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Synchronization in a Generally Coupled Dynamical Systems
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Abstract: In this paper we propose a mode decomposition method in studying synchronization in a generally
coupled dynamical system. By using this method the stability of the synchronous state equals to the stability of
zero solutions of the linearized variational equations. The investigation leads to a sufficient condition which
guarantees, if satisfied, the stability of the synchronization of the coupled systems.
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1. INTRODUCTION

Coupled dynamical systems are synthesized from simpler, low-dimensional systems, such as chaos systems, to
form new and complex systems. The study of the synchronous state of the coupled systems has attracted great
attention. Up to now, there are many good methods in studying synchronization of coupled systems. Among
them are Lyapunov function method [1,2,3], master stability function method [4] and constriction method [5].
In [6,7,8,9,10], mode decomposition method was used in studying two and above coupled systems. In this paper
we use this method to investigate a generally coupled systems, sufficient conditions for synchronization of the
coupled systems as well as numerical simulations are obtained.

2. SYSTEMS UNDER STUDY

We consider systems coupled byN identical cells with mass exchange, the reaction of these cells are illustrated
in Figure 1.

Suppose every cell has m different substances. The substances in a cell satisfies following equation:
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dx

F x
dt
� � (1)

where x� Rm. Suppose cells are linearly coupled, the coupled systems are:
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Dj � Rm×m (1 � j � N)) and � is circular matrix [11]. Notice that equation (2) can be written simply as:
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�  and I is identical matrix of order m. If mass exchange between cells are

conservative, we may suppose:

1

(zero matrix)
N

j
j�

� ��� � (4)

This condition is called conservative condition. Next we consider synchronization of the coupled systems (2).
The starting point in this analysis is the linearized systems of (2) about the synchronized state s(t). This leads to
a set of linear variational equations given by:

� �dW
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dt
� � � � (5)

where � = diag (A, A, …, A) and A ( )� �A DF s  Let 
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Figure 1: A Network of Six Coupled Cells, here, D
j
 ( j = 1, 2, … 6) is the Matrix Governing the Coupled Cells
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then we can proof

1
1( ) ( ( ) ( ))Ndiag d I d I� � � � � � � � �� � � � (6)

where 1
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�
� � ��� �  From the conservative condition, we have d(�1) = d(1) = �. Because the matrix

� + � is similar with a block matrix, that is, there exists a real invertiable matrix �, such that
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where � is a real matrix. To simplify the analysis we divide the problem into two cases.

Case 1: N = 2K + 1. Define two functions of m × m matrix:

1 2 3

2 3

( ) cos cos2 cos( 1)

( ) sin sin2 sin( 1)
R N

I N

N

N

� � � � �� �� � � ��
� � �� �� � � �

� � � � � �

� � � �

�

�

and two functions of Nm × m matrix:

( ) ( cos cos2 cos( 1) )

( ) ( sin sin2 sin( 1) )

t
R

t
I

I I I I N

I I I N

� � � �� �� � � � �

� � � �� �� � � � �

�

� �

�

�

where t means transition of matrix. Now we can express � and � as,
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where �j = 2�j/(2K+1) and 1 � j � K.

Case 2: N = 2K. Similarly, we have:
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I, …, I, –I)t.

By using above results we can apply mode decomposition to variational equations (5), that is, it can be
decoupled by independent variables. On the other hand, recall next useful inequality [8]:
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where � and � are minimum and maximum eigenvalues of the symmetric part of ��+ �. Then the decoupled
variational equations are given by:

ks
dU

J U
dt

� � (9)

where 0 � k � [N/2], ( ) ( )
2

T
R k R k

ksJ � � �� � � .

Obviously, the stability of zero solutions of these systems governs the stability of the synchronous state. The
k = 0 mode decides motion on the synchronization manifold, it does not contribute to the stability of the

synchronous state since the Floquet multiplier is 1. Let ( )
max
k�  denotes the maximum eigenvalue of Jks and let

( )
max max

1 [ 2]
max k

k N� � �
� � � . Then the sign of �max decides the stability of the synchronous state, that is, if �max < 0, the

synchronous state is stable; if �max > 0, it is unstable.

3. APPLICATION

3.1 Coupled Brusselator Systems

Consider three coupled Brusselator systems corresponding to systems (2) we have:
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where the single Brusselator system is:
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where parameters a > 0 and µ > 0.

The steady state of the single Brusselator model is E = (a, µ/a). As well known, for µ > a2 + 1, it has only one
limit cycle [9] and for (a – 1)2 < µ � a2 + 1, the steady state is stable.

From above section we know the stability of the synchronous state can be determined by the stability of
zero solutions of the following equations:
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To make the numerical simulation simple, we choose 2 3
1 0

0 0
D D d

� �
� � �� �

� �
 Notice that for µ > a2 + 1, the single

limit cycle of Brusselator is contained in a bounded square, suppose the domain is {( ) }x y x m y m� � � � � �� �� �� .

So to make the maximum eigenvalue of J1s or J2s is less than zero, for parameter d, we have a sufficient condition

( 1)
3

md � ��� . The numerical simulation in Figure 2. shows this conclusion.

Figure 2: Synchronization of Three Coupled Brusselator Systems. The First Variable via Time t,
where µ = 3, a = 1 and d = 5.0

3.2 Coupled Lorenz Systems

Now we consider four coupled Lorenz systems. Relating to systems (2) we choose:
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The single Lorenz system is
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where a > 0, b and c are parameters.

To guarantee the stability of the synchronous state, according to above section we consider the following three
independent equations:
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The stability of zero solutions of these systems governs the stability of the synchronous state. For the numerical

simulation we choose 3 4
1 0

0 0
D D d

� �
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� �
 D2 = 2D4. From the conservative condition we have: D1 = –4D3. It is

well known for parameters a = 10, b = 8/3, c = 28, the attractor of Lorenz systems ( )dx
dt

f x� , is contained in a
bounded domain :{(x, y, z) � R3 � x2 + y2 + (z – a – c)2 � b2 (a + c)2/(4(b–1))} [14]. So to make the maximum

eigenvalues of J1s, J2s and J3s less than zero, for parameter d, we have a sufficient condition: ( )
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b
d �

�
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The numerical simulation illustrates this conclusion in Figure 3.

Figure 3. Synchronization of Four Coupled Lorenz Systems. LEFT: The First Variable via Time t  in the First Lorenz

Systems of the Four Coupled Systems ; RIGHT: Error: 
4 4

2
1 1
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/4i j
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x x
� �

� � � � ��� , where a = 10, b = 8/3, c = 28, d = 50
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4. CONCLUSIONS

Based on mode composition, we have derived a set of sufficient conditions on the stability of synchronous
states in coupled systems including chaotic and non-chaotic systems. Such an approach can be applied to cases
of various couplings, such as linear or nonlinear coupling, partial or global coupling, time-dependent or time-
independent coupling and star-type coupling. Finally, it can be also straightforwardly applied to different types
of neural network systems, interconnected physical or chemical systems, etc, so as to determine synchronizing
behaviors and collective phenomena.
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