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Abstract - This paper describes the comparison among three 
techniques for indoor robot localization, one based on a webcam, one 
on color-gradient pattern recognition, and one which uses the 
Microsoft Kinect system.  
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I.  INTRODUCTION 

Robot localization is an important problem in several fields in 
robotics, including industrial, entertainment, and military 
applications. Several different techniques have been used to 
locate a robot in a plane, including optical, ultrasonic, GPS, 
camera-based techniques. I-Hsum Li et al [1] have recently 
used a webcam-based technique, and have also reviewed many 
of the techniques listed above. Sibai et al [2] have used wheel 
optical encoders, ultrasonic techniques, and WiFi signal 
strength to locate a robot. Borenstein et al [3] also give an 
exhaustive review of several methods.   

II. METHODOLOGIES

Three localization techniques were implemented and compared 
via their resulting absolute locations, as well as control 
positions measured with a meter stick. The indoor location was 
consistent among tests, in a square area measuring 3 m by 3 m, 
on a matte floor with a printed gradient, which will be described 
later. One webcam was mounted on the ceiling providing a view 
of the entire arena. Another webcam was mounted on the robot 
itself, facing the ground. A Microsoft Kinect was mounted to 
provide depth data. 
The first technique, Single-Camera Localization, illustrates one 
of the common localization techniques based on computer 
vision. In this scheme, robots are marked with a tag, which 
identifies them in the arena. The overhead camera uses blob 
tracking to determine the mean pixel coordinates of each tag. A 
perspective transform, unique to the camera’s orientation 

relative to the floor plane, is applied to each coordinate. This 

process yields the blob’s floor plane x and y coordinates. Since 

the width and length of the field are known, a conversion ratio 
was used to convert the transformed coordinates to cm. This 
method’s accuracy can be improved with lens-aberration 
correction and higher-resolution camera sensors. 
The second technique leveraged a specially-printed floor 
containing overlapping gradients in the RGB color plane. 
Printed materials have a high color resolution,  leaving the 
sensor as the primary limitation to this method’s accuracy. As 

shown in fig. 1, the floor gradient changes linearly along the 
axes in RGB space. No color combinations are repeated so that 
each location can be uniquely identified by its color. A robot 
cannot be permanently misguided by a single incorrect result. 

Fig. 1. Color gradient tracking using computer vision 

The camera mounted on the robot was used for measuring 
the floor gradient’s color. In order to compensate for the 

unpredictable effects of ambient lighting, a white LED Ring 
was installed around the camera. Automatic exposure and white 
balance correction features were disabled. This approach was 
implemented in Python with OpenCV. Tests were conducted on 
both a dedicated laptop, as well as an embedded Raspberry Pi 
SoC. An Arduino Uno provided real-time control of the robot’s 

motors. 
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Fig. 2 Using Kinect for localization 
 
   The third technique involved a Microsoft Kinect v2, which 
contains both an infrared depth camera and a 1080P 
(1080x1920) color camera.  

All Kinect data is represented by three coordinate spaces: 
the color space, the depth space, and the camera space. The 
color space is a 2D map for representing pixels from the color 
camera.  Each coordinate contains a 24-bit BGR pixel value. 
The first coordinate corresponds to the upper-left pixel in the 
image. The last coordinate corresponds to the lower-right 
pixel. Internally, this space is represented as a row-major 
vector rather than the matrix typically associated with images. 
Pixel coordinates can converted to the color space as follows: 

 
𝑐𝑜𝑙𝑜𝑟 𝑠𝑝𝑎𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 = 1920 ∗ 𝑦𝑝𝑥 + 𝑥𝑝𝑥  
 
Where, xpx and ypx are the pixel’s coordinates and 1920 is 

the Kinect’s horizontal resolution in pixels. 
 

 
The Kinect’s depth space describes raw depth data from the 

Kinect’s infrared depth camera. This camera is located at the 

origin in figure 4. Each element in the space subtends a certain 
angle off the x and y axes shown in figure 4. The depth data 
does not represent spatial dimensions, but rather the distance 
from the image plane in millimeters. Much like the color 
space, the depth space is represented as row-major vector. 
There are a total of 222,600 16-bit values within the depth 
space, one for each pixel of the 424x525 depth image.  Fig. 3 
depicts the depth space.  
 

 
Fig. 3 Depiction of the Depth Space. 

 
Given the x angle, y angle, and depth of a pixel it is possible 
to calculate its position in Cartesian space. This space is 
referred to as the camera space. Each point in the camera 
space consists of three coordinates, in meters, expressing the 
position of the point relative to the depth sensor. Fig. 4 shows 
this coordinate system. 
 

 
 

Fig. 4 Kinect Camera Space Diagram 
 
To simplify localization, one more coordinate system is 

defined relative to the floor plane. The system, referred to here 

as the floor space, gives spatial coordinates relative to the 

floor plane. The floor space is equivalent to the color space 

with one shift and one rotation. The two spaces are identical 

when the when the Kinect’s depth sensor is at the same level 

as the floor plane. 

 

Transforming from the camera space to the floor space is 

described in the following derivation: 

  

 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 𝑁 ∙ [𝑥, 𝑦, 𝑧] + 𝑑 = 0     
 

 x,y,z are camera space coordinates on the clipping 
plane 

 d is the distance from the Kinect to the image 
plane/ground plane intersection line. 

 N is the normalized normal of the ground plane 
(magnitude = 1) 

 
P = [x1, y1, z1] 

 P is any point in the camera space to transform to the 
floor space 
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The first calculation is finding the minimum distance from the 
floor plane to P, that is, |PQ|: 

Fig. 3 Kinect data transformation 

Because the minimum distance is along the normal (N), and 
|N|=1,  

|𝑃𝑄| = 𝑁 ∙ 𝑃 + 𝑑 = Height of the measured point 

Once |PQ| is known, finding Q is simple: 

𝑄 = 𝑃 − |𝑃𝑄| ∗ 𝑁 

At this point, the position on the plane is known but all the 

coordinates are still in camera space coordinates. The next 

step is to determine what the x and y axis are in camera space. 

For simplicity, the intersection between the camera plane and 

the floor plane was selected for xfloor. 

𝑋𝑓𝑙𝑜𝑜𝑟 = [1,0, −
𝑎

𝑐
] ,    𝑐 ≠ 0 

𝑥𝑓𝑙𝑜𝑜𝑟 =
𝑋𝑓𝑙𝑜𝑜𝑟

|𝑋𝑓𝑙𝑜𝑜𝑟|

In the above, -a/c is the slope of floor plane along the camera 

space x-axis. Also c can never be zero, because the Kinect 

ignores all clipping planes above approx. 45 degrees because 

they look like walls. 

In the above, -a/c is the slope of floor plane along the camera 

space x-axis. c is never zero because the Kinect ignores all 

clipping planes greater than. +-45 degrees off of the image 

plane. 

Yfloor is the vector on the floor plane perpendicular to both 

the normal and xfloor. 

𝑦𝑓𝑙𝑜𝑜𝑟 = (𝑥𝑓𝑙𝑜𝑜𝑟)  ×  𝑁 

yfloor has a magnitude of one because both  xfloor and N are 

normalized. 

Two dot products are used to determine the x and y floor 

coordinates: 

𝑣 ∙ 𝑢 = ‖𝑣‖ cos(𝜃) =  𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣 𝑢𝑛𝑡𝑜 𝑢 

This means the position of dot on the plane is given by: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑙𝑎𝑛𝑒 = [𝑄 ⋅ 𝑥𝑓𝑙𝑜𝑜𝑟 , 𝑄 ∙ 𝑦𝑓𝑙𝑜𝑜𝑟 , |𝑃𝑄|]

The overall algorithm is shown in the flowchart below. 
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II.  RESULTS 

 

In order to compare the results of each trial, we relied on the 
percent error from the of the reported location to the actual 
location of the robot under testing. In each test, the robot was 
moved in the X direction, the Y direction, and in a hybrid 2D 
movement, and absolute positions were obtained and 
compared with actual values.  

The table below shows the average variation in location data 
for each localization system.  

 Flooring Percent Error 

Overhead 
Camera 

General Setup 4% 

Robot Based 
Camera 

Gradient A 14%  

Gradient B  

Kinect NA < 1% 

 

 

Actual Position (+- 1mm) Measured with Camera 
X, cm Y, cm X, cm Y, cm 

4.9 4.9 5.0 5.0 
59.7 4.9 60.0 5.0 
74.5 78.6 54.2 78.7 
3.0 91.0 3.0 91.0 

Fig. 4. Overhead camera data 

 

Fig. 5. Robot mounted camera data (x-coordinate) 

 

Fig. 6. Robot mounted camera data (y-coordinate) 

 

 

Fig. 7. Distance measurement using Kinect 

III. CONCLUSIONS 

The Kinect system gave the most accurate results.  Both the 

overhead webcam technique and the computer vision based 

colour-gradient tracking technique had gave significant errors 

during testing.  

 While the Kinect was the most accurate, it was not the 

optimal solution by all metrics. The color sensing method had 

a marked advantage in simplicity and in situations where 

computing power is limited. The single webcam method also 

benefited from simplicity and low hardware cost.  

 Both had another drawback compared against the Kinect. 

Both required delicate calibration accounting for the size of the 

gradient paper and the exact placement of the ground plane 

sensors. These could represent a significant reliability problems 

in consumer, education, and other environments where 

maintenance is difficult to perform. 

 Because the Kinect is a 3D system, it is inherently 

unaffected by these issues. Additionally, by virtue of being a 

3D sensor, the Kinect can also be used to track in the 

dimensions. This opens new possibilities for systems 

previously limited to two dimensions. Future work here 

involves using the Kinect system to track the motion of the 

robot.  
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