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Abstract. The purpose of this work is to give stability regions in the set of param-
eters for a linear delay differential equation x′(t) = −Ax(t) − bx(t − τ), where A is a
2 × 2 real constant matrix, b is a real number and τ is a positive number.
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1. Introduction

We consider a linear delay differential equation with two coefficients and one delay

x′(t) = −Ax(t) − Bx(t − τ), (1.1)

where A and B are 2 × 2 real constant matrices and τ is a positive number. The
stability problem of Eq. (1.1) depends on the location of the roots of its associated
characteristic equation

F (λ) ≡ det(λI + A + Be−λτ ) = 0, (1.2)

where I is the 2×2 identity matrix. It is well-known (see, e.g., [4] or [8]) that the zero
solution of Eq. (1.1) is asymptotically stable if and only if all the roots of Eq. (1.2)
have negative real parts.
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In the scalar case, Eq. (1.1) is expressed as

x′(t) = −ax(t) − bx(t − τ), (1.3)

where a and b are real numbers. Then the following two results are known.

Theorem A. ([5]) The zero solution of Eq. (1.3) is asymptotically stable if and only
if

a + b > 0 and a > ϕ(b),

where the curve a = ϕ(b) is given parametrically by the equation

a = − ω

tanωτ
, b =

ω

sin ωτ
, 0 < ω <

π

τ
.

Theorem B. ([1], [2]) The zero solution of Eq. (1.3) is asymptotically stable if and
only if either

a + b > 0 and b2 − a2 ≤ 0

or

a + b > 0, b2 − a2 > 0 and τ <
1√

b2 − a2
arccos

(

−a

b

)

.

Theorem A presents the stability region which means the set of all (a, b) in which
the zero solution of Eq. (1.3) is asymptotically stable, see Figure 1. On the other
hand, Theorem B gives delay-dependent and delay-independent stability criteria for
Eq. (1.3).

In case A = aI, where a is a real number, Eq. (1.1) is expressed as

x′(t) = −ax(t) − Bx(t − τ). (1.4)

Then the following two results corresponding to Theorems A and B are obtained.

Theorem C. ([7]) Let be±iθ be eigenvalues of B where b and θ are real numbers
with 0 < |θ| ≤ π/2. Then the zero solution of Eq. (1.4) is asymptotically stable if and
only if

a > ϕ(b),

where the curve a = ϕ(b) is given parametrically by the equation

a = − ω

tan(ωτ − |θ|) , b =
ω

sin(ωτ − |θ|) , −π − |θ|
τ

< ω <
|θ|
τ

.

Theorem D. ([6]) Let be±iθ be eigenvalues of B where b and θ are real numbers
with 0 < |θ| ≤ π/2. Then the zero solution of Eq. (1.4) is asymptotically stable if and
only if either

a + b cos θ > 0 and b2 − a2 ≤ 0

or

a + b cos θ > 0, b2 − a2 > 0 and τ <
sgn (b)√
b2 − a2

{

arccos
(

−a

b

)

− |θ|
}

.
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Fig. 1 Stability region for Eq. (1.3)

with τ = 1
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Fig. 2 Stability region for Eq. (1.4)

with τ = 1 and θ = π/4

The purpose of this work is to give the exact stability region for Eq. (1.1) with
B = bI, where b is a real number, that is,

x′(t) = −Ax(t) − bx(t − τ). (1.5)

Note that the asymptotic stability of Eq. (1.5) is invariant under a constant invertible
linear transfomation. Throughout the work, we only consider Eq. (1.5) where the
matrix A has complex eigenvalues, that is,

x′(t) = −a

(

cos θ − sin θ
sin θ cos θ

)

x(t) − bx(t − τ), (1.6)

where a and θ are real numbers with 0 < |θ| ≤ π/2. The following is our main result.

Theorem 1.1. Let |θ| = π/2. Then the zero solution of Eq. (1.6) is asymptotically
stable if and only if either

0 < b <
π

2τ
and |a| ∈ {0} ∪ I0(b) ∪ I1(b) ∪ I2(b) ∪ · · · (1.7)

or
− π

2τ
< b < 0 and |a| ∈ J0(b) ∪ J1(b) ∪ J2(b) ∪ · · · , (1.8)

where Ik(b) and Jk(b) are intervals defined by

I0(b) =
(

0,
π

2τ
− b

)

, Ik(b) =

(

(4k − 1)π

2τ
+ b,

(4k + 1)π

2τ
− b

)

, k = 1, 2, . . . ,

Jk(b) =

(

(4k + 1)π

2τ
− b,

(4k + 3)π

2τ
+ b

)

, k = 0, 1, 2, . . . ,

respectively.
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Fig. 3 Stability region for Eq. (1.6) with τ = 1 and θ = π/2
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Fig. 4 Stability region for Eq. (1.6)

with τ = 1 and θ = 0
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Fig. 5 Stability region for Eq. (1.6)

with τ = 1 and θ = π/10

Theorem 1.1 shows that if 0 < |b| < π/(2τ) and |θ| = π/2, then stability switches
in Eq. (1.6) appear as a varies monotonously, see Figure 3.

To our regret, we can not yet find the exact stability region for Eq. (1.6) with
0 < |θ| < π/2; however, we believe that Figures 4 through 7 illustrate the stability
regions for Eq. (1.6). The boundaries of the regions are given parametrically by the
equation

a = − ω cosωτ

sin(ωτ + |θ|) , b =
ω cos θ

sin(ωτ + |θ|) , ω 6= lπ − |θ|
τ

,

where l is an integer, which are also found by D-decomposition method; see, e.g., [3].
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Fig. 6 Stability region for Eq. (1.6)

with τ = 1 and θ = π/4

-10 -5 5 10a

-10

-5

5

10
b

Fig. 7 Stability region for Eq. (1.6)

with τ = 1 and θ = π/(2.1)

2. Proof of Main Result

The characteristic function F (λ) for Eq. (1.6) becomes

F (λ) = (λ + a cos θ + be−λτ )2 + (a sin θ)2

= (λ + a cos |θ| + be−λτ )2 − (ia sin |θ|)2

= (λ + a cos |θ| + be−λτ + ia sin |θ|)(λ + a cos |θ| + be−λτ − ia sin |θ|)
= f(λ)f(λ̄),

where f(λ) is a function defined by

f(λ) = λ + aei|θ| + be−λτ .

Taking note that f(λ̄) = 0 implies f(λ̄) = 0, one can easily see that the following
proposition holds.

Proposition 2.1. The zero solution of Eq. (1.6) is asymptotically stable if and only
if all the roots of f(λ) = 0 have negative real parts.

To prove our main theorem, we deal with the case where |θ| = π/2. Since F (λ) =
(λ + i|a| + be−λτ )(λ − i|a| + be−λτ ), it suffices to investigate the location of roots of

λ + i|a| + be−λτ = 0. (2.1)

First, we will determine the value of b at which Eq. (2.1) has roots on the imaginary
axis. Note that λ = 0 is not a root of Eq. (2.1) if a 6= 0. Substituting λ = iω into
Eq. (2.1), we have iω + i|a| + be−iωτ = 0, or, equivalently,

b cosωτ = 0 and b sinωτ = ω + |a|. (2.2)
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For simplicity, let ω±
n and b±j,m (j = 0, 1; n, m = 0, 1, 2, . . .) be real numbers defined

by

ω+
n =

(2n + 1)π

2τ
, b+

0,m =
(4m + 1)π

2τ
+ a, b+

1,m = − (4m + 1)π

2τ
− a,

ω−
n = − (2n + 1)π

2τ
, b−0,m =

(4m + 1)π

2τ
− a, b−1,m = − (4m + 3)π

2τ
+ a,

respectively. Then we obtain the following lemma by (2.2).

Lemma 2.1. Suppose that a > 0 and b 6= 0. Let λ = iω be a root of Eq. (2.1) where
ω is a nonzero real number. Then the values of ω and b are expressed as

ω = ω+
n , b =

{

b+

0,m (ω = ω+

2m)

b+

1,m (ω = ω+

2m+1)
n, m = 0, 1, 2, . . .

or

ω = ω−
n , b =

{

b−0,m (ω = ω−
2m)

b−1,m (ω = ω−
2m+1)

n, m = 0, 1, 2, . . . .

Conversely, if b = b±j,m (j = 0, 1; m = 0, 1, . . .), then iω±
2m+j are roots of Eq. (2.1).

Next, we will observe how the roots of Eq. (2.1) on the imaginary axis move as
|b| increases. Clearly, if b = 0, Eq. (2.1) has the only root −i|a|. Let Ik and Jk be
intervals defined by Ik = Ik(0) and Jk = Jk(0), that is,

I0 =
(

0,
π

2τ

)

, Ik =

(

(4k − 1)π

2τ
,
(4k + 1)π

2τ

)

, Jk =

(

(4k + 1)π

2τ
,
(4k + 3)π

2τ

)

.

Lemma 2.2. For k = 0, 1, 2, . . ., the following three statements hold:

(i) If a ∈ Ik, then the root −ia moves in the left-half plane (resp. in the right-half
plane) as b increases from 0 (resp. decreases from 0).

(ii) If a ∈ Jk, then the root −ia moves in the right-half plane (resp. in the left-half
plane) as b increases from 0 (resp. decreases from 0).

(iii) If a = (2k + 1)π/(2τ), then the root −ia moves in the right-half plane as |b|
increases from 0.

Proof. Taking the derivative of λ with respect to b on Eq. (2.1), we have

dλ

db
= − e−λτ

1 − bτe−λτ
= − e−λτ

1 + τ(λ + ia)
, (2.3)

which implies

Re
dλ

db

∣

∣

∣

∣

λ=−ia

= Re (−eiaτ ) = − cosaτ.
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This shows the assertions (i) and (ii). To verify the assertion (iii), we need the sign

of Re d2λ
db2

∣

∣

λ=−ia
. It follows from (2.3) that

d2λ

db2
= −τe−2λτ{2 + τ(λ + ia)}

{1 + τ(λ + ia)}3
,

which yields
d2λ

db2

∣

∣

∣

∣

λ=−ia

= −2τe2iaτ = −2τ(cos 2aτ + i sin 2aτ).

Hence, if a = (2k +1)π/(2τ), then Re dλ
db

∣

∣

λ=−ia
= 0 and Re d2λ

db2

∣

∣

λ=−ia
= 2τ > 0. This

shows the assertion (iii). �

Lemma 2.3. If a > 0 and b 6= 0, then the roots iω±
n move in the right-half plane as

|b| increases.

Proof. By (2.3) and the relation e−λτ = −(λ + ia)/b, we have

Re
dλ

db

∣

∣

∣

∣

λ=iω

= Re
i(ω + a)

b{1 + iτ(ω + a)} =
τ(ω + a)2

b{1 + τ2(ω + a)2} ,

which implies the assertion of this lemma. �

Now, we are in a position to present necessary and sufficient conditions for the
roots of Eq. (2.1) have negative real parts.

Proposition 2.2. Let a > 0 and b > 0. Then all the roots of Eq. (2.1) have negative
real parts if and only if either

2kπ

τ
≤ a <

(4k + 1)π

2τ
and 0 < b <

(4k + 1)π

2τ
− a (k = 0, 1, 2, . . .) (2.4)

or

(4k − 1)π

2τ
< a <

2kπ

τ
and 0 < b < − (4k − 1)π

2τ
+ a (k = 0, 1, 2, . . .). (2.5)

Proof. For b > 0, ν(b) denotes the number of the roots of Eq. (2.1) whose real parts
are positive. Our argument is divided into two cases.

Case (I): a ∈ Ik (k = 0, 1, 2, . . .). Lemma 2.2-(i) shows ν(b) = 0 for b > 0
sufficiently small by the continuity of the roots with respect to b. By Lemma 2.1, if
the positive number b is given by

b+

0,m (m = 0, 1, 2, . . .), b−0,m (m = k, k + 1, . . .) or b−1,m (m = 0, 1, . . . , k − 1),

then Eq. (2.1) has roots on the imaginary axis.
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Subcase (I-a): 2kπ/τ ≤ a < (4k + 1)π/(2τ) (k = 0, 1, 2, . . .). The number b−
0,k is

the positive minimum value of b+

0,m, b−0,m and b−1,m because

b+

0,0 − b−
0,k =

π

2τ
+ a −

{

(4k + 1)π

2τ
− a

}

= −2kπ

τ
+ 2a > 0,

b−
1,k−1

− b−
0,k = − (4k − 1)π

2τ
+ a −

{

(4k + 1)π

2τ
− a

}

= −4kπ

τ
+ 2a ≥ 0.

This, together with Lemma 2.3, implies ν(b) = 0 if b ∈ (0, b−
0,k); ν(b) ≥ 1 if b ∈

(b−
0,k,∞).

Subcase (I-b): (4k − 1)π/(2τ) < a < 2kπ/τ (k = 1, 2, . . .). The number b−
1,k−1

is

the positive minimum value of b+

0,m, b−0,m and b−1,m because

b+

0,0 − b−
1,k−1

=
π

2τ
+ a −

{

− (4k − 1)π

2τ
+ a

}

=
2kπ

τ
> 0,

b−
0,k − b−

1,k−1
=

(4k + 1)π

2τ
− a −

{

− (4k − 1)π

2τ
+ a

}

=
4kπ

τ
− 2a > 0.

This, together with Lemma 2.3, yields ν(b) = 0 if b ∈ (0, b−
1,k−1

); ν(b) ≥ 1 if b ∈
(b−

1,k−1
,∞).

Case (II): a ∈ Jk or a = (2k + 1)π/(2τ) (k = 0, 1, 2, . . .). Lemma 2.2-(ii) or
2.2-(iii) shows ν(b) = 1 for b > 0 sufficiently small, which, together with Lemma 2.3,
implies ν(b) ≥ 1 if b ∈ (0,∞).

By virtue of the preceding argument and Lemma 2.1, we therefore conclude that
under a > 0 and b > 0, all the roots of Eq. (2.1) have negative real parts if and only
if either the condition (2.4) or (2.5) holds. This completes the proof. �

The following result is analogous to Proposition 2.2. The proof is carried out in
a similar way to that of Proposition 2.2 and will be omitted.

Proposition 2.3. Let a > 0 and b < 0. Then all the roots of Eq. (2.1) have negative
real parts if and only if either

(4k + 1)π

2τ
< a <

(2k + 1)π

τ
and

(4k + 1)π

2τ
− a < b < 0 (k = 0, 1, 2, . . .) (2.6)

or

(2k + 1)π

τ
≤ a <

(4k + 3)π

2τ
and − (4k + 3)π

2τ
+ a < b < 0 (k = 0, 1, 2, . . .). (2.7)

Finally, we will prove our main theorem.

Proof of Theorem 1.1. In case a = 0, Eq. (1.6) with |θ| = π/2 is reduced to

x′(t) = −bx(t − τ) (2.8)
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and the condition (1.7) becomes 0 < b < π/(2τ), which coincides with the classical
stability criterion for Eq. (2.8). In case |a| > 0, we may assume a > 0. Then it is
easily seen that the condition (1.7) is equivalent to b > 0 and either the condition (2.4)
or (2.5) as well as the condition (1.8) is equivalent to b < 0 and either the condition
(2.6) or (2.7). These facts and Proposition 2.1 imply Theorem 1.1. �
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