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Abstract. In this paper we introduce a new discrete one-tailed hypothesis

test of independence, dn, a member from the family of the Longest Increa-
sing Subsequence Hypothesis Tests. dn allows to incorporate an alternative

hypothesis which represents a decreasing (increasing) trend, according to the

necessity. Through a simulation study, focusing in situations of small and
moderate sample sizes and mixture of distributions, we compare the behavior

of dn with those procedures which allow one-tailed options. We introduce

a correction in the p-value of dn, in order to control the type I error and
to improve the power of dn. dn shows outstanding performance in all the

simulations, being indicated for use in mixtures, dn shows adequate control
of the level of significance and high power when compared to other tests. We

use dn to inspect data from stroke rehabilitation, dn detects the tendency

between scores taken through conventional methods and robotic devices.

1. Introduction

We should begin this article with a question, whose positive answer is already
part of science fiction and promises to become part of our everyday life, in the near
future. The evolution of robotic devices is the future of the medicine practiced
today? The Physiatry and Rehabilitation Medicine are investing in this possibility.
The features offered by robotic devices should be equated with current medical
practices adopted to deal with specific problems. The comparison between the
information obtained from robotic devices with the information obtained from
usual methodologies, used in various medical centers, must allow the revision of
the procedures looking for more accuracy. In a sense, if robotic devices are shown
efficient for medical therapies, its inclusion in everyday medical practice could
represent a revolution in the health industry.

This work receives motivations of two areas, one of them coming from the
stroke rehabilitation field and the second is related to the construction of discrete
hypothesis tests. We will begin with the description of the real problem, which
will encourage the development of a discrete one-tailed test, based on concepts
of random permutations, widely discussed in [5], [6] and [7]. It is estimated that
there are about 62 million stroke survivors worldwide, with a great need of reha-
bilitation therapy. Consequently, it is essential to have a reliable evaluation of the
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!
Figure 1. Robotic equipment running session.

treatments in order to give an objective numerical value for the abstract concept
of disability and to determine the efficacy of the interventions. According to the
World Health Organization International Classification of Functioning, Disability
and Health (WHO-ICF) it is necessary to have an universal assessment tool for
disability, although, there is no such scale, see [19]. There are several methods
to assess the motor function in upper limb of stroke patients and different types
of scales; however, there is no gold standard for the evaluation ([8]). One of the
reasons for that is the limitation of the available scales, which justify the develop-
ment of new tools. On the other hand, robotic devices recently have been used as
systems for the evaluation since they record the kinematic and kinetic variables of
upper limb movements. Nevertheless it is not clear yet the relationship between
the robotic variables and the results of tools specifically designed to evaluate the
motor performance of the upper limbs. In this paper we investigate the perfor-
mance of a robotic equipment used for research in the Physical and Rehabilitation
Medicine Institute of the University of Sao Paulo Medical School General Hospital,
Brazil. This equipment has several available functions, i.e. devices. We see, in
figure 1 an illustration of one of the sessions during its execution. These robotic
devices were specifically constructed for clinical and neurological applications, see
[13]. The system is formulated to maintain a low intrinsic end-point impedance,
with extremely low inertia and low friction, then it is able to move smoothly and
can rapidly fulfill with patient’s movements. The robot sensors permit accurate
and essentially continuous measurement of the variables which describe the motor
behavior, namely position, velocity, and interaction forces. Through two degrees-
of-freedom this device allows the movements, in the shoulder, the elbow and the
hand in a gravity-eliminated plane. There is a video screen in front of the patient, it
provides visual feedback of the target location and a description of the movement,
see [9], [11], [10]. In the robot’s evaluation, the metrics include deviation from a
straight line, aim, average speed, peak speed, and the duration of the movement
while attempting to reach toward different targets. These unconstrained reaching
movements are decomposed into submovements to produce 6 additional kinematic
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metrics: number, duration, overlapping, peak, interval, and skewness of submove-
ments. Besides, the circle-drawing activities, captures the coordination of arm’s
movements and the kinematic set is completed with 3 additional kinetic param-
eters that measure the strength of the shoulder and the ability of the patient to
move against resistance or to hold against an externally applied force, leading to a
total of 35 measurements for each patient. The parameter that measures shoulder
strength has a ceiling effect and is measured only on the impaired side. Finally all
the parameters were linearly standardized between 0 and 1, see [12] for details.

In this paper we want to see if there is any evidence to suggest a monotonous
dependence between two paired scores X and Y. X is the result of a scale manually
collected by therapists of the area, to measure the average time spent on the exe-
cution of a list of tasks specified by The Wolf Motor Function Test [21]. Y values
correspond to a given score by the robotic device, after the execution of a selection
of movements. In this article we analyze three specific situations, involving just
one scale collected manually X = WT (time spent in the execution of The Wolf
Motor Function Test) in counterpoint with 3 scales coming from the robotic de-
vice: Independence (IND), Shoulder Abduction (SA) and Shoulder Flexion (SF).
Thus, Y is given by the IND score in the first situation, SA, in the second situation
and SF in the third situation. In figure 2 are shown, the graphs of these three
situations. The treatment of stroke is still quite restricted to few patients. Given
that, the application of manual scales takes a long time also it requires specialists
who know the official protocols established in treatment centers. This practice
also takes time from patients and their families, thereby in critical situations can
be impractical. The complexity to obtain the manual scales justifies the size of
the sample analyzed in this paper, n = 41. The utility of to discover if there is any
relationship between the scales, would establish evidence to change the practice
in stroke treatment centers. Seen that official measures commonly used in such
centers could be efficiently obtained by robotic devices and also in the future,
the practice in those centers would be modified, up itself robotic devices in the
execution of these treatments. So our objective is to investigate whether there is
evidence to establish a connection between manual scales and those obtained by
robotic devices. To reach a conclusion regarding dependence and type of trend
between X and Y we run tests of hypothesis that can respond to this problem.
In this paper we propose a new statistical test, which is a test from the family of
the longest increasing subsequence (LIS) tests, see [5]. This new procedure is sen-
sitive to detect dependence between X and Y. We also investigate the behavior of
the test in different simulated situations. As was reported in the literature about
discrete tests (see [3]) there are weakness detected in the performance of these
procedures, because as a rule the size of a discrete test and the significance level
will be different. In those cases, the Neyman-Pearson theory introduces a random
experiment to control the power function of the test, fitting the size of the test as
a consequence. The Neyman-Pearson theory with randomisation provides a size
equal to the significance level although the test will not always give the same result
and as was reported in [14] inconsistent situations may appear. For example, when
a single additional observation which was a favour of the hypothesis being rejected
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Figure 2. Left: x axis-time spent in the execution of The Wolf
Motor Function Test (WT) versus y axis-Independence (IND).
Middle: x axis-time spent in the execution of The Wolf Mo-
tor Function Test (WT) versus y axis-Shoulder Abduction (SA).
Right: x axis-time spent in the execution of The Wolf Motor
Function Test (WT) versus y axis-Shoulder Flexion (SF).

but which had the opposite effect, as a consequence of the auxiliary randomisa-
tion, see [14]. [14] proposed the construction of the mid-p value which is used in
this paper to improve the power of the discrete test built here. The LIS family
is a class of nonparametric tests for the assumption of independence between two
continuous random variables X and Y. It is formulated as follows, given a sample
of size n, let π be the permutation which maps the ranks of the X observations on
the ranks of the Y observations. The independence assumption is identified with
the uniform distribution on the space of all the permutations of samples of size n,
see theorem 3.1 in [5]. To make the decision to reject (or not) the hypothesis of
independence, is used the permutation defined by the sample, through the ranks,
to compare it with a regular permutation under the assumption of independence.
Under the conception of [5], to do that is used the longest increasing subsequence
selected from the permutation. Unlike the tests already introduced in the LIS
family, in this paper we see other aspects on the permutation which are more ad-
equate to identify a kind of trend in the relation between X and Y.

We proceed as follows. In the next section we define the new one-tailed hy-
pothesis test. In Section 3 we describe the variables that will be analyzed and
we show the results obtained by this new procedure. In Section 4 we conduct a
simulation study to understand the performance of this new hypothesis test. In
Section 5 are shown general conclusions and the bibliography in Section 6.

2. A New Test in the Class of LIS Tests

In [5] is proposed a new class of independence tests based on the length of
the longest increasing subsequence of a random permutation. The statistical tests
introduced in [5] were designed to work on situations where the standard tests
of independence do not work well. Furthermore, the construction of those tests
could be adapted to catch other situations also very common in real data sets, as
mixture of distributions. Taking into account that the data sets studied in this
paper can be considered as generated by mixture of distributions, those situations
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A NEW INDEPENDENCE TEST 5

will be the theoretical environment of this paper, with focus on small sample size
settings. Here, we show the construction of a new one tailed test of independence
in the class of the longest increasing subsequence tests, denoted by dn. We also
devote this paper to study the performance of dn, with the correction proposed by
[14], since it allows to control the Type I error and improves the power of discrete
tests. To formalize the concepts behind this class, we show the main definitions.

Definition 2.1. Let Sn denote the group of permutations of {1, . . . , n} . If π ∈ Sn,
we say that π(i1), . . . , π(ik) is an increasing subsequence of π if 1 ≤ i1 < . . . <
ik ≤ n and 1 ≤ π(i1) < π(i2) < . . . < π(ik) ≤ n.

Example 2.2. We list here all the increasing subsequences on the permutation
of {1, 2, 3, 4, 5, 6, 7} given by π = {6, 1, 4, 5, 7, 2, 3}.

i. 7 of size 1: {6}, {1}, {4}, {5}, {7}, {2}, {3};

ii. 10 of size 2: {6, 7}, {1, 4}, {1, 5}, {1, 7}, {1, 2}, {1, 3}, {4, 5}, {4, 7}, {5, 7}, {2, 3};

iii. 5 of size 3: {1, 4, 5}, {1, 4, 7}, {1, 5, 7}, {1, 2, 3}, {4, 5, 7};

iv. 1 of size 4: {1, 4, 5, 7}.

Definition 2.3. Given a permutation π ∈ Sn, we call ln(π) the length of the
longest increasing subsequence of π.

In the example 2.2 l7(π) = 4. Define li2n(π) as the length of the longest sub-
sequence of π consisting of two (disjoint) increasing subsequences of π. In the
example 2.2 li27(π) = 6 which is obtained through the subsequence {1, 4, 5, 7, 2, 3},
resulting from the two increasing subsequences {1, 4, 5, 7} and {2, 3}. Check [7] on
how to compute li2n(π). In a similar way we can define ld2

n(π) as the length of the
longest subsequence of π consisting of two (disjoint) decreasing subsequences of
π. In the case of the example 2.2, ld2

7(π) = 5 which is obtained through the sub-
sequence {6, 5, 7, 2, 3}, it contains two decreasing disjoint subsequences: {6, 5, 3}
and {7, 2}. The statistic of the test explored in this paper is based on the functions
li2n and ld2

n defined in the following way.

Definition 2.4. Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be replications of (X,Y ) with
continuous marginal distributions, we denote by dn the random variable, dn :=
li2n(πD) − ld2

n(πD) where D = {(Xi, Yi)}ni=1 and πD is the permutation which
assigns π(rank(Xi)) = rank(Yi), i = 1, . . . , n.

Theorem 2.5. Let (X1, Y1), (X2, Y2), ..., (Xn, Yn) be replications of (X,Y ) with
continuous marginal distributions, under the assumption of independence between
X and Y, the random variable dn given by definition (2.4) is symmetric around
zero.

Proof. When X and Y are independent, all possible permutations π(rank(Xi)) =
rank(Yi), i = 1, . . . , n have the same probability, i.e. πD has the uniform dis-
tribution on the set of all the permutations on {1, 2, . . . , n}. Define now D− =
{(−Xi, Yi)}ni=1 . For the same reason, under independence, πD− has uniform dis-
tribution on the set of all the permutations on {1, 2, . . . , n}. In this way we have
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that under the null hypothesis of independence πD and πD− share the same dis-
tribution. Also, every increasing subsequence of πD, generated by {(Xik , Yik)}mk=1

corresponds to the decreasing subsequence of πD− given by {(−Xik , Yik)}mk=1 and
then

li2n(πD) = ld2
n(πD−). (2.1)

The equation (2.1) implies that li2n(πD) and ld2
n(πD) have the same distribution,

since πD and πD− share the uniform distribution, i.e. li2n(πD) = ld2
n(πD−) ∼

ld2
n(πD). Using equivalent arguments we have

ld2
n(πD) = li2n(πD−), (2.2)

from equations (2.1)-(2.2), follows

li2n(πD)− ld2
n(πD) = ld2

n(πD−)− li2n(πD−). (2.3)

The equation (2.3) implies that dn = li2n(πD) − ld2
n(πD) and −dn = ld2

n(πD) −
li2n(πD) are identically distributed and the distribution of dn is symmetric around
zero, under the independence. �

2.1. The One Tailed dn Test. Let (x1, y1), . . . , (xn, yn) be a paired sample of
size n of (X,Y ) with continuous marginal distributions. The hypothesis test for-
mulation studied here is

H0 : X and Y are independent

versus

H1 : X and Y have an increasing (decreasing) relation.

Tests of hypothesis based on measures of association/correlation quantized the
trend of the relation by a coefficient ν and testH0 : ν = 0 versusH1 : ν > 0 (ν < 0).
This is the case of Kendall’s test, Spearman’s test and Pearson’s test, where the
coefficients used are Kendall’s tau, Spearman’s rho and Pearson’s rho respectively.
For the dn test, it is verified if the observed value of dn, say d0 confirms the
increasing (decreasing) trend among the ranks of the observations. The p-value
of the test with null hypothesis of independence against an alternative hypothesis
of increasing (decreasing) tendency between X and Y is defined as Prob(dn > d0)
(Prob(dn < d0)).

In this paper we compare the behavior of the one-tailed version of dn with
three, well known, independence tests with that possibility. Namely, Kendall’s
test, Spearman’s test and Pearson’s test. To serve the practical purpose we have
set, the study will be focused on the decreasing dependence between X and Y.
Being dn a discrete test, it will suffer of the weaknesses reported for discrete tests
([14]). So, we adopt a correction in the calculation of its p-value given by the mid-
p-value which is defined as Prob(dn < d0) + 1

2Prob(dn = d0). The distribution
of dn under the null hypothesis was estimated, for diverse sample sizes, through
simulations.
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A NEW INDEPENDENCE TEST 7

3. Clinical Assessments versus Kinematic Scores Assessed with
Robotic Devices

We begin this section showing the construction of each variable studied here.
Then we show the results of the test of independence between them.

3.1. Variable Description. The Wolf Motor Function Test (WMFT) is an as-
sessment scale that quantifies upper extremity ability, through 15 timed function-
based tasks and 2 strength tasks. See for illustration two different tasks in figure
3. WMFT evaluates the performance time and it allows 120 seconds per task, as
well as quantifies the quality of movement through a range of functional abilities.
The administration of WMFT requires minimal training for the test execution. It
incorporates a camera which is placed in a predefined position/distance. The score
of each task is given by the analysis of the videos, see [21] and [18]. [4] published
Standard Error of Measurement (SEM) (0.2 seconds) and Minimal Detectable
Changes (0.7 seconds) in chronic stroke. Another studies ([4]) show that WMFT
has excellent reliability and internal consistency as well as adequate criterion va-
lidity ([21], [16], [20]). However, for the results to be reliable, it is recommend to
follow the manual, as well as investing in training the therapists, see [21]. The
WMFT contributes to show the patient’s level of function, and potential motor
recovery, as well as, allows to plan treatment for functional activities. In this work,
we will use the data related to the time of execution of WMFT tasks, WT variable,
which is the average time to perform all the tasks.

Figure 3. Two tasks from the Wolf Motor Function Test.

The goal-directed tasks in the robot device can be designed to measure mo-
tor impairments including poor coordination, impaired motor speed or accuracy,
decreased dexterity and diminished strength. This evaluation consists of different
visually guided tasks in which the patient must perform range movements, circular
movements and attempts to movements against resistance. In circle-drawing tasks,
the goal is to capture the coordination of the movements of the upper extremities,
by the IND (Independence) variable. IND measures the patient’s ability to freely
coordinate their arm purposefully in all directions. A shoulder task in the robotic
device, measures the patient’s ability to generate a maximum force. The large
range of motion, in abduction and flexion of the shoulder and in contact with the
glenoid cavity, are only possible because of the movements sliding, rotating and
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rolling. The robot calculates the difference between the minimum and maximum
of vertical forces. Applying a force with the upper extremity is essential to safe
function and independence in daily living activities. See [13] for details about
the formal definition of those variables. The evaluation using the robotic device
can be completed in 30 minutes and at the end, it shows a graph report, with a
representation of the activity and also it shows the numeric values: IND, SA and
SF obtained by the patient.

3.2. Tests Results. Based on an inspection of the figure 2, the Pearson’s test
is excluded from the application. We show the results of the dn for the three
situations exposed in figure 2. All the tests used to compare the behavior of dn
are marginal free i.e. based on the ranks of the observations, see figure 4.
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Figure 4. Left: x axis-Ranks of the time spent in the execution
of The Wolf Motor Function Test (WT) versus y axis-Ranks of
Independence (IND). Middle: x axis-Ranks of the time spent in
the execution of The Wolf Motor Function Test (WT) versus y
axis-Ranks of Shoulder Abduction (SA). Right: x axis-Ranks of
the time spent in the execution of The Wolf Motor Function Test
(WT) versus y axis-Ranks of Shoulder Flexion (SF).

Table 1. P-values between WT versus Y (in boldface the lower values).

Y Spearman Kendall dn
IND 0.1024 0.0773 0.0296
SA 0.0143 0.0157 0.0061
SF 0.0255 0.0389 0.0296

In figure 4 (right) the pairs expose a Spearman’s rho=-0.3075 and a Kendall’s
tau=-0.1927. The three tests reject the independence assumption at level 0.03 (or
0.05), in favour of a decreasing trend. The figure 4 (left) shows the plot between
the ranks of the observations of WT and the ranks of the observations of IND with
Spearman’s rho=-0.2019 and Kendall’s tau=-0.1561. In that case, we observe that
from traditional tests it is not possible to detect the negative dependence using
regular significance levels. According to the dn’s test we confirm the decreasing
tendency at level 0.03 or 0.05. In the case of figure 4 (middle), we have a more
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expressive evidence coming from the magnitude of the coefficients: Spearman’s
rho=-0.3434 and a Kendall’s tau=-0.2341. For this case, in comparison with the
other tests, the dn’s test shows a better performance for a significance level more
extreme, say 0.01.

4. Simulation Study

We show in this section the performance of dn, compared with statistical tests
that allow unilateral options, focusing on scenarios produced by mixture of dis-
tributions. We consider samples which are p% independent and (1− p)% coming
from a normal distribution centered in 0 with variance 1, having different degrees
of correlation. These situations are inspected considering different variability on
the independent proportion of the sample. In the Pearson statistical tests, the
variability will cause confusion, obstructing its ability to detect the correlation of
the dependent proportion of the sample. Further, we consider a displacement in x-
axis, in the graphic of the independent proportion of the sample, with this we can
move the proportions of samples, the dependent proportion from the independent
one. We introduce these scenarios through the next equation,

(X,Y ) ∼ pN2

(
µ,Σ1

)
+ (1− p)N2 (0,Σ2) , (4.1)

where µ = (µ, 0), Σ1 =

[
σ2 0
0 σ2

]
and Σ2 =

[
1 −ρ
−ρ 1

]
.

N2 denotes the bivariate normal distribution and if necessary we will use the
notation θ = (p, µ, σ, ρ) for designating the parameters that can be specified in
these mixtures. Figure 5 shows three situations generated by the equation (4.1),
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Figure 5. Scatterplot of simulated data following equation (4.1),
sample size=40, µ = −4, σ = 4, ρ = 0.99 Left: p = 0.5. Middle:
p = 0.6. Right: p = 0.7.

each with a proportion (1 − p) of the sample, with negative correlation. We
explored settings of negative correlation and small sample sizes, since the real
datasets respond to these general characteristics.

Denote by
{

(Xj
i , Y

j
i )
}n

i=1
the j simulated sample of size n = 10, 20, 30, 40, 50,

where j = 1, . . . , 5000. Given a level α, we calculate the empirical significance level
as being,

#
{
j : p-value

({
(Xj

i , Y
j
i )
}n

i=1

)
≤ α

}
5000

. (4.2)
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where p-value
({

(Xj
i , Y

j
i )
}n

i=1

)
denotes the p-value associated with the sample j,{

(Xj
i , Y

j
i )
}n

i=1
.

Consider now the situation of independence, table 2 and figure 6 expose the

Table 2. Empirical powers of one tailed statistical tests: dn,
Spearman, Pearson and Kendall, for sample sizes: 10, 20, 30,
40 and 50. Model generated from equation (4.1) with θ =
(0.5, 0, 1, 0), independent case; with α = 0.05, equation (4.2).

n dn Spearman Pearson Kendall
10 0.068 0.058 0.055 0.040
20 0.035 0.039 0.045 0.041
30 0.054 0.042 0.043 0.039
40 0.038 0.041 0.036 0.040
50 0.043 0.043 0.046 0.044

d

d

d

d
d

10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

M[, 1]

M
[, 

2]

s

s s s s

p
p p

p
p

k k k k k

Figure 6. Empirical powers of one tailed statistical tests: dn
(d), Spearman (s), Pearson (p) and Kendall (k), for sample sizes:
10, 20, 30, 40 and 50. Model generated from equation (4.1) with
θ = (0.5, 0, 1, 0), independent case; with α = 0.05, equation (4.2).
See table 2.

performance of the empirical powers of the one tailed version of the tests: dn,
Kendall, Pearson and Spearman, at significance level 0.05. Since the p-value is
corrected, according to [14], as expected, the significance level of dn is maintained.
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Now we consider dependent situations, given by the equation (4.1), as those i-
llustrated by the figure 5 showing the scatterplot of samples (with sample size=40)
for three values of p. The figure 7 shows the empirical powers associated with each
test, considering sample sizes from 10 to 50.
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Figure 7. Sample sizes versus empirical power of one tailed sta-
tistical tests: dn (d), Spearman (s), Pearson (p), Kendall (k),
µ = −4, σ = 4, ρ = 0.99 in equation (4.1). Left: p = 0.5, Middle:
p = 0.6, Right: p = 0.7.

In the tables 3, 4 and 5 we explore situations generated from the equation (4.1)
with µ = −4, σ = −4, more precisely, we use θ = (0.5,−4, 4, ρ), θ = (0.6,−4, 4, ρ)
and θ = (0.7,−4, 4, ρ) respectively for several values of ρ. It is observed the good
behavior of the test dn, for all the values of p considered: 0.5, 0.6 and 0.7. This is,
the dn’s power increases with the size of the sample and with the magnitude of the
correlation coefficient ρ associated with the dependent proportion of the sample.
The increase of the dn’s power, is always more pronounced than the observed in
the other procedures. And, the power of dn is weakened by the increase in the
proportion of independent samples: 0.5, 0.6 and 0.7. This effect can be visualized
in figure 7 from left to right. Moreover, the good performance of dn’s power is
also observed for other settings. See tables 6 and 7, in which we investigate the
situations θ = (p,−4, 2, ρ) and θ = (p,−2, 4, ρ) respectively, with p = 0.5, 0.6, 0.7
and ρ = 0.95, 0.975, 0.99.
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Table 3. Empirical powers of one tailed statistical tests: dn,
Spearman, Pearson and Kendall, for sample sizes: 10, 20, 30,
40 and 50, considering different degrees of correlation ρ. Model
generated from equation (4.1) with θ = (0.5,−4, 4, ρ); α = 0.05-
equation (4.2). In boldface we highlight the higher powers.

ρ n dn Spearman Pearson Kendall
10 0.207 0.138 0.135 0.147
20 0.295 0.191 0.105 0.276

0.85 30 0.517 0.251 0.120 0.373
40 0.592 0.289 0.125 0.433
50 0.741 0.325 0.139 0.534
10 0.248 0.141 0.133 0.157
20 0.380 0.195 0.140 0.307

0.90 30 0.632 0.266 0.148 0.427
40 0.701 0.283 0.145 0.512
50 0.819 0.372 0.149 0.586
10 0.297 0.157 0.117 0.188
20 0.471 0.214 0.142 0.350

0.95 30 0.744 0.268 0.149 0.462
40 0.848 0.319 0.141 0.576
50 0.934 0.379 0.140 0.667
10 0.357 0.143 0.118 0.195
20 0.561 0.215 0.134 0.371

0.975 30 0.862 0.299 0.126 0.505
40 0.940 0.349 0.141 0.647
50 0.979 0.399 0.158 0.721
10 0.413 0.163 0.124 0.205
20 0.674 0.215 0.138 0.398

0.99 30 0.926 0.302 0.138 0.537
40 0.979 0.351 0.155 0.641
50 0.999 0.428 0.168 0.766
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Table 4. Empirical powers of one tailed statistical tests: dn,
Spearman, Pearson and Kendall, for sample sizes: 10, 20, 30,
40 and 50, considering different degrees of correlation ρ. Model
generated from equation (4.1) with θ = (0.6,−4, 4, ρ); α = 0.05-
equation (4.2). In boldface we highlight the higher powers.

ρ n dn Spearman Pearson Kendall
10 0.162 0.079 0.088 0.079
20 0.195 0.122 0.101 0.176

0.85 30 0.367 0.153 0.106 0.219
40 0.382 0.189 0.106 0.286
50 0.510 0.174 0.099 0.285
10 0.173 0.100 0.093 0.106
20 0.247 0.118 0.089 0.188

0.9 30 0.427 0.149 0.094 0.234
40 0.487 0.171 0.109 0.297
50 0.599 0.202 0.106 0.365
10 0.209 0.097 0.089 0.101
20 0.289 0.144 0.106 0.220

0.95 30 0.502 0.166 0.089 0.262
40 0.620 0.177 0.097 0.322
50 0.766 0.227 0.108 0.418
10 0.267 0.113 0.096 0.126
20 0.370 0.140 0.108 0.225

0.975 30 0.647 0.170 0.105 0.298
40 0.744 0.194 0.092 0.358
50 0.876 0.214 0.096 0.435
10 0.256 0.095 0.078 0.114
20 0.463 0.137 0.102 0.243

0.99 30 0.750 0.154 0.086 0.292
40 0.819 0.206 0.114 0.397
50 0.939 0.249 0.119 0.481
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Table 5. Empirical powers of one tailed statistical tests: dn,
Spearman, Pearson and Kendall, for sample sizes: 10, 20, 30,
40 and 50, considering different degrees of correlation ρ. Model
generated from equation (4.1) with θ = (0.7,−4, 4, ρ); α = 0.05-
equation (4.2). In boldface we highlight the higher powers.

ρ n dn Spearman Pearson Kendall
10 0.111 0.066 0.061 0.057
20 0.138 0.070 0.059 0.090

0.85 30 0.216 0.083 0.074 0.122
40 0.234 0.109 0.077 0.164
50 0.317 0.121 0.085 0.177
10 0.114 0.072 0.079 0.068
20 0.165 0.092 0.067 0.113

0.9 30 0.266 0.108 0.087 0.137
40 0.257 0.087 0.070 0.145
50 0.374 0.124 0.080 0.188
10 0.140 0.071 0.072 0.058
20 0.194 0.103 0.079 0.143

0.95 30 0.344 0.108 0.074 0.161
40 0.350 0.107 0.082 0.164
50 0.475 0.122 0.080 0.209
10 0.136 0.086 0.080 0.079
20 0.227 0.075 0.059 0.119

0.975 30 0.401 0.110 0.074 0.165
40 0.444 0.137 0.091 0.201
50 0.587 0.127 0.077 0.227
10 0.156 0.071 0.071 0.068
20 0.255 0.104 0.086 0.135

0.99 30 0.480 0.100 0.084 0.155
40 0.558 0.136 0.097 0.224
50 0.720 0.132 0.082 0.237
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Table 6. Empirical powers of one tailed statistical tests: dn,
Spearman, Pearson and Kendall, for sample sizes: 10, 20, 30,
40 and 50, considering different degrees of correlation ρ. Model
generated from equation (4.1) with θ = (p,−4, 2, ρ); α = 0.05-
equation (4.2). In boldface we highlight the higher powers.

p ρ n dn Spearman Pearson Kendall
10 0.260 0.141 0.112 0.145
20 0.413 0.231 0.161 0.356

0.5 0.95 30 0.725 0.271 0.162 0.449
40 0.801 0.354 0.194 0.577
50 0.919 0.431 0.204 0.695
10 0.339 0.147 0.124 0.164
20 0.519 0.218 0.159 0.371

0.5 0.975 30 0.817 0.318 0.174 0.522
40 0.918 0.373 0.186 0.639
50 0.973 0.454 0.251 0.760
10 0.388 0.139 0.115 0.169
20 0.642 0.233 0.152 0.395

0.5 0.99 30 0.901 0.309 0.182 0.545
40 0.967 0.346 0.195 0.665
50 0.997 0.450 0.236 0.796

10 0.200 0.098 0.103 0.094
20 0.247 0.126 0.096 0.176

0.6 0.95 30 0.491 0.172 0.114 0.258
40 0.554 0.216 0.144 0.355
50 0.707 0.234 0.157 0.385
10 0.207 0.099 0.091 0.090
20 0.333 0.122 0.089 0.184

0.6 0.975 30 0.617 0.184 0.120 0.291
40 0.699 0.223 0.148 0.368
50 0.829 0.226 0.142 0.401
10 0.234 0.095 0.093 0.097
20 0.434 0.161 0.111 0.242

0.6 0.99 30 0.720 0.183 0.124 0.296
40 0.813 0.228 0.142 0.410
50 0.913 0.241 0.143 0.457

10 0.116 0.049 0.053 0.038
20 0.152 0.091 0.067 0.105

0.7 0.95 30 0.286 0.095 0.077 0.117
40 0.302 0.095 0.082 0.132
50 0.414 0.130 0.097 0.182
10 0.135 0.072 0.069 0.057
20 0.177 0.082 0.075 0.100

0.7 0.975 30 0.361 0.099 0.090 0.139
40 0.420 0.116 0.093 0.167
50 0.538 0.141 0.111 0.208
10 0.142 0.073 0.068 0.061
20 0.235 0.088 0.070 0.113

0.7 0.99 30 0.471 0.099 0.077 0.138
40 0.516 0.116 0.082 0.169
50 0.677 0.130 0.111 0.220
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Table 7. Empirical powers of one tailed statistical tests: dn,
Spearman, Pearson and Kendall, for sample sizes: 10, 20, 30,
40 and 50, considering different degrees of correlation ρ. Model
generated from equation (4.1) with θ = (p,−2, 4, ρ); α = 0.05-
equation (4.2). In boldface we highlight the higher powers.

p ρ n dn Spearman Pearson Kendall
10 0.269 0.142 0.151 0.176
20 0.441 0.237 0.162 0.387

0.5 0.95 30 0.734 0.303 0.150 0.493
40 0.826 0.377 0.177 0.590
50 0.938 0.422 0.172 0.698
10 0.324 0.159 0.149 0.206
20 0.519 0.255 0.161 0.397

0.5 0.975 30 0.846 0.323 0.173 0.529
40 0.907 0.388 0.171 0.645
50 0.971 0.413 0.170 0.702
10 0.373 0.166 0.142 0.212
20 0.638 0.238 0.144 0.422

0.5 0.99 30 0.910 0.322 0.151 0.585
40 0.968 0.411 0.175 0.673
50 0.993 0.444 0.180 0.767

10 0.182 0.104 0.109 0.111
20 0.273 0.155 0.121 0.234

0.6 0.95 30 0.522 0.187 0.104 0.284
40 0.609 0.233 0.136 0.383
50 0.749 0.245 0.116 0.448
10 0.210 0.123 0.111 0.140
20 0.343 0.172 0.114 0.252

0.6 0.975 30 0.602 0.186 0.116 0.294
40 0.673 0.193 0.104 0.342
50 0.840 0.277 0.140 0.461
10 0.244 0.114 0.107 0.132
20 0.392 0.151 0.116 0.237

0.6 0.99 30 0.732 0.188 0.124 0.334
40 0.817 0.235 0.118 0.429
50 0.931 0.262 0.126 0.472

10 0.155 0.095 0.082 0.094
20 0.186 0.119 0.102 0.158

0.7 0.95 30 0.321 0.121 0.081 0.182
40 0.357 0.130 0.100 0.196
50 0.462 0.143 0.096 0.219
10 0.152 0.100 0.097 0.093
20 0.198 0.110 0.093 0.143

0.7 0.975 30 0.362 0.120 0.085 0.174
40 0.435 0.136 0.088 0.223
50 0.566 0.151 0.095 0.280
10 0.164 0.099 0.092 0.094
20 0.253 0.102 0.088 0.153

0.7 0.99 30 0.446 0.132 0.094 0.190
40 0.516 0.141 0.089 0.226
50 0.666 0.160 0.097 0.265
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5. Conclusion

We devote this paper to introduce the one-tailed hypothesis test dn, a member
of the LIS family of tests. It is noteworthy that the tests introduced in [5] which
are coming from the LIS family, show evidence of being suitable to detect depen-
dence when the sample is coming from mixture of distributions, a challenge for
the majority of the independence tests. For that reason this issue is explored in
depth in this article, under the formulation of this new test dn. In this paper is
explored the possibility to catch the dependence in mixture of distributions with
the presence of a decreasing tendency. In relation to [5], in this paper is incorpo-
rated an innovation in the construction of dn, since is not only used the concept
of the longest increasing subsequence defined by the permutation π which maps
the ranks of the X observations in the ranks of the Y observations. In fact dn
is defined using increasing and decreasing subsequences, over π, which allows to
catch a decreasing trend in mixture of distributions. In the computation of the
p-values of dn we incorporate the correction proposed by [14], since it allows to
control the Type I error and improves the power of the test. As can be concluded
from the simulation study, the empirical power of the test dn, excels in comparison
with the tests of Kendall, Pearson and Spearman, in mixture of distributions, as
the situations investigated in this paper. This procedure and its outstanding per-
formance, emphasizes the role of the Longest Increasing Subsequence and related
concepts in the development of new tests of hypothesis.

In the application to real data, we see that the test dn corroborates that the
time (WT) used in executing the The Wolf Motor Function Test has a negative
dependence when compared with the 3 variables provided by the robotic device:
Independence (IND), Shoulder Abduction (SA) and Shoulder Flexion (SF). For
IND, dn provides significant results, which can not be said about Kendall and
Spearman procedures. For SA, the test dn, allows to use very strict significance
levels, when compared to those permitted by Kendall and Spearman. The present
study contributes to the rehabilitation field since it helps to clarify the depen-
dence between variables measured in conventional methods and new instruments
(robotic devices). Besides, it reinforce the importance of further studies with a
larger sample size in order to validate the robotic assessment for the general stroke
population and to define its psychometric properties.
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