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Abstract: This work deals with the problem of noninteraction (and the dual problem of fault detection) for
discrete-time linear time-invariant finite-dimensional state space systems. In particular, the standard, infinite
horizon, noninteracting control requirement is replaced by a less demanding one, where noninteracting control is
only sought on finite time horizons, suitably defined in connection with some structural properties of the system
subblocks. A necessary and sufficient condition for solvability of the finite horizon problem thus stated is derived
in terms of the almost controllability subspaces associated with the block structure of the system. The proof of
the condition is constructive in the sense that it leads to a design procedure for the feedforward compensators that
guarantee noninteracting control over the given time horizons. The underlying idea of the proof, i.e. the exploitation
of the almost controllability subspace algorithm in the case of finite horizon noninteraction, is also compatible
with a modified procedure for designing the compensators achieving infinite horizon noninteraction, which may
be admissible for some specific subblocks of the system. In fact, in this latter case, it is the effective use of the
controllability subspace algorithm which plays a key role. The dual counterpart in the context of fault detection
introduces a structural means to identify and treat the cases where, due to the structural properties of the monitored
system, some of the residuals which can be generated are only significant in a limited time. These concepts are
also illustrated with a detailed numerical example.

Keywords: Geometric Approach; Almost Controllability Subspaces; FIR Systems; Noninteraction; Fault
Detection.

1. INTRODUCTION

Noninteracting control is a well-known problem, deeply investigated particularly within the geometric approach.
Necessary and sufficient constructive conditions for noninteracting control were first proved by Basile and
Marro in [1] and, independently, by Morse and Wonham in [2]. Those conditions were transferred to the dual
setting of fault detection by Massoumnia and co-workers in [3] and [4]. Henceforward, they have often been
considered in the literature (see e.g. [5], [6], [7], [8], [9], [10]) and have inspired generalizations to various
classes of systems: namely, nonlinear systems (see e.g. [11], [12], [13]), systems over rings (see e.g. [14], [15],
[16]), linear parameter varying systems (see e.g. [17], [18]), etc.

The geometric conditions for perfect noninteraction (and the dual conditions for perfect fault detection) are
sharp and easy to check by means of the standard computational tools of the geometric approach like, e.g., those
made available with [19]. However, in many cases, those requirements turn out to be too restrictive, in the sense
that they cannot be satisfied by certain systems with given structural properties. Hence, a big deal of research
effort has been spent in devising alternative solutions, particularly resorting to some optimality criteria, like e.g.
those discussed in [20], [21], [22], [23], [24], [25], [26].
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In the light of the abovementioned considerations, this work introduces a completely new approach to
coping with those situations where the exact conditions for noninteraction (fault detection) are not satisfied. In
fact, it is based on a relaxed formulation of the problem, where noninteraction (fault detection) is not required
over an infinite time horizon, but only over finite time horizons, appropriately defined in connection with
specific structural properties of the controlled (monitored) system subblocks. Hence, a necessary and sufficient
condition for problem solvability is derived, which still has the advantage of being sharp and easy to check like
the original geometric conditions ensuring noninteraction (fault detection) on the infinite horizon and also has
the good property of guaranteeing perfect (not only optimal according to some criterion) noninteraction (fault
detection) on those, appropriately defined, time intervals.

More specifically, in the context of noninteraction, the length, in terms of number of samples, of the time
horizons is given by the number of steps for the almost controllability subspace algorithms (ACSAs) respectively
associated with the particular system subblocks to converge and the proof of the necessary and sufficient condition
for problem solvability is directly related to those algorithms. The proof is constructive in the sense that the ACSA
is at the basis of the design procedure for the feedforward compensators, implemented as finite impulse response
systems, achieving finite horizon noninteraction. Almost controllability subspaces were introduced by Willems in
[27] and are herein considered for the first time in connection with noninteraction and fault detection issues.
Besides, as was shown by Loiseau in [28], the number of steps for the ACSAs associated with the various systems
subblocks to converge are directly related to some of the structural Kronecker-type indices of the system under
consideration. Furthermore, a slight modification of the design procedure, consisting in the replacement of the
ACSA with the controllability subspace algorithm (CSA), leads to a new procedure for the design of the feedforward
dynamic units achieving infinite horizon noninteraction for those system subblocks for which it is admissible.

Duality arguments leads to a precise methodology to discriminate the situations where, due to the structural
properties of the monitored systems, some of the residuals which can be generated are only meaningful for
finite time intervals and, consequently, leads to a technique for devising the corresponding residual generators.
The practical interest of finite horizon noninteraction is directly related to very specific applications: particularly,
those where the plant lifetime is predetermined or the plant structure substantially changes at certain time
instants. Nonetheless, the dual counterpart in the framework of fault detection has a broad practical impact. In
fact, although the time when the generic fault input only affects the output of the corresponding residual generator
(not the others) is bounded, it may be sufficient to enable detection.

Notation: The symbols �, �, and �� are used for the sets of real numbers, complex numbers, and complex
numbers inside the unit circle, respectively. Sets, vector spaces, and subspaces are denoted by script capital
letters like �. The quotient space of a vector space � over a subspace � ��� is denoted by �/�. Matrices and
linear maps are denoted by slanted capital letters like A. The restriction of a linear map A to an A-invariant
subspace � is denoted by A�

�
 . The spectrum, the image, and the kernel of A are denoted by �(A), im A, and

ker A, respectively. The symbols A–1, A+, and A� are used for the inverse, the generalized inverse, and the
transpose of A, respectively. The symbols I and O are used for an identity matrix and a zero matrix of appropriate
dimensions, respectively.

2. A REVIEW OF THE GEOMETRIC APPROACH TO INFINITE HORIZON NONINTERACTION

The discrete time-invariant linear system

x(t + 1) = Ax(t) + Bu(t), (1)

y(t) = C x(t), (2)
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is considered, where x ��n, u ��p, and y ��q respectively denote the state, the control input, and the controlled
output. The set of all admissible control input sequences is the set �f of all bounded sequences with values in �p.
The matrices B and C are full rank. The symbols � and � stand for im B and ker C, respectively. The symbol
�*= max �(A, �, �) denotes the maximal (A, �)-controlled invariant contained in �, �* = min ��(A, �, �) denotes
the minimal (A, �)-conditioned invariant containing �, �

�* denotes the supremal controllability subspace
contained in �, �*

��
denotes the supremal almost controllability subspace contained in �. The subspaces �

�* and
�*
�
 satisfy the relations �

�* = �* ���*. and �*
��
= �* � �, respectively. For any real matrix F such that (A + BF)

�*����*, also (A + BF)��
�* ����* holds. The matrix A + BF is also denoted as AF . The subspace �

�* is the last
term of the monotone nondecreasing sequence

�1
�* = � ���*,��i

�* = (AF�
i–1
�* + �) ���*, i = 2, . . . k,

where k (� n) is the least integer such that �k+1
�* = �k

�* (Controllability Subspace Algorithm – CSA).  The subspace
�*
�
 is the last term of the monotone nondecreasing sequence

�1
�
 = � � �,  �i

��
= (A�i–1

�
+ �) � �, i = 2, . . . k,

where k (� n) is the least integer such that �k+1
��
= �k

�
 (Almost Controllability Subspace Algorithm – ACSA).

Problem 1 (Noninteraction by Dynamic Feedforward): Let system � be ruled by (1), (2) with initial state
x(0)=0. Let �(A)�����. Let the output y ��q be partitioned into k blocks (y1, . . . , yk) with 2 � k � q. Find a
feedforward dynamic compensator �c, modeled by

z(t + 1) = Ac z(t) + Bc h(t), (3)

u(t) = Cc z(t) + Dc h(t), (4)

with state z � �nc , input h � �pc (pc � k), output u ��p, and initial state z (0) = 0, and an input block partition
(h1, . . . , hk) such that in the compensated system, for any i = 1, . . . , k, the output yi is pointwise controllable by
the corresponding input hi with all the other outputs yj , j =1, . . . , k, j ��i, identically zero.

Let the matrices C1, . . . , Ck denote the submatrices of C corresponding to the output partition (y1, . . . , yk).

Consequently, for any i = 1, . . . , k, �i = ker Ci, ̄�i = �j = 1, …, k, j�i �j , �̄
*
i = max ��(A, �,�̄i), �̄

*
i = min �(A, ¯�i, �), *

i�
�

= �* *.i i� � .

Theorem 1: Let system � be ruled by (1), (2) with x (0) = 0. Let �(A) ����. Let the output y � �q be
partitioned into k blocks (y1, . . . , yk) with 2 ��k � q. Problem 1 is solvable if and only if

Ci ��̄*i 
= im Ci, i = 1, … , k.

Proof: See [19].

The necessary and sufficient condition stated in Theorem 1 is closely connected to the property of the
generic i-th subspace �

�̄*i 
 of being the maximal subspace reachable from the origin along trajectories which can

be maintained in �
�̄*i 

, hence in ¯�i, by a suitable control action. Consequently, those trajectories affect the output
yi, but are invisible at any other output yj , j =1, . . . , k, j � i.

Remark 1: Feedforward control requires that the to-be-controlled system (1), (2) be stable. This assumption
is not indeed restrictive with respect to those of stabilizability of (A,B) and detectability of (A,C) which are
usually considered. In fact, as is well-known, system (1), (2) can be stabilized by output dynamic feedback, if
those assumptions hold. A discussion of prestabilization in connection with specific structural properties of the
system can be found in [29].
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3. FINITE HORIZON NONINTERACTION

This section deals with the modified formulation of the problem of noninteraction. First, the length of the finite
time horizons is defined in connection with the structural properties of the subblocks of the to-be-controlled
system. Then, the geometric necessary and sufficient condition for problem solvability is proved.

As in Section 2, let the output y ���q of system � be partitioned into k blocks (y1, . . . , yk) with 2 � k � q.
Besides the notation previously introduced, for any i = 1, . . . , k, let �*

�̄i 
denote the supremal almost controllability

subspace contained in �̄i, so that �*

�̄i  
= �̄*

i  
 � �̄i, and let �̄i denote the number of steps for the corresponding

ACSA to converge.

Problem 2 (Finite Horizon Noninteraction by Dynamic Feedforward): Let system � be ruled by (1), (2)
with x(0) = 0. Let �(A)�����. Let the output y ���q be partitioned into k blocks (y1, . . . , yk) with 2 � k � q. Find
a feedforward dynamic compensator �c, ruled by (3), (4) with z(0) = 0, and an input block partition (h1, . . . , hk)
such that in the compensated system, for any i = 1, . . . , k, the output yi is pointwise controllable by the
corresponding input hi with all the other outputs yj , j =1, . . . , k, j � i, identically zero until the time t = �̄i.

Theorem 2: Let system � be ruled by (1), (2) with x(0) = 0. Let �(A)�����. Let the output y ���q be
partitioned into k blocks (y1, . . . , yk) with 2 � k � q. Problem 2 is solvable if and only if

� �* , 1, ..., .
ii iimC i k
�

� �

Proof: If. This part of the proof is constructive. For any i = 1, . . . , k, the condition *

ii �
� �  = imCi allows a

feedforward dynamic unit �ci, satisfying the requirement on the block output yi, to be designed. The
precompensator �ci

 should generate a control action of ̄�i steps steering the state of � from the origin to any state
in *

i�
�  along a trajectory in *

i�
�  , so that it has no effect on the outputs yj , j =1, . . . , k, j = i until the time t = �̄i.

Thus, �ci
 , ruled by

zi(t + 1) = Aci zi(t) + Bci hi(t), (5)

ui(t) = Cci zi(t) + Dci hi(t), (6)

with zi (0) = 0, is found to be an FIR system defined by the IO equation

ui(t) = 
� �

�

� � � ��
�

� �
1

0

( ) ( ), 0,1, ,
i

i ih t t (7)

where the gain matrices �i(�), � = 0, 1, . . . ,  � �1,i
 should be designed suitably. To this aim, let Mk

i , k = 1, . . .

, �i , denote the respective basis matrices of the subspaces subsequently generated by the ACSA of *

i�
� (i.e., im

Mk
i = 

i

k
�
� , k = 1, . . . , �i ). For any column vector of M �̄i

i , representing a state in *

i�
� , there is a control sequence

of �i  steps steering the state of � from the origin to that state in *

i�
� along a trajectory whose intermediate states

belong to the subspaces subsequently generated by the ACSA of *

i�
� . Let Xi(k) = Mk

i �i(k) and Ui(k), k = 1, . . . ,

� �1i , respectively denote the matrix of the states and that of the controls at the k-th step: i.e., the j-th column

vectors of Xi(k) and Ui(k) respectively are the state and the control at the k-th step of the trajectory reaching the

state represented by the j-th column vector of M�̄i
i  at the time � � .it  Consistently, the generic �i(k) is a matrix
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with a number of rows equal to the number of columns of the corresponding matrix Mk
i and a number of columns

equal to the number of columns of �i
iM (hence, also equal to the dimension of the subspace *

i�
� , since �i

iM is a

basis matrix of *
i�

� ). The entries of the generic j-th column of �i(k) are the coefficients of the linear combination

of the column vectors of Mk
i expressing the j-th column vector of the corresponding Xi(k) (in fact, as mentioned

above, there is a control sequence such that the intermediate states of the corresponding state trajectory belong

to the subspaces respectively generated by the ACSA). The matrix sequences Xi(k), Ui(k), k = 1, . . . , � �1,i  are

provided by the recursive relation

[�i(k)� Ui(k)�]� = [AMk
i  B]+ Xi(k + 1), Xi(k) = Mk

i �i(k), k = �̄i – 1, … , 1, Xi(�̄i) = M �̄i
i ,

which is derived from the ACSA of �*
�̄i
 . Moreover,

Ui(0) = B+ Xi(1).

Hence, by linearity, the gain matrices in (7) are

�i(�) = Ui(�), = � = 0, 1, . . . , � �1,i

and the matrices in (5), (6) are

ACi
 = � �

�� � � �
� � � �
� � � �
� � � �� � � � � � � ��
� � � �
� � � �
� � � �� � �� � � �

� � � � � �

� � � � �

� � � �

, , ( 1) (1) , (0).
i i iC C i i i c i

O I O O O

B C DO

I O

O O I

(8)

Finally, the precompensator �c, with state z(t) = [z1(t)
� . . . zk(t)

�],� input h(t) = [h1(t)
� … hk(t)

�]�, and output u(t)
= u1(t) + … + uk(t), is ruled by (3), (4) with

Ac = 

� �� � � �
� � � �
� � � ��� � � �
� � � �

� �� � � �� � � �

� � � � � �

� � � � � �

1 1

, ,

k k

c c

c

c c

A O O B O O

O O
B

O O

O O A O O B

(9)

Cc =  [Cc1
… … Cck

], Dc =  [Dc1
… … Dck

 ]. (10)

Only if. Necessity is due to the subspace �* , 1,..., ,
i

i k��  being the maximal set of states reachable from the origin

along trajectories in �̄i, hence invisible at all the other outputs yj , j = 1, . . . , k, j � i.

4. FINITE HORIZON NONINTERACTION WITH STANDARD CONDITIONS
FOR SOME BLOCK OUTPUTS

In noninteracting control problems, a frequent situation is that where the standard conditions are satisfied for
some block outputs, while the extended conditions only are satisfied for the others. The aim of this section is to
illustrate how to design the precompensators relative to the block outputs for which the more restrictive conditions
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(i.e., those ensuring infinite horizon noninteraction with respect to the considered block outputs) hold and how
to include those precompensators in the global scheme, along with the precompensators relative to the block
outputs for which the sole less restrictive conditions hold.

Whenever the standard condition is met for some block output yi, exploiting the properties of the supremal
controllability subspace �

�̄*i  contained in �̄i is the most convenient option. The synthesis procedure for the
corresponding feedforward dynamic unit �ci

 is discussed in this section. The precompensator proposed herein
differs from that presented in [1] and, in revised form, in [19] since, in addition to the part replicating the
dynamics of (A + BFi)���̄*i 

, where Fi is any real matrix such that �
�̄*i  is (A + BFi)-invariant, it includes an FIR

system ensuring pointwise control of the block output yi.

In this section, the symbol  �̄i denotes the number of steps for the CSA of �
�̄*i  to converge and the symbols

Mk
i , k = 1, … , ̄�i, denote the basis matrices of the subspaces ordinately generated by the CSA of �

�̄*i . The use of
the same symbols of Section 3 to address different objects is aimed at avoiding rewriting of some equations and
highlighting consistency of the design procedure with that previously introduced.

Let the condition Ci��̄*i  = imCi hold for some block output yi, i = 1, … , k. The precompensator �ci 
should

generate a control action driving the state of � from the origin to any state of �
�̄*i  in �̄i steps, along a trajectory

in �
�̄*i , and then maintaining the state in �

�̄*i , so that the outputs yj,  j = 1, … , k, j � i, remain identically zero.
Thus, �ci

 , ruled by (5), (6) with zi (0) = 0, should include an FIR system forcing the state transition from the
origin to any state in �

�̄*i  and a standard dynamic unit steering the state along a trajectory in �
�̄*i . Let the FIR

system be described by the IO equation

ui, f (t) = 
1

0

( ) ( ), 0,1, ,
i

i ih t t
� �

�

� � � ��
�

� � (11)

or, equivalently, by

zi,f (t + 1) = Ai,f zi, f (t) + Bi,f hi(t), (12)

ui,f (t) = Ci,f zi,f (t) + Di,f hi(t), (13)

with zi,f (0) = 0, where the matrices Ai,f , Bi,f , Ci,f , Di,f have the same structure of those in (8). Let the standard
dynamic unit be ruled by

zi,d(t + 1) = Ai,d zi,d(t) + Bi,d vi,d(t), (14)

ui,d(t) = Ci,d zi,d(t), (15)

with zi,d(0) = 0. The feedforward dynamic unit �ci
 should be obtained by connecting the FIR system (12), (13)

and the standard dynamic unit (14), (15) so that vi,d =ui,f and ui = ui,f +ui,d. Therefore, the matrices in (5), (6) are

Aci
 =  

� �� �
� �� � �� �� � � �� � � �� � � �

,,
, , ,

,, , , ,

, , , .
i i i

i fi f
c c i f i d c i f

i d ii d i f i d f

BA O
B C C C D D

B DB C A
 (16)

The design of both the FIR system and the standard dynamic unit requires that a real matrix Fi such that �
�̄*i  is

(A + BFi)-invariant (or, briefly, AFi-invariant) be chosen.

First, the design of the FIR system is considered. As mentioned above, let Mk
i , k = 1, … , �̄i, denote the

respective basis matrices of the subspaces subsequently generated by the CSA of �
�̄*i   (i.e., imMk

i = �k
�̄

*
i 
, k = 1,

…, �̄i). For any column vector of M �̄i
i , representing a state in �

�̄*i  , there is a control sequence of  ̄�i steps steering

6
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the state of � from the origin to that state in �
�̄*i  along a trajectory whose intermediate states belong to the

subspaces subsequently generated by the CSA of �
�̄*i . Let Xi(k) = Mk

i �i(k) and Ui(k), k = 1, … , ̄�i –1, denote the
matrices of the states and controls at the k-th step, respectively. The matrix sequences Xi(k), Ui(k), k = 1, … , �̄i

–1, are provided by the recursive relation

[�i(k)T Ui(k)T]T = [AFi
Mk

i  B]+ Xi(k + 1),    Xi(k) = Mk
i �i(k),    k = �̄i – 1, … , 1, Xi( �̄i) = M �̄i

i ,

which is derived from the CSA of 
i�

� . Moreover,

Ui(0) = B+ Xi(1) (1).

Hence, by linearity, the gain matrices in (11) are

�i(�)=Ui(�), ��= 0, 1, … , �̄i –1.

Then, the design procedure for the standard dynamic unit is illustrated. Let the similarity transformation

Ti = [Ti,1 Ti,2], where �
�̄*

i 
 = imTi,1, be performed on the triple (AFi, B, Fi). The matrices �� � 1

i iF i F iA T A T  B�i = T–1
i B,

F�i  = FiTi, partitioned according to Ti, have the structures

A�Fi
 =  ,11 ,12

,22

,1
1 ,1 ,2

,2
, , .i i

i

F F i
i i i

iF

A A B
B F F F

BO A

� �� � �� �
� � � �� �� �� � � � � ���� � � �� �

Hence, the matrices in (14), (15) are

Ai,d = A�Fi,11
, Bi,d = B�i,1, Ci,d =F�i,1.

Moreover, if Fi is chosen such that �((A + BFi)��
�̄*i

 )����
�, from the time t = �̄i on, the state trajectory of � is

steered to the origin asymptotically.

In conclusion, when the standard conditions are satisfied for some block outputs and the extended conditions
only are satisfied for the others, the matrices in (3), (4), defining the precompensator �c, still have the structure
shown in (9), (10), but the matrices Aci

 , Bci
 , Cci

 , Dci
 , i = 1, … , k, either are of the type shown in (8) or of the type

shown in (16).

5. IMPACT ON FAULT DETECTION ISSUES

The generalization discussed in the context of noninteraction throughout the previous sections can be transferred
to the context of fault detection by a straightforward application of duality arguments. Hence, statements and
proofs will not be repeated for the dual context. Nonetheless, the impact of the generalization on fault detection
issues will be briefly shown referring to the, so-called, fundamental case, where the fault inputs are partitioned
into two blocks only.

Let us consider the, so-called, fundamental noninteracting control problem — i.e., the problem where the
output of system �, defined by the triple (A,B,C), is partitioned into two blocks only (y1, y2), corresponding to
the matrices C1, C2 (Fig. 1a) — and the, so-called, fundamental fault detection problem — i.e., the problem
where the fault inputs are partitioned into two blocks only (m1,m2) (Fig. 1b). In standard noninteraction, the
compensation unit �c1

 should generate a control action steering the state of � on the supremal controllability
subspace �

�*2
 contained in �2, the kernel of �2. The compensation unit �c2

 should behave likewise with respect
to �

�*1
, the supremal controllability subspace contained in �1, the kernel of �1. In the relaxed version of

noninteraction, �c1
 should generate a control action forcing the state of � on the supremal almost controllability

7
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Figure 2: Outputs for Finite Horizon Noninteraction (a) and Fault Detection (b)

y h( )12
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0 0

0

(a)

t

t

t

t

(b)

0

subspace ��
�2

 (contained in �2) for a certain, limited time, and �c2
 should do likewise with respect to ��

�1
, the

supremal almost controllability subspace contained in �1. Thus, a unit pulse at the input h1 affects y1 but not y2

in standard noninteraction, while it also changes y2 after a certain number of samples in finite horizon
noninteraction (Fig. 2a). By duality, the residual generator �r1

 should guarantee that the residual r1 reveals a
unit pulse at m1 but not a unit pulse at m2 in standard fault detection, while r1 is also perturbed by a unit pulse at
m2 after a certain number of samples in finite horizon fault detection (Fig. 2b). The residual generator �r2

 should
perform similarly, with reverse roles played by m1 and m2.

(a)  (b)

Figure 1: Block Diagrams for Fundamental Noninteraction (a) and Fault Detection (b)
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h2 �c2

�c1

u
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�r2

�r1
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6. AN ILLUSTRATIVE EXAMPLE

Let the noninteracting control problem by dynamic feedforward be stated for system �, ruled by (1), (2) with

A = 

�� � � �
� � � �� � �� � � � � �� � � � � � � �� � �� � � � � � � �� � �� � � � � �� � � � � �� �� � � �
� � � �� � � �

1

2

.6 0 0 0 .3 0 1 1

1 1 .3 0 0 0 0 0 0 1 1 0 0 0

0 .4 0 0 0 0 0 0 1 0 0 0 0 0
, , ,

0 0 0 .9 0 .4 0 0 0 0 0 1 0 0

0 0 0 0 .5 0 0 1 0 0 1 1 0 1

0 0 0 0 0 .7 0 1

C
B C

C

where C1, C2 identify the output block partition (y1, y2). Since �
�̄*1

 ={0}, the condition for standard noninteraction
is not satisfied for the block output y1. However, since

8
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� � � � � �
� � � � � �� �� � � � � �
� � � � � ��

� � � �� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �� � � � � �

1 1 1

1 2 3 *

1 1 0 1 0 0

0 0 1 0 1 0

0 0 0 0 0 .5774
im , im , im ,

0 0 0 0 0 0

0 0 0 0 0 .5774

0 0 0 0 0 .5774

R R
�� � � �� �

and C1��̄
*

1
= imC1 = �2, the extended condition is satisfied for y1. Conversely, the standard condition is satisfied

for the block output y2 since

* * * *
2 2 2 2

1 2 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
im , im , im ,

0 .9428 0 1 0 0

.7071 .2357 .7071 0 1 0

.7071 .2357 .7071 0 0 1

� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � �� � � � � �
� � � � � �
� � � � � �
� � � � � �

�� � � � � �� � � � � �

� � � �
� � � �

and C2 *
2�

� = im C2 = �2. Consequently, the precompensator �c1 consists of the sole FIR system designed

according to the procedure detailed in Section 3, while �c2 includes both the FIR system and the standard
dynamic unit devised as shown in Section 4.

In particular, �c1 has the IO description (7), where �̄1 = 3 and the gain matrices �1(�), � = 0, 1, 2, are

1 1 1
0 0 1.4434 0 1 2.3094 1 .6 1.4434

(0) (1) , (2) .
0 0 0 0 0 0 0 0 .5774

� � �� � � � � �
� � � � � �� � � � � �

� � � � � �

The precompensator �c2 is described by (5), (6) with (16). Let F2 be such that �((A + BF2)�� �̄*2 
) = {.1, .2, .3}.

The FIR system has the IO description (11), where �̄1 =3 and the gain matrices �2(�), � = 0, 1, 2, are

� �� � � �
� � � �� � � �� � � �� � � �

2 2
6.25 12.5 12.5 1.875 1.25 1.25

(0) , (1) ,
6.25 12.5 12.5 1.875 1.25 1.25  2

2.375 .75 .25
(2) .

2.375 .75 .25

� �� �
� � � ��� �

The dynamic unit is ruled by (14), (15), where the matrices

2, 2, 2,

.9 0 .4 0 0
2.1 .6 1.2

2.1 .2 1.2 , 0 1 ,
2.1 .3 1.2

2.1 .3 .5 0 1
d d dA B C

� � � �
�� �� � � �� � � � �� � � � � �� �� � � �� �� � � �

have been derived from the partition of the matrices A�F2 , B�2, F�2 obtained through the state space basis transformation
T2 =[–e4 –e5 e6 –e1 –e2 –e3], where ej , j =1, … , 6, denotes the j-th vector of the main basis of �6.

The numerical results presented above can be better interpreted if referred to Fig. 1a: the precompensator
�c1 guarantees that a unit pulse at h1 only affects the output y2 from the time t = 4 on, while the precompensator
�c2 guarantees that a unit pulse at h2 does not affect the output y1. These facts are also illustrated in Fig. 3 and
Fig. 4. Figure 3 shows the unit pulse response of � with the precompensator �c1 : a unit pulse at the block input

9



132 Journal of Mathematical Control Science and Applications (JMCSA)

of �c1 (i.e., In(1), In(2), In(3) in the plot) does not change the second block output of � (i.e., Out(3), Out(4)) until
the time t = 4; meanwhile, the unit pulse at the block input of �c1 affects the first block output of � (i.e., Out(1),
Out(2)). Figure 4 shows the unit pulse response of � with the precompensator �c2 : a unit pulse at the block input
of �c2 (i.e., In(1), In(2), In(3) in the plot) does not affect the first block output of � (i.e., Out(1), Out(2)), while
it affects the second block output (i.e., Out(3), Out(4)).

Figure 3: Unit Pulse Response of System  With Precompensator c1

Figure 4: Unit Pulse Response of System  With Precompensator c2

10
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Then, let the fault detection problem be stated for system ��, ruled by

x(t + 1) = A� x(t) + C�m(t),

y(t) = B� x(t),

where the matrices C�1 , C2
� identify the fault input partition (m1,m2) shown in Fig. 1b. The residual generators �r1

and �r2 are respectively derived from �c1 and �c2 by duality. In the context of fault detection, the properties
previously pointed out imply that �r1 guarantees that the residual r1 is affected by m2 only from the time t = 4 on,
while �r2 ensures that r2 is not affected by m1. These facts are illustrated in Fig. 5 and Fig. 6. Figure 5 shows the
unit pulse response of � with the residual generator �c1 : a unit pulse at the second block input of � (i.e, In(3),
In(4) in the plot) does not change the block output of �r1 (i.e, Out(1), Out(2), Out(3)) until the time t=4; meanwhile,
the output of �r1 is perturbed by a unit pulse at the first block input (i.e, In(1), In(2)). Figure 6 shows the unit
pulse response of �� with the residual generator �r1

 : a unit pulse at the first block input of �� (i.e, In(1), In(2))
does not affect the block output of �r2 (i.e., Out(1), Out(2), Out(3)), while the latter one is affected by a unit
pulse at the second block input (i.e., In(3), In(4)). Hence, in the overall scheme for fault detection, while detection
of the second block fault input is possible in accordance with the standard conditions, detection of the first block

Figure 5: Unit Pulse Response of System  with Residual Generator r1

11
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fault input, which solely satisfies the extended version of the geometric structural conditions, is nonetheless
possible by exploiting information referring to the finite time interval until t = 4: i.e., the time when the perturbation
of the corresponding residual can only be ascribed to the first block fault input.

Consistency of the results respectively obtained for noninteraction and fault detection is evident in the
comparison between Fig. 3 and Fig. 5 and between Fig. 4 and Fig. 6, respectively. In fact, if each figure is
interpreted as a matrix of graphs, it is easy to see that the matrix of Fig. 5 is the transpose of the matrix of Fig. 3
and, similarly, the matrix of Fig. 6 is the transpose of the matrix of Fig. 4. In other words, the generic graph
shown in the subfigure positioned at the i-th row and j-th column of Fig. 3 (Fig. 4) also appears in the subfigure
positioned at the j-th row and i-th column of Fig. 5 (Fig. 6).

Figure 6: Unit Pulse Response of System � with Residual Generator r2

7. CONCLUSION

In this work, the methodological approach to noninteraction based on the properties of fundamental geometric
objects like controllability invariant subspaces has been extended to the case where the structural properties of
the investigated systems only allow noninteraction to be achieved on finite horizons, suitably defined in connection
with the number of steps for the ACSAs associated with the different system subblocks to converge. A necessary
and sufficient condition for solvability of the relaxed problem has been proved. The if-part of the proof is

12
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constructive, since it directly leads to the procedure for devising the feedforward dynamic units achieving the
control objective. A slight modification, consisting in replacing the ACSA with the CSA, leads to a new procedure
for devising the feedforward dynamic units which guarantee the standard, infinite horizon, noninteraction for
those subblocks of the system for which it is admissible. The transfer of the abovementioned results to the
context of fault detection has been commented referring to the, so-called, fundamental problems. A numerical
example has illustrated the proposed methodology.
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