
− d4

The values of Lij can be obtained as follows for i, j = 1, 2.

L11 =
∂2logLs
∂δ21

= − n

δ21
, L22 =

∂2logLs
∂δ22

= −m
δ22

L13 = L31 =

n∑
i=1

β
xi
θ2

[
xi
θ

β
− 1

]
+ δ2

m∑
j=1

β
yj
θ2

[
yj
θ

β
− 1

]

L23 = L32 =

m∑
j=1

β
yj
θ2

[
yj
θ

β
− 1

]

L14 = L41 = −
n∑
i=1

xi
θ2

β
log
[xi
θ

]
,

L24 = L42 = −
m∑
j=1

(yj
θ2

)β
log
[yj
θ

]
L33 =

∂2logLs
∂θ2

=
n+m

θ2
− δ1β

n∑
i=1

(xi
θ

)β−1
(
β + 1

θ3

)
− δ2β

m∑
j=1

(yj
θ

)β−1
(
β + 1

θ3

)
+ (n+m)

(
β − 1

θ2

)

L44 = −n+m

β2
− δ1

n∑
i=1

(xi
θ

)β [
log
(xi
θ

)]2
− δ2

m∑
j=1

(yj
θ

)β [
log
(yj
θ

)]2
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and the values of Lijk for i, j, k = 1, 2, 3

L111 =
2n

δ31
, L222 =

2m

δ32

L331 = L133 = L313 = −
n∑
i=1

βxi
(xi
θ

)β−1
(
β + 1

θ3

)

L341 = L431 = L134 = −
n∑
i=1

1

θ

(xi
θ

)β (
1 + βlog

(xi
θ

))
L332 = L233 = L323 = −

m∑
j=1

βyj
(yj
θ

)β−1
(
β + 1

θ3

)

L441 = −
n∑
i=1

(xi
θ

)β [
log
(xi
θ

)]2
L442 = −

m∑
j=1

(yj
θ

)β [
log
(yj
θ

)]2

L342 = L432 = L234 = −
m∑
j=1

1

θ

(yj
θ

)β (
1 + βlog

(yj
θ

))
L333 = −2(n+m)β

θ3
+ δ1β

n∑
i=1

xi
(xi
θ

)β−1 (β + 1)(β + 2)

θ4
+ δ2β

m∑
j=1

yj
(yj
θ

)β−1 (β + 1)(β + 2)

θ4

L343 =
n+m

θ2
− δ1

n∑
i=1

xβi

[
β

θβ+2

(
βlog

xi
θ

)
+ 1

]
− δ2

m∑
j=1

yβj

[
β

θβ+2

(
βlog

yj
θ

)
+ 1

]

L444 =
2(n+m)

β3
− δ1

n∑
i=1

(xi
θ

)β [
log
(xi
θ

)]3
− δ2

m∑
j=1

(yj
θ

)β [
log
(yj
θ

)]3
L443 = δ1

n∑
i=1

[(xi
θ

)β
log
(xi
θ

) [
βlog

(xi
θ

)
+ 2
]]

+ δ2

m∑
j=1

[(yj
θ

)β
log
(yj
θ

) [
βlog

(yj
θ

)
+ 2
]]

since, u = u(δ1, δ2, θ, β) = Rs;k ,

u1 =
∂u

∂δ1
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j+1 δ2(i+ j)

[δ1(i+ j) + δ2]2

u2 =
∂u

∂δ2
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j

δ1(i+ j)

[δ1(i+ j) + δ2]2

u11 =
∂2u

∂δ21
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j

2δ2(i+ j)2

[δ1(i+ j) + δ2]3

u12 =
∂2u

∂δ1∂δ2
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j+1 [δ1(i+ j)− δ2](i+ j)

[δ1(i+ j) + δ2]3

u22 =
∂2u

∂δ22
=

k∑
i=s

k−i∑
j=0

(
k

i

)(
k − i
j

)
(−1)j+1 2δ1(i+ j)

[δ1(i+ j) + δ2]3
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4. Simulation Study

Simulation study consists of estimating multicomponent stress-strength reliability
when the sample is generated from new Weibull- Pareto distribution under ML and
Bayesian approaches. The comparison of the estimates are done though mean squared er-
ror criteria based on 100000 random samples of size n andm. We have evaluated empirical
mean square errors for different sets of values for (δ1, δ2, θ, β) for an s out of k system. For
the present study, the values of (δ1, δ2, θ, β) are (0.2, 0.1, 1, 1), (1.4, 1.2, 0.4, 0.7), (0.5, 0.6, 0.5, 0.7)
and (0.2, 0.7, 1, 0.6).
The corresponding true values of stress-strength reliability for s-out-of-k system with
(s, k) = (1, 3) are 0.5428, 0.7068, 0.7970 and 0.9627 that for (s, k) = (2, 4) are 0.3904, 0.5516, 0.6565, 0.9104.
The Bayesian estimators under squared error loss function using gamma prior are c1 =
2, c2 = 7, c3 = 4, d1 = 3, d2 = 5, d3 = 2 (prior1) and c1 = 1, c2 = 1, c3 = 1, d1 = 1, d2 =
1, d3 = 1 (prior2).

Table 1. MLE and Bayes estimators and MSE for estimates of
Rs,k

δ1 = 0.2, δ2 = 0.1, θ = 1, β = 1, prior1

(s, k) Rs,k n = m ˆRsrss,k
ˆRBs,k MSE( ˆRsrss,k ) MSE( ˆRBs,k)

(1, 3) 0.5428

10 0.5532 0.5524 0.0091 0.0077
15 0.5528 0.5511 0.0089 0.0059
20 0.5464 0.5447 0.0076 0.0050
30 0.5459 0.5441 0.0071 0.0039
35 0.5458 0.5437 0.0054 0.0023
40 0.5446 0.5436 0.0065 0.0014
50 0.5431 0.5425 0.0012 0.0009

(2, 4) 0.3904

10 0.4010 0.3991 0.0095 0.0082
15 0.3996 0.3986 0.0083 0.0072
20 0.3993 0.3981 0.0055 0.0047
30 0.3981 0.3974 0.0043 0.0035
35 0.3984 0.3971 0.0038 0.0023
40 0.3952 0.3945 0.0017 0.0015
50 0.3932 0.3912 0.0012 0.0008
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Table 2. MLE and Bayes estimators and MSE for estimates of
Rs,k

δ1 = 1.4, δ2 = 1.2, θ = 0.7, β = 0.4, prior2

(s, k) Rs,k n = m ˆRsrss,k
ˆRBs,k MSE( ˆRsrss,k ) MSE( ˆRBs,k)

(1, 3) 0.7068

10 0.7193 0.7091 0.0074 0.0065
15 0.7092 0.7088 0.0054 0.0052
20 0.7094 0.7084 0.0051 0.0046
30 0.7085 0.7079 0.0042 0.0031
35 0.7083 0.7073 0.0032 0.0018
40 0.7077 0.7071 0.0019 0.0009
50 0.7070 0.7061 0.0012 0.0005

(2, 4) 0.5516

10 0.5627 0.5612 0.0089 0.0084
15 0.5610 0.5601 0.0081 0.0079
20 0.5606 0.5583 0.0073 0.0061
30 0.5592 0.5568 0.0062 0.0052
35 0.5564 0.5547 0.0044 0.0041
40 0.5540 0.5522 0.0023 0.0019
50 0.5532 0.5510 0.0016 0.0008

Table 3. MLE and Bayes estimators and MSE for estimates of
Rs,k

δ1 = 0.5, δ2 = 0.6, θ = 0.7, β = 0.5, prior2

(s, k) Rs,k n = m ˆRsrss,k
ˆRBs,k MSE( ˆRsrss,k ) MSE( ˆRBs,k)

(1, 3) 0.7970

10 0.7995 0.7992 0.0098 0.0087
15 0.7991 0.7989 0.0091 0.0082
20 0.7982 0.7975 0.0076 0.0073
30 0.7980 0.7973 0.0065 0.0046
35 0.7979 0.7969 0.0047 0.0029
40 0.7974 0.7972 0.0032 0.0015
50 0.7972 0.7968 0.0017 0.0012

(2, 4) 0.6565

10 0.6597 0.6588 0.0095 0.0081
15 0.6599 0.6587 0.0082 0.0075
20 0.6591 0.6576 0.0074 0.0063
30 0.6585 0.6577 0.0061 0.0051
35 0.6583 0.6572 0.0052 0.0047
40 0.6574 0.6569 0.0036 0.0019
50 0.6571 0.6562 0.0014 0.0005
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Table 4. MLE and Bayes estimators and MSE for estimates of
Rs,k

δ1 = 0.2, δ2 = 0.7, θ = 0.6, β = 1.1, prior2

(s, k) Rs,k n = m ˆRsrss,k
ˆRBs,k MSE( ˆRsrss,k ) MSE( ˆRBs,k)

(1, 3) 0.9627

10 0.9692 0.9691 0.0082 0.0072
15 0.9697 0.9687 0.0059 0.0088
20 0.9685 0.9672 0.0048 0.0053
30 0.9674 0.9664 0.0041 0.0034
35 0.9667 0.9643 0.0032 0.0021
40 0.9641 0.9635 0.0025 0.0016
50 0.9630 0.9626 0.0014 0.0008

(2, 4) 0.9104

10 0.9167 0.9149 0.0089 0.0066
15 0.9156 0.9141 0.0074 0.0061
20 0.9157 0.9132 0.0062 0.0054
30 0.9145 0.9124 0.0055 0.0032
35 0.9136 0.9118 0.0051 0.0027
40 0.9112 0.9105 0.0027 0.0016
50 0.9109 0.9102 0.0011 0.0002

5. Real Data Analysis

In this section, we present a real data which was reported by Xia et al (2009) and
Saracoglu et al (2012). Data set I: Breaking strength of jute fiber length 10 mm (Variable
X)
693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16, 671.49,
183.16, 257.44, 727.23, 291.27, 101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24,
422.11, 43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25
Data set II: Breaking strength of jute fiber length 20 mm (Variable Y)
71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58, 578.62, 756.70,
594.29, 166.49, 99.72, 707.36, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81,
581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.
For the above data sets, we fit the new Weibull-Pareto model and also checked the
validity of the model using Kolmogorov-Smirnov(K-S) test for each data set. It was
found that for data set I and II, the k-s distanced are 1.8041e−16 and 6.9389e−18 with the
corresponding p value are 0.9599 and 0.9634 respectively. From the result, it shows that
new Weibull Pareto distribution fits better for the data sets. The maximum likelihood
estimate and Bayes estimate, based on the parameters with its standard errors are δ̂1 =

0.06808(0.1613), δ̂2 = 14.9301(1.0026), θ̂ = 2.7695(4.1627) and β̂ = 1.43064(0.0461) are

obtained as R̂M1,3 = 0.7679, R̂B1,3 = 0.7712 under prior1 and R̂B1,3 = 0.7724 under prior2.

For s = 2 and k = 4 MLE and Bayes estimators are R̂Msrs
2,4 = 0.6547, R̂B2,4 = 0.6585

under prior1 and R̂B2,4 = 0.6587 under prior2.
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6. Summary and Conclusions

The estimation of s-out-of-k system reliability under stress-strength setup is consid-
ered in the present paper when the underlying distributions follow new Weibull-Pareto.
The system reliability is estimated using maximum likelihood and Bayesian approaches.
Approximate Bayes estimators are obtained using Lindley’s approximation technique.
Simulation study results indicates that MSEs of system reliability decreases as sample
size increases. Bayes estimators for both priors performs better than maximum likelihood
method.
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