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Abstract - This paper describes the comparison among three
techniques for indoor robot localization, one based on a webcam, one
on color-gradient pattern recognition, and one which uses the
Microsoft Kinect system.
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|. INTRODUCTION

Robot localization is an important problem in several fieldsin
robotics, including industrial, entertainment, and military
applications. Several different techniques have been used to
locate a robot in a plane, including optical, ultrasonic, GPS,
camera-based techniques. I-Hsum Li et a [1] have recently
used a webcam-based technigque, and have al so reviewed many
of the techniques listed above. Sibai et a [2] have used wheel
optical encoders, ultrasonic techniques, and WiF signa
strength to locate a robot. Borenstein et a [3] aso give an
exhaustive review of several methods.

Il. METHODOLOGIES

Threelocalization techniques were implemented and compared
via their resulting absolute locations, as well as control
positions measured with a meter stick. The indoor location was
consistent among tests, in a square areameasuring 3 m by 3 m,
on amatte floor with aprinted gradient, which will be described
later. One webcam was mounted on the ceiling providing aview
of the entire arena. Another webcam was mounted on the robot
itself, facing the ground. A Microsoft Kinect was mounted to
provide depth data.

Thefirst technique, Single-Camera Localization, illustrates one
of the common localization techniques based on computer
vision. In this scheme, robots are marked with a tag, which
identifies them in the arena. The overhead camera uses blob
tracking to determine the mean pixel coordinates of each tag. A
perspective transform, unique to the camera’s orientation
relative to the floor plane, is applied to each coordinate. This
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process yields the blob’s floor plane x and y coordinates. Since
the width and length of the field are known, a conversion ratio
was used to convert the transformed coordinates to cm. This
method’s accuracy can be improved with lens-aberration
correction and higher-resol ution camera sensors.

The second technique leveraged a specially-printed floor
containing overlapping gradients in the RGB color plane.
Printed materials have a high color resolution, leaving the
sensor as the primary limitation to this method’s accuracy. As
shown in fig. 1, the floor gradient changes linearly along the
axesin RGB space. No color combinations are repeated so that
each location can be uniquely identified by its color. A robot
cannot be permanently misguided by a single incorrect result.

Fig. 1. Color gradient tracking using computer vision

The camera mounted on the robot was used for measuring
the floor gradient’s color. In order to compensate for the
unpredictable effects of ambient lighting, a white LED Ring
wasinstalled around the camera. Automatic exposure and white
balance correction features were disabled. This approach was
implemented in Python with OpenCV. Testswere conducted on
both a dedicated laptop, as well as an embedded Raspberry Pi
SoC. An Arduino Uno provided real-time control of the robot’s
motors.
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Fig. 2 Using Kinect for localization

The third technique involved a Microsoft Kinect v2, which
contains both an infrared depth camera and a 1080P
(1080x1920) color camera.

All Kinect datais represented by three coordinate spaces:
the color space, the depth space, and the camera space. The
color space isa 2D map for representing pixels from the color
camera. Each coordinate contains a 24-bit BGR pixel value.
The first coordinate corresponds to the upper-left pixel in the
image. The last coordinate corresponds to the lower-right
pixel. Internally, this space is represented as a row-major
vector rather than the matrix typically associated with images.
Pixel coordinates can converted to the color space as follows:

color space index = 1920 * Y, + Xpx

Where, Xpx and ypyx are the pixel’s coordinates and 1920 is
the Kinect’s horizontal resolution in pixels.

The Kinect’s depth space describes raw depth data from the
Kinect’s infrared depth camera. This camera is located at the
originin figure 4. Each element in the space subtends a certain
angle off the x and y axes shown in figure 4. The depth data
does not represent spatial dimensions, but rather the distance
from the image plane in millimeters. Much like the color
space, the depth space is represented as row-major vector.
There are atotal of 222,600 16-bit values within the depth
space, one for each pixel of the 424x525 depth image. Fig. 3
depicts the depth space.

Fig. 3 Depiction of the bepfh Space.

Given the x angle, y angle, and depth of a pixel it is possible
to calculateits position in Cartesian space. This spaceis
referred to as the camera space. Each point in the camera
space consists of three coordinates, in meters, expressing the
position of the point relative to the depth sensor. Fig. 4 shows
this coordinate system.

Fig. 4 Kinect Camera Space Diagram

To simplify localization, one more coordinate system is
defined relative to the floor plane. The system, referred to here
as the floor space, gives spatial coordinates relative to the
floor plane. The floor space is equivalent to the color space
with one shift and one rotation. The two spaces are identical
when the when the Kinect’s depth sensor is at the same level
as the floor plane.

Transforming from the camera space to the floor space is
described in the following derivation:

ax+by+cz+d=N-[x,y,z]1+d=0

e  X,y,z are camera space coordinates on the clipping
plane

e disthedistance from the Kinect to the image
plane/ground plane intersection line.

e N isthe normalized normal of the ground plane
(magnitude = 1)

P =[x, y1, 1]
e Pisany point in the camera space to transform to the
floor space



Thefirst calculation is finding the minimum distance from the
floor planeto P, that is, [PQ)|:

Clipping Plane

Fig. 3 Kinect data transformation

Because the minimum distance is along the normal (N), and
INI=1,

|[PQ| = N - P + d = Height of the measured point

Once [PQ] is known, finding Q is simple:
Q=P-IPQl*N

At this point, the position on the plane is known but all the
coordinates are still in camera space coordinates. The next
step is to determine what the x and y axis are in camera space.
For simplicity, the intersection between the camera plane and
the floor plane was selected for Xgioor.

Xptoor = [10, —%] c#0

Xfloor
|Xfloor|

xfloo-r -

In the above, -a/c is the slope of floor plane along the camera
space x-axis. Also ¢ can never be zero, because the Kinect
ignores all clipping planes above approx. 45 degrees because
they look like walls.

In the above, -a/c is the slope of floor plane along the camera
space x-axis. ¢ is never zero because the Kinect ignores all
clipping planes greater than. +-45 degrees off of the image
plane.

Yfloor is the vector on the floor plane perpendicular to both
the normal and xfloor.

Yfioor = (xfloor) X N

Viioor has a magnitude of one because both xgaoor and N are
normalized.

Two dot products are used to determine the x and y floor
coordinates:

v-u = ||v|| cos(8) = scalar projection of v unto u
This means the position of dot on the plane is given by:
Position on ground plane = [Q - Xfi90r) @ * Yri00rs |PQI]

The overall algorithm is shown in the flowchart below.

Configure OpenCV
Blob Detection

Initialize the
Kinect Interface

]

Retrieve a color frame
*  from the Kinect

|

Map each pixel from
the color frame 1o the
camera space
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color frame to a
CV2 image
Downscale the CV2 Find its center and
image size
Find all the Blobs in Find the floer position
the image of each pixel in the
blob and take the
E average
For each blob: Display the average
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Il. RESULTS

In order to compare the results of each trial, we relied on the
percent error from the of the reported location to the actual
location of the robot under testing. In each test, the robot was
moved in the X direction, the Y direction, and in a hybrid 2D
movement, and absol ute positions were obtained and
compared with actual values.

The table below shows the average variation in location data
for each localization system.

Flooring Percent Error
Overhead General Setup 4%
Camera
Robot Based Gradient A 14%
Camera

Gradient B
Kinect NA <1%

Actual Position (+- 1mm) Measured with Camera
X, cm Y,cm X, cm Y, cm
4.9 4.9 5.0 5.0
59.7 4.9 60.0 5.0
74.5 78.6 54.2 78.7
3.0 91.0 3.0 91.0
Fig. 4. Overhead cameradata
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Fig. 5. Robot mounted camera data (x-coordinate)
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Fig. 6. Robot mounted camera data (y-coordinate)
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Fig. 7. Distance measurement using Kinect

III. CONCLUSIONS

The Kinect system gave the most accurate results. Both the
overhead webcam technique and the computer vision based
colour-gradient tracking technique had gave significant errors
during testing.

While the Kinect was the most accurate, it was not the
optimal solution by all metrics. The color sensing method had
a marked advantage in simplicity and in situations where
computing power is limited. The single webcam method also
benefited from simplicity and low hardware cost.

Both had another drawback compared against the Kinect.
Both required delicate calibration accounting for the size of the
gradient paper and the exact placement of the ground plane
sensors. These could represent a significant reliability problems
in consumer, education, and other environments where
maintenance is difficult to perform.

Because the Kinect is a 3D system, it is inherently
unaffected by these issues. Additionally, by virtue of being a
3D sensor, the Kinect can also be used to track in the
dimensions. This opens new possibilities for systems
previously limited to two dimensions. Future work here
involves using the Kinect system to track the motion of the
robot.
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