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On the Dynamic Behavior for a Kind of Fifth-order Nonlinear
Difference Equation
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Abstract: In this paper we consider the fifth-order rational difference equation
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where F (x, y, z,w) = xy + xz + xw + yz + yw + zw + xyzw + 1 + a, G (x, y, z, w) = x + y + z + w + xyz + xyw +
yzw + a, a � [0, �) and the initial values x

–4
, x

–3
, x

–2
, x

–1
, x

0 
 � (0, + �).

It is found that, with change of the initial values, the rule for the lengths of positive and negative semi-cycles for
nontrivial solutions of this equation to successively occur is
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By the use of the rule, we proved that the positive equilibrium point of the equation is globally asymptotically
stable.
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1. INTRODUCTION AND PRELIMINARIES

Motivated by the work [1,2,3], we consider in this paper the following fifth-order rational difference equation
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where the functions

F (x, y, z, w) = xy + xz + xw + yz + yw + zw + xyzw + 1 + a

and

G (x, y, z, w) = x + y + z+w + xyz + xyw + xzw + yzw + a

the parameters a � [0, + �), and the initial values x–4, x–3, x–2, x–1, x0  � (0, + �).
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It is easy to see that the unique positive equilibrium x  of Eq. (1) is x = 1.

Here, for readers’ convenience, we give some corresponding definitions.

Definition 1.1: A solution 4{ }n nx �
��  of Eq. (1) is said to be eventually trivial if xn is eventually equal to

1x � ; otherwise, the solution is said to be nontrivial.

Definition 1.2: A solution 4{ }n nx �
��  of Eq. (1) is said to be eventually positive if xn is eventually greater than

1x � .

Definition 1.3: A positive semi-cycle of a solution 4{ }n nx �
��  of Eq. (1) consists of a string of terms {xl, xl+1,

…xm}, all greater than or equal to the equilibrium x  with l � – 4 and m ��� such that either l = – 4 or l > –4 and

xl–1 < x  and either m = � or m < � and xm+1 < x .

Definition 1.4: A negative semi-circle of a solution 4{ }n nx �
��  of Eq. (1) consists of astring of terms  {xl, xl+1,

…xm}, all less than the equilibrium x , with l � – 4 and m ��� such that either l = – 4 or l > –4 and xl–1 � x  and

either m = � or m < � and xm+1 � x . The length of a semi-cycle is the number of the total terms contained in it.

For the other concepts in this paper, see Refs. [4, 5].

2. NONTRIVIAL SOLUTION

Theorem 2.1: A positive solution 4{ }n nx �
��  of Eq. (1) is eventually trivial if and only if

(x–4 –1) (x–3 –1) (x–2 –1) (x–1 –1) (x0 –1) = 0. (2)

Proof: Sufficiency. Assume that Eq. (2) holds. Then according to Eq. (1), we know that the following
conclusions are true:

(i) If x–4 = 1, then xn = 1 for n � 1.

(ii) If x–3 = 1, then xn = 1 for n � 1.

(iii) If x–2 = 1, then xn = 1 for n � 1.

(iv) If x–1 = 1, then xn = 1 for n � 1.

(v) If x0 = 1, then xn = 1 for n � 1.

Necessity. Conversely, assume that

(x–4 –1) (x–3 –1) (x–2 –1) (x–1 –1) (x0 –1) � 0. (3)

Then we can show xn� 0 for any n � 1. For the sake of contradiction, assume that for some N � 1,

xN = 1 and that xn � 1 for any – 4 ��n � N – 1. (4)

Clearly,
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From this we can know that
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which implies xN–1 = 1, or xN–3 = 1, or xN–4 = 1, or xN–5 = 1. This contradicts with Eq. (4).

Remark 2.2: Theorem (2.1) actually demonstrates that a positive solution 4{ }n nx �
��  of Eq.(1) is eventually

nontrivial if (x–4 – 1)(x–3 – 1)(x–2 – 1)(x–1 – 1)(x0 – 1) � 0. So, if a solution is a nontrivial one, then xn � 1 for any
n � –4.

3. OSCILLATION AND NON-OSCILLATION

Before stating the oscillation and non-oscillation of solutions, we need the following key lemmas.

Lemma 3.1: Let 4{ }n nx �
��  be a positive solution of Eq.(1) which is not eventually equal to 1, then the

following conclusions are valid:

(a) (xn+1 – 1) (xn– 1) (xn-2 – 1) (xn–3 – 1) (xn–4 – 1) > 0, for n � 0;

(b) (xn+1 – xn)(xn – 1) < 0, for n � 0;

(c) (xn+1 – xn–1)(xn–1 – 1) < 0, for n � 0;

(d) (xn+1 – xn–2)(xn–2 – 1) < 0, for n � 0;

(e) (xn+1 – xn–3)(xn–3 – 1) < 0, for n � 0;

(f ) (xn+1 – xn–4)(xn–4 – 1) < 0, for n � 0.

(g) (xn+1 – xn–5)(xn–5 – 1) < 0, for n � 0

Proof: First, we investigate (a). According to Eq.(1), we have that
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So

(xn+1 – 1)(xn – 1)(xn–2 – 1)(xn–3 – 1)(xn–4 – 1) > 0.

Second, it comes (b). From Eq.(1) we obtain
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This teaches us that (xn+1 – xn)(1– xn) > 0, n = 0, 1, … . That’s to say, (xn+1 – xn)(xn – 1) < 0.n = 0, 1, … . So,
the proof of (b) is complete. The proofs for (c), (d), (e),  (f), (g) are similar to that of (b). The proof for Lemma
(3.1) is complete.

Theorem 3.2: There exist non-oscillatory solutions of Eq.(1) with x–4, x–3, x–2, x–1, x0 � (1, + �), which must
be eventually positive. There don’t exist eventually negative non-oscillatory solutions of Eq. (1).
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Proof: Consider a solution of Eq.(1) with

x–4, x–3, x–2, x–1, x0 � (1,+ �).

We then know from Lemma (3.1)(a) that xn > 1 for xn � [–4,+ �). So, this solution is just a non-oscillatory
solution and furthermore eventually positive.

Suppose that there exist eventually negative non-oscillatory of Eq.(1). Then, there exists a positive integer
N such that xn < 1 for n �  N. Thereout, for n �  N + 4,

(xn+1 – 1)(xn – 1)(xn–2 – 1)(xn–3 – 1)(xn–4 - 1) � 0.

This contradicts Lemma (3.1)(a). So, there don’t exist eventually negative non-oscillatory of Eq.(1), as desired.

4. RULE OF CYCLE LENGTH

Theorem 4.1: Let 4{ }nx �
�  be a strictly oscillatory of Eq.(1), then the rule for the lengths of positive and negative

semi-cycles of this solution to occur successively is … , 4+, 3–, 2+, 2–, 1+, 5–, 1+, 1–, 3+, 1–, 2+, 1–, 1+,1–, 1+, 2–, 4+,
3–, 2+, 2–, 1+, 5–, 1+, 1–, 3+,1–, 2+, 1–, 1+, 1–, 1+, 2–, … .

Proof: By Lemma (3.1) (a), one can see that the length of a negative semi-cycle is at most 5, and a positive
semi-cycle is at most 4. On the basis of the strictly oscillatory character of the solution, we see that, for some
integer p � 0, one of the following 2 cases must occur:

case 1: xp > 1, xp+1 > 1, xp+2 > 1, xp+3 > 1, and xp+4 > 1;

case 2: xp > 1, xp+1 > 1, xp+2 > 1, xp+3 > 1, and xp+4 < 1;

Case 1 can’t occur. Otherwise, the solution is a non-oscillatory solution of Eq.(1).

If Case 2 occurs, it follows from Lemma (3.1)(a) that xp+5 < 1, xp+6 < 1, xp+7 > 1, xp+8 > 1, xp+9 < 1, xp+10 < 1,
xp+11 > 1, xp+12 < 1, xp+13 < 1, xp+14 < 1, xp+15 < 1, xp+16 < 1, xp+17 > 1, xp+18 < 1, xp+19 > 1, xp+20 > 1, xp+21 > 1, xp+22 < 1,
xp+23 > 1, xp+24 > 1, xp+25 < 1, xp+26 > 1, xp+27 < 1, xp+28 > 1,xp+29 < 1, xp+30 <1,xp+31 > 1, xp+32 > 1, xp+33 > 1, xp+34 > 1, xp+35

< 1,xp+36 < 1, xp+37 < 1,xp+38 > 1, xp+39 > 1, xp+40 < 1, xp+41 < 1, xp+42 > 1, xp+43 < 1,xp+44 < 1, xp+45 < 1, xp+46 < 1, xp+47

< 1, xp+48 > 1, xp+49 < 1, xp+50 > 1, xp+51 > 1, xp+52 > 1, xp+53 < 1, xp+54 > 1, xp+55 > 1, xp+56 < 1, xp+57 > 1, xp+58 < 1, xp+59

> 1, xp+60 < 1, xp+61 < 1, … .

This means that rule for the lengths of positive and negative semi-cycles of the solution of Eq.(1) to occur
successively is … , 4+, 3–, 2+, 2–, 1+, 5–, 1+, 1–, 3+, 1–, 2+,1–, 1+, 1–, 1+, 2–, … . So, the proof for this theorem is
complete.

5. GLOBAL ASYMPTOTIC STABILITY

First, we consider the local asymptotic stability for unique positive equilibrium point x  of Eq.(1). We have the
following results.

Theorem 5.1: The positive equilibrium point of Eq.(1) is locally asymptotically stable.

Proof: The linearized equation of Eq.(1) about the positive equilibrium point x  is

yn+1 = 0 · yn + 0 · yn–2 + 0 · yn–3 + 0 · yn–4, n = 0, 1, … ,

and so it is clear from the paper [5, Remark 1.3.7] that the positive equilibrium point x  of Eq.(1) is locally
asymptotically stable. The proof is complete.
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We are now in a position to study the global asymptotically stability of positive equilibrium point x .

Theorem 5.2: The positive equilibrium point of Eq. (1) is globally asymptotically stable.

Proof: We must prove that the positive equilibrium point x  of Eq.(1) is both locally asymptotically stable
and globally attractive. Theorem (5.1) has shown the local asymptotic stability of x . Hence it remains to verify

that every positive solution 4{ }n nx �
��  of Eq.(1) converges to x  as n ����. Namely, we want to prove

lim 1n
n

x x
��

� � � (5)

We can divide the solutions into two kinds of types.

i) Trivial solutions;

ii) Nontrivial solutions.

If the the solutions is a trivial solutions, then it is obvious for (5) to hold because xn = 1 is eventually.

If the the solutions is a nontrivial solutions, then we can further divide the solution into two cases.

a) Non-oscillatory solution;

b) Oscillatory solution.

Consider now {xn} to be non-oscillatory about the positive equilibrium point x  of Eq.(1). By virtue of

Lemma (3.1)(b), it follows that the solution is monotonic and bounded. So lim n
n

x
��

 exists and is finite. Taking

limits on both sides of Eq.(1), one can easily see that (5) holds.

Now let {xn} be strictly oscillatory about the positive equilibrium point of Eq.(1). By virtue of Theorem
(4.1), one understands that the rule for the lengths of positive and negative semi-cycles occurring successively

is Case (C)· · · , 4+, 3–, 2+, 2–, 1+, 5–, 1+, 1–, 3+, 1–, 2+, 1–, 1+, 1 –, 1+, 2–, … . For simplicity, for some nonnegative
integer p, we denote by {xp, xp+1, xp+2, xp+3}

+ the terms of a positive semicycle of length four, followed by {xp+4,
xp+5, xp+6}

–, a negative semicycle with semicycle length three, then a positive semicycle of length two and a
negative semicycle of length two, and so on. Namely, the rule for the lengths of positive and negative semicycles
to occur successively can be periodically expressed as follows:

{xp+31n, xp+31n+1, xp+31n+2, xp+31n+3}
+, {xp+31n+4, xp+31n+5, xp+31n+6}

–,

{xp+31n+7, xp+31n+8}
+, {xp+31n+9, xp+31n+10}

–, {xp+31n+11}
+,

{xp+31n+12, xp+31n+13, xp+31n+14, xp+31n+15, xp+31n+16}
–, {xp+31n+17}

+,

{xp+31n+18}
–, {xp+31n+19, xp+31n+20, xp+31n+21}

+, {xp+31n+22}
–,

{xp+31n+23, xp+31n+24}
+, {xp+31n+25}

–, {xp+31n+26}
+, {xp+31n+27}

–,

{xp+31n+28}
+, {xp+31n+29, xp+31n+30}

–, n = 0, 1, 2,… .

Lemma (3.1)(b), (c), (d), (e), (f), (g) teaches us that the following results are true:
(A)

xp+31n > xp+31n+1 > xp+31n+2 > xp+31n+3 > xp+31n+7

> xp+31n+8 > xp+31n+11 > xp+31n+17 > xp+31n+19

> xp+31n+20 > xp+31n+21 > xp+31n+23 > xp+31n+24

> xp+31n+26 > xp+31n+28 > xp+31(n+1), n = 0, 1, 2, · · · .
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(B)
xp+31n+4 < xp+31n+5 < xp+31n+6 < xp+31n+9 < xp+31n+10

< xp+31n+12 < xp+31n+13 < xp+31n+14 < xp+31n+15

< xp+31n+16 < xp+31n+18 < xp+31n+22 < xp+31n+25

< xp+31n+27 < xp+31n+29 < xp+31n+30 < xp+31(n+1)+4,

n = 0, 1, 2, · · · .

So, from (A) one can see that 31 0{ }p n nx �
� �  is decreasing with lower bound 1. So, the limit S = limn�� xp+31n

exist and is finite.

Furthermore, From (A) one can further obtain

S = limn�� xp+31n+1 = limn�� xp+31n+2 = limn�� xp+31n+3

= limn�� xp+31n+7 = limn�� xp+31n+8 = limn�� xp+31n+11

= limn�� xp+31n+17 = limn�� xp+31n+19 = limn�� xp+31n+20

= limn�� xp+31n+21 = limn�� xp+31n+23 = limn�� xp+31n+24

= limn�� xp+31n+26 = limn�� xp+31n+28

Similarly, by (B) one can see that 31 4 0{ }p n nx �
� � �  is increasing with upper bound 1. So, the limit T = limn��

xp+31n+4 exist and is finite.

Furthermore, from (B) one can further obtain

T = limn�� xp+31n+4 = limn�� xp+31n+5 = limn�� xp+31n+6

= limn�� xp+31n+7 = limn�� xp+31n+9 = limn�� xp+31n+10

= limn�� xp+31n+12 = limn�� xp+31n+13 = limn�� xp+31n+14

= limn�� xp+31n+15 = limn�� xp+31n+16 = limn�� xp+31n+18

= limn�� xp+31n+22 = limn�� xp+31n+25 = limn�� xp+31n+27

= limn�� xp+31n+29 = limn�� xp+31n+30.

Easily, we can prove S = T = 1. The proof for Theorem (5.2) is complete.
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