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On the Dynamic Behavior for a Kind of Fifth-order Nonlinear
Difference Equation
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Abstract: In this paper we consider the fifth-order rational difference equation

_ F(xn’xn—Z’xn—3’xn—4) =0.1
n+l = n=u,l1---,

‘x 2
G(xn s Xn—25Xp-35 X4 )

where F (x, y, zw) =xy + xz2+xw+yz+yw+zw+xyzw+ 1 +a, G(x, y, z w)=x+y+ 2+ W+ XyzZ+xyw +
yzw + a, a € [0, ) and the initial values x_, x_, x_, x_, x, € (0, + o).

It is found that, with change of the initial values, the rule for the lengths of positive and negative semi-cycles for
nontrivial solutions of this equation to successively occur is

"'54+73772+9275]‘+75771+’17’3+’1772+’17’1+517’1+’27’
437,25 271,57, 10,17,35, 1,25, 10,10, 10,017,270

By the use of the rule, we proved that the positive equilibrium point of the equation is globally asymptotically
stable.
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1. INTRODUCTION AND PRELIMINARIES

Motivated by the work [1,2,3], we consider in this paper the following fifth-order rational difference equation

F(xn’xn—Zﬂxn—3’xn—4) n

b
G(xn s Xn—25Xp-35%X,-4 )

=0,1,--, (1)

Xn+l =

where the functions

Fx,y,zzw)=xy+xz+xw+yz+yw+zw+xyzw+ 1 +a
and

Gy, z,Ww)=x+y+ 2+w + xyz + Xyw + XZW + yZW + a

the parameters a € [0, + ), and the initial values x_,, x ,, x ,, x_, X, € (0, + ).
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It is easy to see that the unique positive equilibrium X of Eq. (1) is x= 1.

Here, for readers’ convenience, we give some corresponding definitions.

Definition 1.1: A solution {x,},__, of Eq. (1) is said to be eventually trivial if x is eventually equal to

X =1; otherwise, the solution is said to be nontrivial.

Definition 1.2: A solution {x, },__, of Eq. (1) is said to be eventually positive if x_ is eventually greater than

x=1,

Definition 1.3: A positive semi-cycle of a solution {x,},__, of Eq. (1) consists of a string of terms {x,, x,, ,

...x,}, all greater than or equal to the equilibrium X with / >—4 and m < oo such that either / =—4 or [ >—4 and

x,, < X and eitherm=corm<wandx < X.

Definition 1.4: A negative semi-circle of a solution {x, };,__, of Eq. (1) consists of astring of terms {x,, x,, ,

...x,}, all less than the equilibrium X, with [ > -4 and m < oo such that either /=-4 or/>—4 and x,_ > X and

eitherm=o0orm<ooandx > X.The length of a semi-cycle is the number of the total terms contained in it.

For the other concepts in this paper, see Refs. [4, 5].

2. NONTRIVIAL SOLUTION

Theorem 2.1: A positive solution {x,}_, of Eq. (1) is eventually trivial if and only if

(., -1) (x,—1) (x,-1) (x, 1) (x,~1) = 0. @)

Proof: Sufficiency. Assume that Eq. (2) holds. Then according to Eq. (1), we know that the following
conclusions are true:

(1) Ifx,=1,thenx =1forn=>1.
(i) Ifx,=1,thenx =1 forn=>1.
(i) If x ,= 1, thenx =1 forn > 1.
(iv) Ifx =1,thenx =1forn>1.
(V) Ifx,=1,thenx =1 forn>1.
Necessity. Conversely, assume that
(x, =1 (e ,=D (=1 (x, =1 (x,—1) # 0. 3)
Then we can show x # 0 for any n > 1. For the sake of contradiction, assume that for some N > 1,
x,=1andthatx #1forany-4<n<N-1. “4)

Clearly,

~ F(xy_1,Xn_3,XN_45XN_5)

G(Xy_1,XN_3,XN_4>XN_5)
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From this we can know that

1= Gna =Dy s =Dy 4 =Dy s =1

O=xy —
G(Xy_1sXN_3>XN_4>XN_5)

which implies x, =1, o0rx, ,=1,0rx, ,=1,orx, ;= 1. This contradicts with Eq. (4).

Remark 2.2: Theorem (2.1) actually demonstrates that a positive solution {x,}_, of Eq.(1) is eventually

nontrivial if (x_, — D(x_, — D(x_, — 1)(x_, — 1)(x,— 1) # 0. So, if a solution is a nontrivial one, then x # 1 for any
n<-4,

3. OSCILLATION AND NON-OSCILLATION

Before stating the oscillation and non-oscillation of solutions, we need the following key lemmas.

Lemma 3.1: Let {x,}_, be a positive solution of Eq.(1) which is not eventually equal to 1, then the

following conclusions are valid:

@ &«,-Dx-Dkx,-Dx -1 x_,—1)>0,forn>0;
(b) x, —x)x, -1)<0,forn=>0;

© &, —x_)x_ —1)<0,forn=0;

@ &, —x_)x ,—1)<0,forn=0;

e ., —x_)x ,—1)<0,forn=0;

) x,, —x_px _,—1)<0,forn=>0.

(@ ., -x J)x —1)<0,forn=>0

Proof: First, we investigate (a). According to Eq.(1), we have that

_ ('xn _1)(xn—2 _1)(xn—3 _1)(xn—4 _1) n

X, —1= o =0,1,.
(xn’ Xp—25Xp-3> xn—4)

So
., —-Dx -Dx_,- D _,— D _,—1)>0.

Second, it comes (b). From Eq.(1) we obtain

ooy 2 x) (@t A )+ X 0%+ Xy g Xy g + Xy 3%0-a))
n+l n ’
G(xn s Xp—25Xp-35Xp—4 )

This teaches us that (x , —x )(1-x)>0,n=0,1, ... . That’s to say, (x ,, —x )(x —1)<0.n=0, 1, ... . So,

the proof of (b) is complete. The proofs for (c), (d), (e), (f), (g) are similar to that of (b). The proof for Lemma
(3.1) is complete.

Theorem 3.2: There exist non-oscillatory solutions of Eq.(1) with x_,, x ,,x , x |, x, € (1, + ), which must
be eventually positive. There don’t exist eventually negative non-oscillatory solutions of Eq. (1).
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Proof: Consider a solution of Eq.(1) with
X p X 3o X 50 X, X, € (1,4 00).

We then know from Lemma (3.1)(a) that x > 1 for x € [-4,+ o). So, this solution is just a non-oscillatory
solution and furthermore eventually positive.

Suppose that there exist eventually negative non-oscillatory of Eq.(1). Then, there exists a positive integer
N such that x < 1 for n > N. Thereout, for n > N + 4,

(x, - Dx -Dkx_,- Dk, _,-Dkx,_,-1)<0.

This contradicts Lemma (3.1)(a). So, there don’t exist eventually negative non-oscillatory of Eq.(1), as desired.

4. RULE OF CYCLE LENGTH

Theorem 4.1: Let {x,}”, be a strictly oscillatory of Eq.(1), then the rule for the lengths of positive and negative
semi-cycles of this solution to occur successively is ..., 4* 37, 2%, 27, 1%, 57, 1%, 17, 3%, 17, 2*, 1, 1*,1-, 1%, 27, 4+,
35,2427, 1%, 5, 1%, 17, 34,17, 25, 17, 1%, 17, 1+, 2, ...

Proof: By Lemma (3.1) (a), one can see that the length of a negative semi-cycle is at most 5, and a positive
semi-cycle is at most 4. On the basis of the strictly oscillatory character of the solution, we see that, for some
integer p > 0, one of the following 2 cases must occur:

case 1: x,> 1, X, > 1, X,0> 1, X, > 1, and X, 4> 1;
case 2: x,> 1, X, > 1, X,0> 1, X, > 1, and X, < 1;
Case 1 can’t occur. Otherwise, the solution is a non-oscillatory solution of Eq.(1).

If Case 2 occurs, it follows from Lemma (3.1)(a) thatx . <1,x <I,x .>1,x . >1,x ,<Il,x <1,
pt pt pt pt pt pt

X, > 1, X0, < 1, X5 < 1, X, 04 < 1, X, 5 < 1, X, 06 < 1, X, 07> 1, X, 05 < 1, X, 10> 1, X, 00> 1, X, 00> 1, X, < 1,
xp+23 > 1’ xp+24 > 1’ xp+25 < 1’ xp+26 > 1’ xp+27 < 1’ xp+28 > l’xp+29 < 1’ xp+30 <1’xp+31 > 1’ xp+32 > 1’ xp+33 > 1’ xp+34 > 1’ xp+35
< l’xp+36 < 1’ xp+37 < l’xp+38 > 1’ xp+39 > 1’ xp+40 < 1’ xp+4l < 1’ xp+42 > 1’ xp+43 < l’xp+44 < 1’ xp+45 < 1’ xp+46 < 1’ xp+47
< 1’ xp+48 > 1’ xp+49 < 1’ xp+50 > 1’ xp+51 > 1’ xp+52 > 1’ xp+53 < 1’ xp+54> 1’ xp+55 > 1’ xp+56 < 1’ xp+57 > 1’ xp+58 < 1’ xp+59

>Lx o<Lx. <l ...
This means that rule for the lengths of positive and negative semi-cycles of the solution of Eq.(1) to occur

successively is ..., 4%, 37, 2% 2°, 1%, 57, 1%, 17, 3*, 17, 2*,1-, 1*, 1, 1%, 27, ... . So, the proof for this theorem is
complete.

5. GLOBAL ASYMPTOTIC STABILITY

First, we consider the local asymptotic stability for unique positive equilibrium point x of Eq.(1). We have the
following results.

Theorem 5.1: The positive equilibrium point of Eq.(1) is locally asymptotically stable.

Proof: The linearized equation of Eq.(1) about the positive equilibrium point X is

y,=0-y+0-y +0-y . +0-y ,n=0,1,...,

n-3 n—4’

and so it is clear from the paper [5, Remark 1.3.7] that the positive equilibrium point X of Eq.(1) is locally
asymptotically stable. The proof is complete.
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We are now in a position to study the global asymptotically stability of positive equilibrium point X .
Theorem 5.2: The positive equilibrium point of Eq. (1) is globally asymptotically stable.

Proof: We must prove that the positive equilibrium point X of Eq.(1) is both locally asymptotically stable
and globally attractive. Theorem (5.1) has shown the local asymptotic stability of x.Hence it remains to verify

that every positive solution {x,},__4 of Eq.(1) converges to X as n —> oo. Namely, we want to prove

limx, =% =1. (5)
n—w

We can divide the solutions into two kinds of types.

1)  Trivial solutions;

ii) Nontrivial solutions.

If the the solutions is a trivial solutions, then it is obvious for (5) to hold because x =1 is eventually.

If the the solutions is a nontrivial solutions, then we can further divide the solution into two cases.

a) Non-oscillatory solution;

b) Oscillatory solution.

Consider now {x } to be non-oscillatory about the positive equilibrium point X of Eq.(1). By virtue of

Lemma (3.1)(b), it follows that the solution is monotonic and bounded. So lim x, exists and is finite. Taking
n—»o0

limits on both sides of Eq.(1), one can easily see that (5) holds.

Now let {x } be strictly oscillatory about the positive equilibrium point of Eq.(1). By virtue of Theorem
(4.1), one understands that the rule for the lengths of positive and negative semi-cycles occurring successively

is Case (C)- - -,4*,3,2%, 2, 1%, 5,1+, 1-,3%, 1, 2% 17, 1%, 1, 1%, 2-, ... . For simplicity, for some nonnegative

integer p, we denote by {x Xy X X, }* the terms of a positive semlcycle of length four, followed by {x
X5 p+6} a negative semlcycle with semicycle length three, then a positive semicycle of length two and a

negative semicycle of length two, and so on. Namely, the rule for the lengths of positive and negative semicycles
to occur successively can be periodically expressed as follows:

X

{x X }+’ {x p+31n+5’xp+31n+6} ’

p+31n° xp+31n+1’ xp+31n+2’ p+31n+3 p+31n+4°

{xp+31n+7’ p+31n+8} {x p+31n+9° p+31n+10} {x +31n+11} ’

+
p+31n+12’ p+31n+13’ xp+31n+14’ xp+31n+15’ xp+31n+16} { p+31n+17} ’

{x

{ p+31n+18} ’ {xp+31n+19’ xp+31n+20’ xp+31n+21} ’ {xp+31n+22} ’

{ p+31n+23’ p+31n+24} { p+31n+25} { p+31n+26} { p+31n+27} ’
{x

+
p+31n+28} {x p+31n+29° p+31n+30} h= 0 1 2

Lemma (3.1)(b), (c), (d), (e), (), (g) teaches us that the following results are true:
(A)
xp+31n >xp+31n+1 >xp+31n+2 >xp+31n+3 >xp+31n+7

>xp+31n+8 >xp+31n+11 >xp+31n+17 >xp+31n+19

> xp+3 1n+20 > xp+3 1n+21 > xp+3 1n+23 >xp+3 1n+24

>X >Xx >X n=0,1,2,---

p+31n+26 p+31n+28 p+31(n+1),
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(B)

xp+3 1n+4 < xp+3 In+5 < xp+3 1n+6 < xp+3 1n+9 < xp+3 1n+10

<xp+31n+12 <xp+31n+13 <xp+31n+14 <xp+31n+15

< xp+3 1n+16 < xp+3 1n+18 < xp+3 1n+22 < xp+3 1n+25

< xp+3 1n+27 < xp+3 1n+29 < xp+3 1n+30 < xp+3 1(n+1)+4,

n=0,1,2,---.

So, from (A) one can see that {x,, 3, }hso is decreasing with lower bound 1. So, the limit § =lim _ x

n—o “p+3ln

exist and is finite.

Furthermore, From (A) one can further obtain

S = limnﬁw xp+31n+1 = limn%w x[’+31”+2 = lim”%w xp+31n+3
= limnﬁw xp+31n+7 = limn%w x[’+31”+8 = hmnﬁw xp+31n+11
= limnﬁw xp+31n+17 = limn%w x[’+31”+19 - hmnﬁw xp+31n+20
= limnﬁw xp+31n+21 = limn%w x[’+31”+23 - hmnﬁw xp+31n+24
= limﬁw X 31426 — limn%w Xp+31n428

Similarly, by (B) one can see that {x,, 3,4 Yoo is increasing with upper bound 1. So, the limit 7'=1im__

0

X 3insd exist and is finite.

Furthermore, from (B) one can further obtain

T = limnﬁw xp+31n+4 = limn%w x[’+31”+5 = hmnﬁw xp+31n+6
= limnﬁw xp+31n+7 = limn%w x[’+31”+9 = lim”%w xp+31n+10
= limnﬁw xp+31n+12 = limn%w x[’+31”+13 = hmnﬁw xp+31n+14
= limnﬁw xp+31n+15 = limn%w x[’+31”+16 = hmnﬁw xp+31n+18
= limnﬁw xp+31n+22 = limn%w x[’+31”+25 = hmnﬁw xp+31n+27
= limnﬁw xp+31n+29 = limn%w x[’+31”+30.

Easily, we can prove S = T = 1. The proof for Theorem (5.2) is complete.

REFERENCES

[1] XianyiLi, Deming Zhu, Global asymptotic stability in a rational equation, J. Dierence Equa. Appl., Vol.9,No. 9, pp.833—
839, 2003.

[2] Xianyi Li, Deming Zhu, Global asymptotic stability of a nonlinear recursive sequence, Appl. Math. Letters, Vol. 17, No.
7, pp. 833-838, 2004.

[3] Xianyi Li, Qualitative properties for a fourth order rational dierence equation, J. Math. Anal.Appl., Vol. 311, No.1, pp.103—
111, 2005.

[4] M. R.S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Dierence Equations, with Open Problems and
Conjectures, Chapman and Hall/CRC, 2002.

[5] A.M.Amleh, D. A. Georgia, E. A. Grove, and G. Ladas, On the recursive sequence x
Vol. 233, pp.790-798, 1999.

1

= o+, J. Math. Anal. Appl.,

20



