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Abstract. The purpose of this work is to give stability regions in the set of param-
eters for a linear delay differential equation z'(t) = —Ax(t) — bz(t — 7), where A is a
2 x 2 real constant matrix, b is a real number and 7 is a positive number.
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1. Introduction
We consider a linear delay differential equation with two coefficients and one delay
7' (t) = —Az(t) — Bx(t — 1), (1.1)

where A and B are 2 x 2 real constant matrices and 7 is a positive number. The
stability problem of Eq. (1.1) depends on the location of the roots of its associated
characteristic equation

F(\) =det(A\ + A+ Be ) =0, (1.2)

where [ is the 2 x 2 identity matrix. It is well-known (see, e.g., [4] or [8]) that the zero
solution of Eq. (1.1) is asymptotically stable if and only if all the roots of Eq. (1.2)
have negative real parts.
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In the scalar case, Eq. (1.1) is expressed as
2/ (t) = —az(t) — bx(t — 1), (1.3)
where a and b are real numbers. Then the following two results are known.

Theorem A. ([5]) The zero solution of Eq. (1.3) is asymptotically stable if and only
if
a+b>0 and a> @),
where the curve a = o(b) is given parametrically by the equation
w w

™
a=— , b= — , O<w< —.
tanwt sSin w7 T

Theorem B. ([1], [2]) The zero solution of Eq. (1.3) is asymptotically stable if and
only if either

a+b>0 and V¥*—a?><0
or )
a+b>0, b>—a®>>0 and T<7&YCCOS(—E).
b2 — g2 b

Theorem A presents the stability region which means the set of all (a,b) in which
the zero solution of Eq. (1.3) is asymptotically stable, see Figure 1. On the other
hand, Theorem B gives delay-dependent and delay-independent stability criteria for
Eq. (1.3).

In case A = al, where a is a real number, Eq. (1.1) is expressed as

2'(t) = —az(t) — Bx(t — 7). (1.4)
Then the following two results corresponding to Theorems A and B are obtained.

Theorem C. ([7]) Let bet™ be eigenvalues of B where b and 6 are real numbers
with 0 < |0| < /2. Then the zero solution of Eq. (1.4) is asymptotically stable if and

only if

a > ¢(b),
where the curve a = @(b) is given parametrically by the equation
w b w T — 6] e 6]
- _ _ = - w < —.
tan(wr — 16])’ sin(wr —16])’ T T

Theorem D. ([6]) Let be™ be eigenvalues of B where b and 6 are real numbers
with 0 < |0] < /2. Then the zero solution of Eq. (1.4) is asymptotically stable if and
only if either

a+bcosd >0 and b —a?><0

or

b
a+bcosf >0, b*—a*>0 and T<M{arccos(—g)—|9|}.
b2 — g2 b
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Fig. 1 Stability region for Eq. (1.3) Fig. 2 Stability region for Eq. (1.4)
with 7 =1 with 7 =1 and 6 = 7/4

The purpose of this work is to give the exact stability region for Eq. (1.1) with
B = bl, where b is a real number, that is,

2'(t) = —Az(t) — bx(t — 7). (1.5)

Note that the asymptotic stability of Eq. (1.5) is invariant under a constant invertible
linear transfomation. Throughout the work, we only consider Eq. (1.5) where the
matrix A has complex eigenvalues, that is,

sinf  cos@

auwz—aC“e _Wﬁ)ﬂw—m@—ﬂ, (1.6)
where a and 0 are real numbers with 0 < |0| < 7/2. The following is our main result.
Theorem 1.1. Let |§| = w/2. Then the zero solution of Eq. (1.6) is asymptotically
stable if and only if either

™

b
0< <27’

and |a| € {0}UI(b) U1 (D)UI(b)U--- (1.7)

or

—§<b<0am la| € Jo(b) U Jy(b) U Jo(b) U - - , (1.8)
-
where I, (b) and Ji(b) are intervals defined by

B i [k -1)m (4k + 1)m B
Io(b)_(o,zT b), Ik(b)_< b b), k=12, ...,
4k +1 4k + 3
Jio(b) = (4k + )m oy Uk L . k=0,1,2,....
27 2T
respectively.
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Fig. 3 Stability region for Eq. (1.6) with 7 =1 and 6 = 7/2
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Fig. 4 Stability region for Eq. (1.6) Fig. 5 Stability region for Eq. (1.6)
with r=1and =0 with 7 =1 and 6 = 7/10

Theorem 1.1 shows that if 0 < |b] < w/(27) and |6] = 7/2, then stability switches
in Eq. (1.6) appear as a varies monotonously, see Figure 3.
To our regret, we can not yet find the exact stability region for Eq. (1.6) with
0 < 0] < 7/2; however, we believe that Figures 4 through 7 illustrate the stability
regions for Eq. (1.6). The boundaries of the regions are given parametrically by the
equation
W CoSwT wcosf I — |6

o — b -
“ sin(wt + 10])’ sin(wt + 10])’ w#

3
T

where [ is an integer, which are also found by D-decomposition method; see, e.g., [3].
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Fig. 6 Stability region for Eq. (1.6) Fig. 7 Stability region for Eq. (1.6)
with 7 =1 and 0 = 7/4 with 7 =1 and 0 = 7/(2.1)

2. Proof of Main Result

The characteristic function F'(A) for Eq. (1.6) becomes
F(\) = (A +acosf +be >7)? 4 (asinf)?
= (A4 acos|f] + be )% — (iasin|f])?
= (A4 acos|f] + be " + iasin|0]) (A + acos|d| + be~ " — iasin|d|)
= FNFO),
where f(A) is a function defined by
FOA) =X+ ael? 4 pe 7,

Taking note that f(A) = 0 implies f(\) = 0, one can easily see that the following
proposition holds.

Proposition 2.1. The zero solution of Eq. (1.6) is asymptotically stable if and only
if all the roots of f(A) =0 have negative real parts.

To prove our main theorem, we deal with the case where |0] = /2. Since F(\) =
(A +i|a| +be ) (X —i|a| + be~*7), it suffices to investigate the location of roots of

A +ilal + be™ = 0. (2.1)

First, we will determine the value of b at which Eq. (2.1) has roots on the imaginary
axis. Note that A = 0 is not a root of Eq. (2.1) if @ # 0. Substituting A = iw into
Eq. (2.1), we have iw + i|a| + be =7 = 0, or, equivalently,

becoswr =0 and bsinwr =w + |al. (2.2)
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For simplicity, let w,f and bfm (j =0,1;n,m =0,1,2,...) be real numbers defined
by

w+:(2n—|—1)7r b :(4m—|—1)ﬂ'+a bt :_(4m+1)ﬂ'_a
" 27 »om 27 ’ Lm 27 ’
_ 2n+ )7 _ (4dm+ ) _ (4m +3)7
S ot et KL S Gl L e LI S oL ML
“n 27 rom 27 @ Lm 27 to,

respectively. Then we obtain the following lemma by (2.2).

Lemma 2.1. Suppose that a > 0 and b # 0. Let A = iw be a root of Eq. (2.1) where
w s a nonzero real number. Then the values of w and b are expressed as

b+ — .t
w=w b= i’m (w wim) n,m=20,1,2,...
bl,m (W:W2m+1)
or
w=uw = nm=0,1,2,....

bl_m (w = w2_m+1)

. { by (@ = W)

Conversely, if b = bfm (j=0,1;,m=0,1,...), then iwfmﬂ- are roots of Eq. (2.1).
Next, we will observe how the roots of Eq. (2.1) on the imaginary axis move as

|b| increases. Clearly, if b = 0, Eq. (2.1) has the only root —ila|. Let I and Jj be

intervals defined by I, = I;(0) and J, = Ji(0), that is,

2_7;) 5 ((4k2—Tl)7r, (4k;—Tl)7r>7 oo <(4k2+T1)7T7 (4k2+73)w)'

Iy = (0,

Lemma 2.2. Fork=0,1,2,..., the following three statements hold:

(i) If a € I}, then the root —ia moves in the left-half plane (resp. in the right-half
plane) as b increases from 0 (resp. decreases from 0).

(i) If a € Ji, then the root —ia moves in the right-half plane (resp. in the left-half
plane) as b increases from 0 (resp. decreases from 0).

(iii) If a = (2k + 1) /(27), then the root —ia moves in the right-half plane as |b|

increases from 0.

Proof. Taking the derivative of A with respect to b on Eq. (2.1), we have

d\ —AT —AT
_— = — ¢ — = — € R P} (2'3)
db 1—bre=?" 1+7(A+ia)

which implies
Re =Re(—€"T) = —
e = Re(—e = —cosar.

A=—ia
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This shows the assertions (i) and (ii). To verify the assertion (iii), we need the sign

of Re fTﬁ‘ \—_ i 1t follows from (2.3) that

d?\ e 22 {24+ 7(\ +ia)}

a2~ {I+r(A i)}
which yields
d2—/\ = —27e?%T = —27(cos 2at + isin 2a7)
| T =27 T 7).
Hence, if a = (2k + 1)7/(27), then Re 2 |)\:_ia =0 and Re lfTé‘)\:—ia =27 > 0. This
shows the assertion (iii). [

Lemma 2.3. Ifa > 0 and b # 0, then the roots iw;> move in the right-half plane as
|b| increases.

Proof. By (2.3) and the relation e=*" = —(\ +ia)/b, we have

Re dX ~ Re i(w+ a) B T(w +a)?
db|,_,,  bl+it(w+a)} b1+ 72(w+a)?}
which implies the assertion of this lemma. 0

Now, we are in a position to present necessary and sufficient conditions for the
roots of Eq. (2.1) have negative real parts.

Proposition 2.2. Let a > 0 and b > 0. Then all the roots of Eq. (2.1) have negative
real parts if and only if either

2% 4k +1 Ak +1
Mt BRI 0cr < WEEDT 010, ) (24)
T 2T 2T
or
4k —1 2% 4k —1
BEoDm BT g o< BT L i—012,..). (25)
2T T 2T

Proof. For b > 0, v(b) denotes the number of the roots of Eq. (2.1) whose real parts
are positive. Our argument is divided into two cases.

Case (I): a € I (k = 0,1,2,...). Lemma 2.2-(i) shows v(b) = 0 for b > 0
sufficiently small by the continuity of the roots with respect to b. By Lemma 2.1, if
the positive number b is given by

bom (m=0,1,2,...), by, (m=kk+1,..) or by, (m=0,1,...k=1),

then Eq. (2.1) has roots on the imaginary axis.
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Subcase (I-a): 2km/7 < a < (4k + 1)m/(27) (k =0,1,2,...). The number by, is
the positive minimum value of bg: m» bo.m and by ., because

Ak +1 2%
bgjo—b&k_lJra—{u—a}_——ﬁ+2a>0,

2T 2T T

o, fker )

4k
- — b, = = —— > .
bir_1—box o o - +2a >0

This, together with Lemma 2.3, implies v(b) = 0 if b € (0,b5,); v(b) > 1 if b €

(bak, 00).
Subcase (I-b): (4k — 1)m/(27) < a < 2km/7 (k= 1,2,...). The number b, , , is
the positive minimum value of baf m» bo.m and by . because
_ ™ 4k — 1)m 2k
b(J)r,O_bl,k—l = 2_T+a_ {—T+a} = T >O,
_ _ (4k + 1)m 4k — 1) Ak
bo,k_bl,k—1:727_ —a— T +a :T—2a>0.

This, together with Lemma 2.3, yields v(b) = 0 if b € (O,bik_l); vib) > 1ifb €
(bl_,k—lv 00).

Case (II): a € J or a = (2k + 1)w/(27) (k = 0,1,2,...). Lemma 2.2-(ii) or
2.2-(iii) shows v(b) = 1 for b > 0 sufficiently small, which, together with Lemma 2.3,
implies v(b) > 1 if b € (0, c0).

By virtue of the preceding argument and Lemma 2.1, we therefore conclude that
under a > 0 and b > 0, all the roots of Eq. (2.1) have negative real parts if and only
if either the condition (2.4) or (2.5) holds. This completes the proof. O

The following result is analogous to Proposition 2.2. The proof is carried out in
a similar way to that of Proposition 2.2 and will be omitted.

Proposition 2.3. Let a > 0 and b < 0. Then all the roots of Eq. (2.1) have negative
real parts if and only if either

Ak +1 2%k + 1 Ak +1
Whtr @kt Dr oy GEEDT (k=0,1,2,...) (2.6)
2T T 2T
or
2% + 1 Ak + 3 4k + 3
ug&% and —(2&+a<b<o (k=0,1,2,...). (2.7)
T T T

Finally, we will prove our main theorem.

Proof of Theorem 1.1. In case a = 0, Eq. (1.6) with || = 7/2 is reduced to

2/ (t) = —bx(t — 1) (2.8)
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and the condition (1.7) becomes 0 < b < m/(27), which coincides with the classical
stability criterion for Eq. (2.8). In case |a] > 0, we may assume a > 0. Then it is
easily seen that the condition (1.7) is equivalent to b > 0 and either the condition (2.4)
or (2.5) as well as the condition (1.8) is equivalent to b < 0 and either the condition

(2.6) or (2.7). These facts and Proposition 2.1 imply Theorem 1.1. U
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