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Abstract. A survey of well- and less-known properties of almost periodic func-
tions is given. A class of abstract evolution equations is shown for which the use of
classical Fourier method is justified, all solutions are almost periodic in the energy
space and under an additional assumption all one-dimensional non-zero projections
are uniformly oscillatory: “observation” of the solution is an oscillatory function with
a uniform oscillatory time.
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1. Introduction

Any linear combination of periodic functions with the same period is again a periodic
function. On the other hand (see [8]), the sum of two continuous periodic functions
with different periods is a periodic function if and only if their primitive periods are
commensurable (linearly dependent over Z, Z is the set of all integers). (The primitive
period is the smallest positive period – an arbitrary non-constant continuous periodic
function has its primitive period, but this is not true in general for discontinuous
functions.) Hence, the set of all continuous periodic functions with non-prescribed
periods is not a linear space. This great inconvenience is one of reasons which moti-
vated mathematicians to introduce almost periodic functions (see [7], [12]). Inspired
by earlier results of P. Bohl and E. Esclangon Harald Bohr developed (in the twen-
ties of the last century) the theory of almost periodic functions as a generalization of
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pure periodicity. He ingeniously generalized two concepts: the period to the so-called
almost period and the regular distribution of periods to the so-called relative density
of almost periods.

A subset E ⊂ R is called relatively dense if there exists a number ℓ > 0, the
so-called including length (of the relative density), such that for any a ∈ R it holds
E ∩ [a, a + ℓ] 6= ∅. (For example, an increasing bi-infinite sequence {sm}m∈Z is
relatively dense if and only if {sm+1 − sm}m∈Z is bounded. For instance, for any
T 6= 0 the set ZT = {mT | m ∈ Z } is relatively dense.)

Let t 7→ u(t) be a real function defined on R, u : R → R, and ε > 0. A real number
τ is called ε–almost period of the function u if the inequality |u(t + τ) − u(t)| ≤ ε

holds for any t ∈ R.
A continuous function u : R → R is said to be almost periodic (due to Bohr) if for

any ε > 0 the set T (u, ε) of all ε–almost periods of the function u is relatively dense.
Solomon Bochner generalized quite another property of continuous periodic func-

tions on R and obtained surprisingly the same class of functions. (Let u be a contin-
uous periodic function with a positive period T . If {sn} is an arbitrary sequence of
numbers then to any n ∈ N there exists an integer mn such that sn +mnT ∈ [0, T ].
Since any bounded sequence contains a convergent subsequence there exists a sub-
sequence {snk

+ mnk
T } which converges to s0 ∈ [0, T ]. Using now the uniform

continuity of the function u on R (this follows from the uniform continuity on the
compact interval [0, T ] and the periodicity) we get easily that the sequence of func-
tions {u(t + sn)}, the so-called sn–shifts of the function u, contains a subsequence
which converges uniformly on R. This property of continuous periodic functions be-
came starting point for Bochner to define the so-called normal functions. Later these
functions were shown to be just the almost periodic functions in the sense of Bohr.)
The original definition due to Bochner of almost periodic functions has been adapted
for abstract functions with values in a Banach space. Let X be a Banach space with
the norm | · |. The symbol CB(X) denotes the Banach space of all continuous and
bounded functions u : R → X, t 7→ u(t), with the norm ||u|| = supt∈R

|u(t)|.
By the Bochner transform of a function u : R → X we mean the function ũ that

to each s ∈ R assigns s–shift of the function u, i. e.

s 7→ ũ(s) = u(· + s).

In particular: if u ∈ Y = CB(X) then ũ ∈ CB(Y).
A function u ∈ CB(X) is said to be almost periodic (due to Bochner) if the range

of its Bochner transform

ũ(R) =
⋃

s∈R

{ũ(s)}
(

=
⋃

s∈R

{u(· + s)}
)

is relatively compact in CB(X), i. e. any sequence {sn} ⊂ R contains a subsequence
{snk

} such that the sequence of shifts {u(· + snk
)} is uniformly convergent on R.

The Bohr definition can of course be made with any abstract continuous function
u : R → X as well but the Bochner definition is preferable in applications. Alain
Haraux [20] proved that in the Bochner definition instead of sequences of arbitrary
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s–shifts it is sufficient to take sequences of such s–shifts where s belongs only to a
relatively dense set (in the sense of Bohr) E. As a consequence the following assertion
(which is a generalization of a criterion in [1], p. 10) can be obtained and its direct
use is convenient in applications (see e. g. [20] for an extraordinarily simple proof
of almost periodicity of bounded solutions of the autonomous system of ordinary
equations u̇+Au = 0).

Let E ⊂ R be a relatively dense set and ϕ : R+ → R+ be a continuous function,
ϕ(0) = 0. Let u ∈ CB(X). Then u is almost periodic provided that the following
assumptions are fulfilled:

(i) u(E) =
⋃

t∈E

{u(t)} is relatively compact in X and

(ii) sup
t∈R

|u(t+ τ) − u(t+ σ)| ≤ ϕ(|u(τ) − u(σ)|) for all (τ, σ) ∈ E × E.

2. Properties of almost periodic functions

The set of all almost periodic functions u : R → X contains the set of all continuous
periodic functions, moreover, it is a linear space (the smallest with such a property)
and it is closed with respect to the uniform convergence on R. This space is usually
denoted by the symbol AP (X), it is a linear closed subspace in the Banach space
CB(X).

Any u ∈ AP (X) is uniformly continuous on R and its range u(R) is relatively
compact in X. An interesting question is when an almost periodic function is a
periodic one. Any continuous periodic function has a compact range, however, the
compactness of the range of an almost periodic function does not ensure the periodicity
in general (examples are given in [13], [19]), but the affirmative case happens for some
classes of functions (such as trigonometric polynomials of the second degree, see [10]).
It is a remarkable fact that continuous periodic functions are characterized among
almost periodic functions as functions for which the Bochner transform has a compact
range (see [5], [19]). Another necessary and sufficient condition for an almost periodic
function to be periodic is that its primitive including length is finite (see [9] for more
details).

A function u : R → X is called weakly almost periodic if for any w from the dual
space to X the real-valued function t 7→ 〈w, u(t)〉 is almost periodic. Any weakly
almost periodic function is weakly continuous and its range is bounded. An almost
periodic function is weakly almost periodic and a weakly almost periodic function is
almost periodic if and only if its range is relatively compact in X (see [15]). In contrast
to the uniform continuity of any almost periodic function there exists a weakly almost
periodic function with discontinuities of the second kind at all rational points in R

(see [11]).
Another interesting question is the possibility of the uniform approximation on R

of an almost periodic function by continuous periodic functions. It turns out (see [6])
that with arbitrary accuracy only a very narrow class of almost periodic functions can
be approximated (the so-called functions with one-point basis). A fundamental result
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on approximation (essentially due to Bochner) says that if X is a real Hilbert space
then to any almost periodic function there corresponds a sequence of trigonometric
polynomials (the so-called Bochner-Féjér polynomials) uniformly convergent on R to
the function. Thus, almost periodic functions are precisely those functions that can
be uniformly on R approximated by trigonometric polynomials.

It follows easily from the Bochner definition that any almost periodic function
is uniformly recurrent. Recall that a continuous function u : R → X is uniformly
recurrent if there exists a sequence τn → +∞ such that the sequence {u(t + τn)} is
uniformly convergent on R to u(t). As a consequence we obtain the so-called Poisson
stability of an almost periodic function: for any t ∈ R we have limn→+∞ u(t+ τn) =
limn→+∞ u(t−τn) = u(t). A further consequence: any almost periodic function which
has a limit for t→ +∞ or −∞ is necessarily a constant function.

For any u ∈ AP (X) there exists M(u) ∈ X, the so-called mean value of u, such
that

lim
T→+∞

sup
s∈R

∣

∣

∣

∣

∣

1

T

∫ s+T

s

u(t) dt−M(u)

∣

∣

∣

∣

∣

= 0.

Any real-valued non-constant almost periodic function oscillates about its mean
value. In particular, if u ∈ AP (R) is non-constant with the mean value zero then u is
an oscillatory function (u oscillates about zero), i. e. there exists a positive constant
Θ, the so-called oscillatory time, such that the function u assumes both positive and
negative values in any interval J ⊂ R the length of which is greater than Θ (for such
functions in differential equations see e. g. [24] – [35]). In fact, a more precise result
holds true (see [14]): there exist two positive constants δ and Θ such that in any
interval [a, a+ Θ] there are two disjoint closed subintervals J+

a and J−
a of length 2δ

such that

u(t) ≥ ||u+||
2

, t ∈ J+
a , u(s) ≤ −||u−||

2
, s ∈ J−

a ,

where

u+(t) =
|u(t)| + u(t)

2
, u−(t) =

|u(t)| − u(t)

2
, t ∈ R.

Hence, classical oscillatory properties of continuous periodic functions with the mean
value zero remain valid for real-valued almost periodic functions with the mean value
zero. Several other properties of continuous periodic functions are shared by almost
periodic ones: even though almost periodicity is a typical global property, an almost
periodic function is known, roughly speaking, whenever we identify this function on an
interval of finite (including) length. This is a similar property, but some properties
can be quite different, for example, there exists a vector almost periodic function
u ∈ AP (C4), (C is the set of complex numbers), which is one-to-one (see [6]).

Once we know that a function is almost periodic we have a great deal of properties
at our disposal. The theory of abstract almost periodic functions turns out to be an
efficient tool for the study of differential equations both ordinary and partial (see [1],
[4], [34], a series of papers of Haraux and many others). The importance of almost
periodic solutions is stressed by the fact that they often appear as “asymptotic parts”
of solutions in rather very general situations (see e. g. [3], [18]).
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3. Selfadjoint extensions of symmetric operators

Let H be a real Hilbert space with the scalar product 〈·, ·〉 and the norm | · |.
Let L : DL ⊂ H → H be a linear densely defined operator which is symmetric

(the adjoint operator L∗ extends L) and bounded below (by a constant γ), i. e. it
holds

〈Lu, v〉 = 〈u, Lv〉, u, v ∈ DL,

〈Lu, u〉 ≥ γ|u|2, u ∈ DL.

If γ = 0 (γ > 0) the operator L is called non-negative (positive definite). To the oper-
ator L one associates the so-called energy space HL that is defined by the completion
of DL in the so-called energy norm | · |L:

〈u, v〉L = 〈Lu, v〉 + µ〈u, v〉, |u|2L = 〈u, u〉L, u, v ∈ DL,

where µ is chosen such that µ+ γ > 0.
The properties of the energy norm make it possible to identify the energy space

HL with a subspace of H and also to define HL equivalently as HL = {u ∈ H | ∃un ∈
DL, un → u in H, |un − um|L → 0}. The energy space HL is a Hilbert space with
the scalar product given by the formula 〈u, v〉L = lim〈un, vn〉L, u, v ∈ HL, with the
evident meaning of un and vn. (Various µ satisfying µ+ γ > 0 give rise to the same
space HL with equivalent norms.)

In general, a symmetric operator cannot be extended to a selfadjoint operator. In
case of bounded below operators such an extension is possible, though. In this case
the extension is not determined uniquely in general and the most important among
them is the operator defined by the formula

D
L̂

= HL ∩ DL∗ , L̂u = L∗u.

The operator L̂ is selfadjoint and it is called the Friedrichs extension of the operator
L. Two properties are significant:

• L̂ is the unique selfadjoint extension the domain of which is contained in HL;

• L̂ is bounded below (by the same constant as L).

The operators L and L̂ have the same energy spaces, HL = H
L̂
.

Let L : DL ⊂ H → H be a linear densely defined operator. Let us assume that

L is symmetric; (3.1)

L is non-negative; (3.2)

the energy space HL of the operator L is compactly embedded in H, (3.3)

(i. e. the unit ball in HL is relatively compact in H);
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the null-space of the operator L∗ is trivial, NL∗ = {0}, (3.4)

(i. e. if v ∈ H and 〈Lu, v〉 = 0 for all u ∈ DL, then v = 0).

Then the operator L is positive definite. Moreover, L is essentially selfadjoint, i. e.
its closure L̄ is selfadjoint (cf. [26]) and since any essentially selfadjoint operator has
only one selfadjoint extension we have L̂ = L̄.

(Note, that the assumption NL∗ = {0} cannot be replaced by NL = {0}.)
For selfadjoint bounded below operators the following equivalence holds true: L̄

has a compact resolvent if and only if the energy space HL̄ is compactly embedded in
H . Thus, L̄−1 is a self-adjoint compact operator in H and using elementary spectral
theory of self-adjoint compact operators in a Hilbert space (of non-finite dimension)
we get that there exists a complete orthonormal set in H of eigenvectors {vk}∞k=1

of
the operator L̄ with the corresponding eigenvalues {λk}∞k=1

(listed according to their
multiplicities),

0 < inf
v∈DL

v 6=0

〈Lv, v〉
|v|2 = λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · and λk → ∞ as k → ∞.

If we identify H with its dual H∗ and H∗ with a subspace of the dual H∗
L of the

energy space HL we get HL →֒ H →֒ H∗
L, both embeddings are continuous and dense

and it is correct to denote the duality pairing on H∗
L×HL by the same symbol 〈·, ·〉 as

the scalar product in H . In addition to be an unbounded operator in H the operator
L̄ is an isomorphism of HL on H∗

L.

4. Oscillatory properties of energy solutions

Under the assumptions (3.1) – (3.4) we have (by [1]): for any ϕ ∈ HL and ψ ∈ H

there exists a unique function u : R → HL (energy solution) such that

u ∈ C(R; HL) ∩ C1(R; H) ∩C2(R; H∗
L),

ü+ L̄u = 0, t ∈ R, u(0) = ϕ, u̇(0) = ψ.

Moreover, the law of conservation of energy holds:

|u(t)|2L + |u̇(t)|2 = |ϕ|2L + |ψ|2, t ∈ R,

and the function t 7→ u(t) is almost periodic in HL and t 7→ u̇(t) is almost periodic in
H. Both functions u and u̇ have the mean value zero. The solution can be expressed
in the form of the Fourier series with respect to the complete orthonormal set {vk}∞k=1

:

u(t) =

∞
∑

k=1

[

ϕk cos(
√

λkt) +
ψk√
λk

sin(
√

λkt)
]

vk, ϕk = 〈ϕ, vk〉, ψk = 〈ψ, vk〉,

the series converges in H uniformly in t and the same is true for the series arising by
differentiating term-by-term with respect to t or multiplying term-by-term by

√
λk.
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In fact, the assumptions (3.1) – (3.4) justify the use of the well-known Fourier
method when solving initial-boundary value problems for classical partial differential
equations. Notice the advantage of the approach: the selfadjointness and positive
definiteness need not be verified, it is enough to assume (more easily verifiable) sym-
metricity and non-negativity of the operator (cf. [26]).

Any solution u : R → HL is also weakly almost periodic (with the mean value
zero) and consequently the non-zero functions 〈w, u(t)〉, w ∈ H∗

L, are oscillatory, but
no uniformity with respect to w (and u) of the oscillatory time is guaranteed. In
fact, these one-dimensional projections are uniformly oscillatory under an additional
assumption on the growth of eigenvalues {λk}∞k=1

, which is introduced (following [22])
in the next theorem.

Theorem. Let the assumptions (3.1) – (3.4) be satisfied and, moreover,

∞
∑

k=1

1√
λk

< +∞ . (4.1)

Then for any w ∈ H∗
L either t 7→ 〈w, u(t)〉 ≡ 0 on R or t 7→ 〈w, u(t)〉 is uniformly

oscillatory with the uniform oscillatory time

Θ = 2π

∞
∑

k=1

1√
λk

.

The proof relies on the above representation of the solution in the form of a Fourier
expansion and on results of Haraux-Komornik [23] modified in the sense suggested in
Haraux [22]. In the first step of the proof we obtain the implication: 〈w, u(t)〉 ≥ 0 on
J , where |J | > Θ, then 〈w, u(t)〉 ≡ 0 on J . In the second step we get 〈w, u(t)〉 ≡ 0 on
R.

(The theory does not provide results for the wave equation: the semilinear wave
equation in one space dimension and the oscillating character of the function t 7→
u(t, x) for fixed x is dealt with in [2], [22].)

In conclusion we mention the application to the equation of simply supported
Euler-Bernoulli beam (see [22], also for another example):

∂2
t u+ ∂4

xu+ p(x)u = 0, t ∈ R, x ∈ (0, ℓ),

u(t, 0) = ∂2
xu(t, 0) = 0, u(t, ℓ) = ∂2

xu(t, ℓ) = 0, t ∈ R.

Here H = L2(0, ℓ), Lv = v′′′′ + p(x) v, v(0) = v′′(0) = 0, v(ℓ) = v′′(ℓ) = 0, p ∈
L∞(0, ℓ) non-negative, HL = W 2

2 (0, ℓ)∩
◦

W 1
2 (0, ℓ), Θ = 1

3
πℓ3 (namely, the eigenvalues

λk are simple and by the Courant-Fischer principle λk ≥ νk, where νk =
(

kπ
ℓ

)4
are

eigenvalues of the operator L with p ≡ 0, and
∑∞

k=1

1

k2 = π2

6
.) The result can be

applied to

〈w, u(t)〉 =

j0
∑

j=1

αj u(t, xj) +

k0
∑

k=1

βk u(t, yk),
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where x1, . . . , xj0 , y1, . . . , yk0
∈ (0, ℓ) and α1, . . . , αj0 , β1, . . . , βk0

∈ R are arbi-
trary.
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Portugaliæ Matematica 44 (3) (1987) 253–259.

[20] A. Haraux, A simple almost periodicity criterion and applications. J. Differential
Equations 66 (1987) 51–61.

[21] A. Haraux, Quelques propriétés des séries lacunaires utiles dans l’étude des vi-
brations élastiques. Publ. Lab. Anal. Num. R88011, 12 pp.

[22] A. Haraux, Strong oscillatory behavior of solutions to some second order evolu-
tion equations. Publ. Lab. Anal. Num. R94033, 10 pp.

[23] A. Haraux, V. Komornik, Oscillations of anharmonic Fourier series and the wave
equation. Rev. mat. ibero-americana 1, 4, (1985), 57–77.

[24] A. Haraux, E. Zuazua, Super-solutions of eigenvalue problems and the oscilla-
tion properties of second order evolution equations. J. Differential Equations 74
(1988), 11–28.

[25] L. Herrmann, Periodic solutions of abstract differential equations: the Fourier
method. Czechoslovak Mathematical Journal 30 (1980) 177–206.

[26] L. Herrmann, A study of an operator arising in the theory of circular plates.
Apl. Mat. 33 (1988) 337–353.

[27] L. Herrmann Optimal oscillatory time for a class of second order nonlinear dis-
sipative ODE. Applications of Mathematics 37 (1992) 369–382.

67



52 L. Herrmann

[28] L. Herrmann, Evolution equations, energy spaces, almost periodic solutions.
(Czech.) In: Mathematics at Universities IV, Ed. L. Herrmann, Union of Czech
Mathematicians and Physicists, 2001, 71–74, ISBN 80-01-02367-2.

[29] L. Herrmann, Oscillations for a strongly damped semilinear wave equation.
Proc. 6th Inter. Conf. APLIMAT 2007 Part II, ed. M. Kováčová, Fac. Mech. Eng.,
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