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Abstract. A great deal of work has already been done on the subject of
Riemann zeta function. In this paper, we shall study a special class of local

ζ-functions, wherein the main result states that the functions have all zeros on

the line Re(s) = 1/2 and prove a generalization of the result of D. Bump and
Ng. Eugene which asserts that the zeros of the Mellin transform of Hermite

functions have Re(s) = 1/2.

1. Introduction

We shall begin with the definition of Local zeta function. J. T Tate [5, 6] in
the study of Hecke L-functions, defined local ζ-functions as

ζ(s, c, f) =

∫
z×

f(z)c(z)|z|sd×z,

where z is a local field, f is a Schwartz function of z, c is a character of z× and
integration is taken with respect to Haar measure on z×. Weil [1] introduced

a representation ϑ = ϑψ of the metaplectic group S̃L(2,z),for each nontrivial
additive character ψ of z. The Local Riemann Hypothesis (LRH), is the assertion
that if f is taken from some irreducible invariant subspace of the restriction of this

representation to a certain compact subgroup G of S̃L(2,z), then in fact all zeros of
ζ(s, c, f) lie on the line Re(s) = 1/2. The phenomenon was first observed by Bump
and Eugene and they proved that the zeros of the Mellin transform of Hermite
functions lie on the line, this corresponds to LRH for z = R[2]. LRH has also been
proved for z having odd characteristics by Kurlberg [8] and disproved for z = C
by Kurlberg [8]. In all cases above G is the unique maximal compact subgroup
of SO(2,z), for z = R and for z with characteristic congruent to 3 modulo 4,
G is nothing but SO(2,z) , since this already is compact. In [3] Bump, Choi,
Kurlberg and Vaaler offer generalizations of LRH to higher dimensions along with
two different proofs of the case z = R and G = SO(2,z) . In this paper we shall
prove:

Theorem 1.1. Let f be an irreducible invariant subspace of the Weil representation
restricted to SU(2,C) and ζ(s, c, f) 6= 0, where f ∈ W , then all zeros of ζ(s, c, f) lie
on the line Re(s) = 1/2.
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2 Y. A. RATHER

In other words, we prove that a slightly modified version of LRH (namely
taking G = SU(2,C) rather than a compact subgroup of SO(2,C)) holds for z = C
.
Remark. From now on we will restrict ourselves to the case where the local field is
C.

2. The Weil representation

The Weil (or the metaplectic) representation is an action on S(C) = {f(u); f(x+
iy) = g(x, y) ∈ F(R2)}, where F(R2) is the Schwartz space. We will often think
of the elements of S(C), not as functions of the complex variable u, but rather as
functions of the two real variables x, y satisfying u = x+ iy. In agreement with that
we write du and this is nothing but dxdy, the Lebesgue measure of R2. Sometimes
we will also use the notation 〈f, g〉 =

∫
C f(u)g(u)du. Let the additive character on

C be ψ(u) = eiπRe(u) and introduce the Fourier transform

f̂(u) =

∫
C
f(u′)ψ(2uu′)du′.

It can be easily verified that
ˆ̂
f(u) = f(−u), using this normalization.

We assume, without loss of generality, that the additive character is ψ(u) =
eiπRe(u) if the objective only is to prove LRH. Changing character does not pre-
serve the irreducible subspaces, but the zeros of the “corresponding ζ- functions”
are preserved.

S̃L(2,C), the metaplectic double cover of SL(2,C), splits and we have

S̃L(2,C) ∼= SL(2,C)× C2.

Using this identification we write

[
a b
c d

]
=

((
a b
c d

)
, 1

)
.

The restriction of the metaplectic representation to SU(2,C) is generally given by(
ϑ

[
α −β̄
β ᾱ

]
f

)
(u) =

1

|β|

∫
C
ψ

(
1

β

(
αu2 − 2uu′ + ᾱu2

))
f(u′)du′.

However, it is much more convenient to see how ϑ acts on the generators of SL(2,C).
This is given by (

ϑ

[
1 t
0 1

]
f

)
(u) = ψ(tu2)f(u),

(
ϑ

[
0 1
−1 0

]
f

)
(u) = f̂(u),
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MELLIN TRANSFORM OF HERMITE FUNCTIONS 3

and (
ϑ

[
α 0
0 α−1

]
f

)
(u) = |α|f(αu).

In order to find the invariant subspaces of the action of SU(2,C) could of
course just as well study the restriction to SU(2,C) the corresponding Lie algebra
representation dϑ : SL(2,C)→ End(S(C))defined by

((dϑX)f)(u) =
d

dt
(ϑe(tX))f)(u)|t=0

where the exponential map SL(2,C) → SL(2,C) lifted to a map SL(2,C) →
SL(2,C). Since a natural basis for SL(2,C) is{(

0 1
−1 0

)
,

(
0 i
i 0

)
,

(
i 0
0 −i

)}
,

our first objective is to calculate how dϑ acts on S(C) for these vectors. From the
definitions we immediately get(

dϑ

(
0 1
0 0

)
f

)
=

d

dt

(
ϑ

[
1 t
0 1

]
f

)∣∣∣∣
t=0

=
d

dt
ψ(t(x+ iy)2)f|t=0

=
d

dt
eiπt(x

2−y2)f|t=0 = iπ(x2 − y2)f

and (
dϑ

(
0 i
0 0

)
f

)
=

d

dt

(
ϑ

[
1 it
0 1

]
f

)∣∣∣∣
t=0

=
d

dt
ψ(it(x+ iy)2)f|t=0

=
d

dt
e−i2πtxyf|t=0 = i2πxyf

Introducing the notation F for the operator taking f to its Fourier transform f̂ we
see that

dϑ

(
0 0
−1 0

)
=

(
ϑ

[
0 1
−1 0

])−1(
dϑ

(
0 1
0 0

))(
ϑ

[
0 1
−1 0

])
= F−1iπ(x2 − y2)F = − i

4π

(
∂2

∂x2
− ∂2

∂y2

)
and

dϑ

(
0 0
−i 0

)
=

(
ϑ

[
0 1
−1 0

])−1(
dϑ

(
0 i
0 0

))(
ϑ

[
0 1
−1 0

])
= F−1(i2πxy)F = − i

2π

∂2

∂x∂y
.

Hence we have that

dϑ

(
0 1
−1 0

)
= dϑ

(
0 1
0 0

)
+ dϑ

(
0 0
−1 0

)
= iπ(x2 − y2)− i

4π

(
∂2

∂x2
− ∂2

∂y2

)
and

dϑ

(
0 i
i 0

)
= dϑ

(
0 i
0 0

)
− dϑ

(
0 0
−i 0

)
= −i2πxy +

i

2π

∂2

∂x∂y
.
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4 Y. A. RATHER

Finally we get that(
dϑ

(
i 0
0 −i

)
f

)
=

d

dt

(
ϑ

[
eit 0
0 e−it

]
f

)
(x+ iy)

∣∣∣∣
t=0

=
d

dt
f(eit(x+ iy))f|t=0

=
d

dt
f(x cos t− y sin t+ i(y cos t+ x sin t))|t=0

= −y ∂f
∂x

+ x
∂f

∂y

Definition 2.1. Let fm,n(x+ iy) = Hm(
√

2πx)Hn(
√

2πy)e−π(x
2+y2),

where Hn = (−1)nex
2 dn

dxn
e−x

2

are the Hermite polynomials.

Proposition 2.2. Wm =
⊕m

j=0 Cfj,m−j are invariant subspaces of the Weil repre-

sentation restricted to SU(2,C).

Proof We can write fm,n(x+ iy) = hm(x)hn(y), where hm satisfy(
x2 − 1

4π2

d2

dx2

)
hm =

2m + 1

2π
hm.

Hence we have

dϑ

(
0 1
−1 0

)
fm,n =

(
iπ(x2 − y2)− i

4π

(
∂2

∂x2
− ∂2

∂y2

))
fm,n

= iπ

(
2m + 1

2π
− 2n + 1

2π

)
fm,n = i(m− nfm,n.

Using the recurrence formulas Hn+1(x) = 2xHn(x) − 2nHn−1(x) and H ′n(x) =
2nHn−1(x) [4] we get

dϑ

(
i 0
0 −i

)
fm,n = −y ∂fm,n

∂x
+ x

∂fm,n
∂y

= −y
(√

2π2mfm−1,n − 2πxfm,n
)

= +x
(√

2π2nfm,n−1 − 2πyfm,n
)

=
√

2π
(
− 2myfm−1,n + 2nxfm,n−1

)
= −.2mfm−1,n+1 + 2nfm−1,n−1

2
+ 2n

fm+1,n−1 + 2mfm−1,n−1
2

= nfm+1,n−1 −mfm−1,n+1

and

dϑ

(
0 i
i 0

)
fm,n =

1

2
dϑ

[(
i 0
0 −i

)
,

(
0 1
−1 0

)]
fm,n

=
1

2
dϑ

(
i 0
0 −i

)
i(m− nfm,n

− 1

2
dϑ

(
0 1
−1 0

)
(nfm+1,n−1 −mfm−1,n+1)

= −infm+1,n−1 − imfm−1,n+1.
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MELLIN TRANSFORM OF HERMITE FUNCTIONS 5

The proposition follows since Wm obviously is closed under all three basis operators
Remark. Using the three basis operators given above it is easy to see that Wm is
irreducible.

Instead of choosing the basis {fm−n,n}mn=0 for Wm it is sometimes more conve-

nient to use the basis of eigenfunctions of dϑ =

(
i 0
0 −i

)
. Because of the symmetry

in the commutator relations of the basis elements of SU(2,C), these eigenfunctions
have the same set of eigenvalues as {fm−n,n}mn=0. Call this new basis {bm,n}, where
n = −m,−m + 2, ...,m and bm,n(reiθ) = einθbm,n(r). The elements of the basis
is determined by the relations above up to multiplication by a constant, choosing
these constants correctly we get:

Proposition 2.3. Let

L(θ)
n (y) =

y−θey

n!

dn

dyn
(yn+θe−y)

be the Laguerre polynomials. We have that

bm,n(reiθ) = einθr|n|L
(|n|)
(m−|n|)/2(2πr2)e(−πr

2).

Proof We assume n ≥ 0, the argument is same as for n < 0. Since bm,n ∈ Wm,

we see that bm,n is of the form p(u, ū)e−π|u|
2

, where p is a polynomial of degree
m. That bm,n(reiθ) = einθbm,n(r) means that p(u, ū) only consists of terms of
the form uaūb, where a − b = n. In particular we must have that bm,n(reiθ) =

einθrnqm,n(2πr2)e(−πr
2), where qm,n is a polynomial of degree (m − n/2. Since the

subspaces Wm are orthogonal to each other, for m 6= m′, we have

0 =
〈
bm,n, bm′,n

〉
= 2π

∫ ∞
0

rnqm,n(2πr2)e(−πr
2)rnqm′,n(2πr2)e(−πr

2)rdr

=
1

2(2π)n

∫ ∞
0

qm,n(y)qm′,n(y)yne−ydy.

This proves that qm,n(y) = L
(|n|)
(m−|n|)/2(y) if we normalize correctly.

3. Properties of the local Tate ζ-function

Definition 3.1. We define the local Tate ζ-function

ζ(s, c, f) =

∫
C×

f(u)c(u)|u|2s−2du

for all characters c of C× and f ∈ S (C).

All characters of C× can be written using polar coordinates in the form
c(r, θ) = riθeijθ with j ∈ Z. Since ζ(s, riθeijθ, f) = ζ(s + iθ/2, eijθ, f), the real part
of the zeros of ζ does not depend on θ. Hence our attention will be drawn to the
following object:
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6 Y. A. RATHER

Definition 3.2. Let j,m ∈ N, cj = eijθ and gj = r2s−2cj. We set

ζ
(j)
m (s) = 〈fm,0, gj〉 = ζ(s, cj , fm,0).

In order for Theorem 1.1.1 to be true it is essential that all elements in the
invariant subspaces define the same ζ-function ζ

(j)
m , up to multiplication by a con-

stant. That this really is the case is shown in the next proposition.

Proposition 3.3. If f ∈ Wm then ζ(s, cj , f) = cf,j . ζ
(i)
m (s), where cf,j is constant

not depending on s.

Proof Let f =
∑m
j=0 c2j−mbm,2j−m. For (m− j)/2 ∈ N, we see that

ζ(s, cj , f) =

m∑
j=0

c2j−mζ(s, cj , bm,2j−m)

=

m∑
j=0

c2j−m

∫ ∞
0

∫ 2π

0

ei(2j−m)θbm,2j−m(r)r(2s−1)eikθdθdr

= cjζ(s, cijbm,j),

Otherm give ζ
(i)
m (s) ≡ 0.

Lemma 3.4. If (m− i)/2 ∈ N we have that

ζ
(i)
m (s) = Γ

(
s+

i

2

)
π(1−s)p

(i)
m (s),

where p
(i)
m (s) is a real polynomial of degree (m− i)/2 . Otherwise ζ

(i)
m (s) ≡ 0

Proof Since Hm is odd if m is odd and even if m is even, the trigonometric iden-
tities [7]

cos2n θ =
1

22n

(
2n

n

)
+

1

22n−1

n∑
j=1

(
2n

n− j

)
cos(2jθ)

and

cos2n−1 θ =
1

22n−2

n∑
j=1

(
2n− 1

n− j

)
cos((2j − 1)θ),

can be used to write

Hm(
√

2πr cos θ) =

[m/2]∑
j=0

rm−2jaj(r
2) cos((m− 2j)θ)
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MELLIN TRANSFORM OF HERMITE FUNCTIONS 7

for some real polynomials aj(r) with deg aj = j. This implies that if (m− i)/2 /∈ N
then ζ

(i)
m (s) ≡ 0 and if (m− i)/2 ∈ N we have

ζ
(i)
m (s) =

∫ ∞
0

∫ 2π

0

Hm(
√

2πr cos θ)e−πr
2

r2s−1eiiθdθdr

= 2π

∫ ∞
0

riam−i
2

(r2)r2s−1e−πr
2

dr = π

m−i
2∑
j=0

∫ ∞
0

r2s−1+i+2je−πr
2

dr

= π

(m−i)/2∑
j=0

bj
1

2πs+j+i/2
Γ

(
s+ j +

i

2

)

=

(m−i)/2∑
j=0

bj
1

2πs+j+i/2−1
Γ

(
s+ j +

i

2
− 1

)
...

(
s+

i

2

)
Γ

(
s+

i

2

)

= Γ

(
s+

i

2

)
π1−sp

(i)
m (s),

where p
(i)
m (s) a real polynomial of degree (m− i)/2 .

Remark. Theorem 1.1.1 implies that p
(i)
m (1 − s) = (−1)

m−i
2 p

(i)
m (s) so ζ

(i)
m (s) fulfills

a functional equation much like the functional equation for the Riemann ζ-function.

Lemma 3.5. ζ
(i)
m (s) admits the functional equation

(m + 1)ζ
(i)
m (s) = πζ

(i)
m (s + 1)− 1

π

(
s+

i

2
− 1

)(
s− i

2
− 1

)
ζ
(i)
m (s− 1).

Proof Since we have that

∆gi(s) =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

∂r2
+

∂2

∂θ2

)
r2s−2eiθi = ((2s− 2)2 − i2)gi(s− 1)

and (
− 1

4π
∆ + π(x2 + y2)

)
fm,0 =( m + 1)fm,0,

we immediately get

(m + 1)ζ
(i)
m (s) =

〈
(m + 1)fm, 0, gi(s)

〉
=

〈(
− 1

4π
∆ + π(x2 + y2)

)
fm, 0, gi(s)

〉
=

〈
fm, 0,

(
− 1

4π
∆ + π(x2 + y2)

)
gi(s)

〉
=

〈
fm, 0,− 1

4π
((2s− 2)2 − i2)gi(s− 1) + πgi(s + 1)

〉
= − 1

π

(
s+

i

2
− 1

)(
s− i

2
− 1

)
ζ
(i)
m (s− 1) + πζ

(i)
m (s + 1).

From [3] we have the following lemma:
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8 Y. A. RATHER

Lemma 3.6. Let q(s) be a polynomial, and assume that the zeros of q(s)lie in the
closed strip {s;Re(s) ∈ [−c, c]} with c > 0. Then if a > 0, b > 0, the zeros of

r(s) = (s + a)q(s + b)− (s− a)q(s− b)

lie in the open strip {s;Re(s) ∈ (−c, c)}.

Remark. The lemma is proved for b = 2, but this does not change the proof.

Proof of Theorem 1.1.1. We only need to show that ζ
(i)
m (s) has all its zeros on

Re(s) = 1/2. Letting q
(i)
m (s) = p

(i)
m (s + 1/2)and inserting this in Lemma 1.4.3 we

get

(m + 1)&Γ

(
s +

k + 1

2

)
π

1
2−sq

(i)
m (s) = πΓ

(
s + 1 +

k + 1

2

)
π−

1
2−sq

(i)
m (s + 1)

&− 1

π

(
s +

k− 1

2

)(
s− k + 1

2

)
Γ

(
s− 1 +

k + 1

2

)
π

3
2−sq

(i)
m (s− 1).

Simplifying this gives

(m + 1)q
(i)
m (s) =

(
s +

k + 1

2

)
q
(i)
m (s + 1)−

(
s− k + 1

2

)
q
(i)
m (s− 1)

We can also prove Theorem 1.1.1 in a different way by using the following
well known theorem:

Theorem 3.7. Let {pn}∞n=0 be a sequence of polynomials such that the degree of
pn is n and the polynomials are orthogonal with respect to some Borel measure µ
on R. Then pn have n distinct real roots.

Proof The theorem is obviously true for n = 0. Assume that pk has k distinct roots
for k < n. Without loss of generality we assume that all polynomials have one as
their leading coefficient. Then pk is real for k < n and pn = fn + ign, where gn has
degree less than n. Moreover,

0 = (pn, pk) = (fn, pk)− i(gn, pk)
for k < 0, hence (gn, pk) = 0. But the degree of gn is less than n so we must have
gn ≡ 0. Thus pn is real. If pn does not have n distinct real roots then it could be
written as pn(x) = (x − α)(x − ᾱ)q(x) = |x − α|2q(x) for x ∈ R. Since the degree
of q is less than n we must have (pn, q) = 0, but on the other hand we have that
pn(x)q(x) ≥ 0 for all x. This is a contradiction, hence pn has n distinct real roots.

Proposition 3.8. The polynomials p
(k)
m (1/2+ it) are orthogonal with respect to the

measure |Γ((k + 1)/2 + it)|2dt, where dt is the Lebesgue measure on R.

Proof As we have noticed before the functions bm, n are orthogonal, hence for
m 6= m′ we have

0 =
〈
bm,n, bm′,n

〉
= 2π

∫ ∞
0

bm,n(r)bm′,n(r)rdr

= 2π

∫ ∞
−∞

bm,n(eu)eubm′,n(eu)eudu.
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MELLIN TRANSFORM OF HERMITE FUNCTIONS 9

Using Plancherel’s formula it follows that 2πFbm,n(eu)eu(−2t),is an orthogonal se-
quence (F denotes the ordinary Fourier transform) and this is just

2πFbm,k(eu)eu(−2t) = 2π

∫ ∞
0

bm,−k(r)ri2tdr

=

∫ ∞
0

∫ 2π

0

bm,−k(reiθ)ri2teikθdθdr = cm,kζ
(k)
m (1/2 + it)

= cm,kΓ

(
k + 1

2
+ it

)
π1/2−itp

(k)
m (1/2 + it).

Remark. Theorem 1.1.1 follows immediately if we combine Theorem 1.4.5 with
Proposition 1.4.6.
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