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1. Introduction

In studies of solutions of various types of boundary value problems for ordinary and
functional differential equations, it is often useful to possess appropriate techniques
based upon some types of successive approximations constructed in an analytic form.
To this class of methods belongs, in particular, the approach suggested in [1–3]. The

E-mail addresses: ronto@IPM.Cz (A. Rontó), matronto@gold.uni-miskolc.hu (M. Rontó)
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method mentioned was at first oriented for studying only periodic solutions of non-
linear first order ordinary differential systems

x′(t) = f (t, x(t)) , −∞ < t < ∞, (1.1)

where f : R×R
n → R

n is T -periodic in the first argument. Later, appropriate versions
of the method indicated were developed for handling more general two-point non-
linear boundary value problems for systems of first or second order differential equa-
tions, integro-differential equations, equations with retarded argument, parametrized
boundary value problems. We refer, e. g., to the books [4–6], the papers [7–11], and
the survey [12] for the related references. According to the basic idea, the given
boundary value problem is replaced by the initial value problem for a suitably modi-
fied system of functional differential or integro-functional equations containing some
artificially introduced vector parameter ξ = (ξi)

n
i=1, whose value is to be determined

later. In most cases ξ has the meaning of the initial value of the solution at a certain
point. For example, in the case of the two-point boundary value problem

x′(t) = f (t, x(t)) , t ∈ [0, T ], (1.2)

Ax (0) + Bx(T ) = d, (1.3)

where 0 < T < +∞, d ∈ R
n, {A, B} ⊂ GLn(R), detB 6= 0, one considers [6] the

integro-functional equation

x (t, ξ) = ξ +

∫ t

0

f (s, x (s, ξ)) ds −
t

T

∫ T

0

f (s, x (s, ξ)) ds (1.4)

+
t

T

[

B−1d −
(

B−1A + I
)

ξ
]

, t ∈ [0, T ] ,

containing an unknown parameter ξ. The (unique, under appropriate assumptions)
solution x∗(·, ξ) of equation (1.4) is sought for analytically by using the modified
Picard-type iteration sequence

xm (t, ξ) = ξ +

∫ t

0

(

f (s, xm−1 (s, ξ)) ds −
1

T

∫ T

0

f (r, xm−1 (r, ξ)) dr

)

ds

+
t

T

[

B−1d −
(

B−1A + I
)

ξ
]

, t ∈ [0, T ], m = 1, 2, . . . , (1.5)

where x0 (·, ξ) ≡ ξ. Each of the functions (1.5) satisfies the given boundary conditions
(1.3) and is such that

xm (0, ξ) = ξ (1.6)

for arbitrary values of the vector parameter ξ. The presence of “non-Picard” per-
turbation terms in (1.5) brings up the necessity to solve the so-called “determining
equations,” which produce the numerical values of the parameter ξ corresponding to
the solutions of the given boundary value problem (1.2), (1.3):

∫ T

0

f (s, x∗ (s, ξ)) ds = B−1d −
(

B−1A + I
)

ξ. (1.7)
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Successive approximation technique 129

Practical computations are performed on approximate versions of equation (1.7),
where the exact solution x∗(·, ξ) of equation (1.4) is replaced by some of its approxi-
mations (1.5). Problems other than (1.2), (1.3) require appropriate modifications of
the above scheme.

We also note that somewhat similar approach used in [13–16] for the two-point
problem (1.3) for functional-differential equations is based on a different way to con-
struct successive approximations. In this paper, we give a refinement of certain esti-
mates related to the convergence analysis of successive approximations of form (1.5)
associated with some two-point boundary value problems for a class of linear systems
of functional-differential equations involving several argument deviations possessing
certain special properties.

2. Problem setting

We consider the system of linear differential equations with argument deviations of
the form

x′(t) =

k
∑

j=0

Pj (t) x(βj(t)) + f(t), t ∈ [0, T ] (2.1)

subjected to the inhomogeneous two-point boundary conditions

Ax (0) + Bx(T ) = d. (2.2)

Here, T ∈ (0, +∞), the elements of the matrix-valued functions Pj : [0, T ] →
GLn (R), j = 0, 1, . . . , k, are Lebesgue integrable, f ∈ L1 ([0, T ] , Rn), {A, B} ⊂
GLn (R), and βj : [0, T ] → [0, T ], j = 1, . . . , k, are Lebesque measerable functions.
Here, GLn (R) is the algebra of square matrices of dimension n. The aim of this paper
is to suggest a numerical-analytic scheme of type (1.5), (1.7) for the investigation of
the solutions of the problem (2.1), (2.2) and improve the convergence conditions in
the special cases where the argument deviations βj , j = 1, . . . , k, satisfy certain sign
assumptions.

3. Notations and auxiliary statements

The following notations are used in the sequel.

1. C ([0, T ] , Rn) is the Banach space of the continuous functions [0, T ] → R
n with

the standard uniform norm.

2. L1 ([0, T ] , Rn) is the usual Banach space of the vector functions [0, T ] → R
n

with Lebesque integrable components.

3. GLn (R) is the algebra of all the square matrices of dimension n with real
elements.

4. r (Q) is the maximal in module eigenvalue of the matrix Q ∈ GLn (R) .
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5. In is the unit matrix of dimension n.

Let us define the sequence of functions {αm}
∞

m=0 ⊂ C ([0, T ] , R) by the recurrence
relation

αm(t) =

(

1 −
t

T

)
∫ t

0

αm−1 (s) ds +
t

T

∫ T

t

αm−1 (s) ds, t ∈ [0, T ] , (3.1)

where m = 1, 2, . . . and α0(t) := 1 for all t ∈ [0, T ]. It is obvious that

α1(t) = 2t

(

1 −
t

T

)

, t ∈ [0, T ] , (3.2)

and

max
t∈[0,T ]

α1(t) =
T

2
. (3.3)

Lemma 3.1. For an arbitrary essentially bounded function u : [0, T ] → R, the esti-
mate

∣

∣

∣

∣

∣

∫ t

0

(

u (τ) −
1

T

∫ T

0

u (s) ds

)

dτ

∣

∣

∣

∣

∣

≤
1

2
α1(t)

(

ess sup
s∈[0,T ]

u (s) − ess inf
s∈[0,T ]

u (s)
)

(3.4)

is true for all t ∈ [0, T ].

Proof. Inequality (3.4) is established similarly to [17], and the explicit proof is,
therefore, omitted. �

Lemma 3.2. ([18, Lemma 1]) Each of functions (3.1) is non-negative, takes zero
values at the points 0 and T , and possesses the property

αm

(

T

2
− t

)

= αm

(

T

2
+ t

)

, m ≥ 1, t ∈ [0, T/2] . (3.5)

Moreover,

α′

m(t) sign

(

t −
T

2

)

≤ 0, t ∈ [0, T ], m = 1, 2, . . . , n. (3.6)

Lemma 3.3. For a measurable function β : [0, T ] → [0, T ] satisfying the condition

ess inf
t∈[0,T ]

(β (t) − t) sign

(

t −
T

2

)

≥ 0, (3.7)

the inequalities
αm (β(t)) ≤ αm (t) , m = 1, 2, . . . , t ∈ [0, T ] , (3.8)

are true, where αm, m = 1, 2, . . . , are the functions given by formula (3.1).
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Proof. It follows from Lemma 3.2 that (3.6) holds for any t ∈ [0, T ] and m ≥ 1, i. e.,
each αm, m = 1, 2, . . . , is non-decreasing on the interval [0, T/2] and non-increasing
on [T/2, T ]. Combining (3.6) and (3.7), we obtain the required estimate (3.8). �

For example, condition (3.7) is satisfied with T = 1 for the continuous piecewise
linear function defined on the interval [0, 1] by the formula

β(t) :=











0.625 t for t ∈ [0, 0.4],

2.5 t− 0.75 for t ∈ [0.4, 0.6],

0.625 t + 0.375 for t ∈ [0.6, 1].

Note that, in general, if β : [0, T ] → [0, T ] is a continuous function satisfying condition
(3.7), then, moreover, it has the properties β(0) = 0, β(T

2 ) = T
2 , and β(T ) = T .

4. Iterative scheme and convergence analysis for the case of

general type deviation functions

To study the solution of the boundary value problem (2.1), (2.2) let us introduce the
sequence of functions xm : [0, T ]× R

n → R
n, m ≥ 0, by putting

xm+1 (t, ξ) := ξ + f̃(t) +

k
∑

j=0

∫ t

0

Pj (s)xm (βj (s)) ds

−
t

T

∫ T

0

k
∑

j=0

Pj (s) xm (βj (s)) ds +
t

T

(

B−1d −
(

B−1A + In

)

ξ
)

, (4.1)

where m = 0, 1, 2, . . . ,

f̃(t) :=

∫ t

0

f(s)ds −
t

T

∫ T

0

f(s)ds, t ∈ [0, T ], (4.2)

and x0 (t, ξ) := ξ for any t ∈ [0, T ] and ξ ∈ R
n. Let us establish the convergence of

sequence (4.1) for arbitrary deviation functions βj : [0, T ] → [0, T ] .

Lemma 4.1. For all m ≥ 1 and ξ ∈ R
n, the function xm(·, ξ) is absolutely continuous

and possesses the properties

xm (0, ξ) = ξ, (4.3)

xm (T, ξ) = B−1 (d − Aξ) . (4.4)

Proof. This statement is an immediate consequence of formulae (4.1). �

It follows from Proposition 4.1 that starting from m = 1, all the functions of
sequence (4.1) satisfy the boundary condition (2.2).
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Definition 4.1. Let G ∈ GLn(R) and g : [0, T ] × R
n → R

n. We say that the
successive approximations scheme (4.1) is applicable to the boundary value problem
(3.1), (3.2) with an estimate of type (G, g) if:

1. r(G) < 1;

2. supt∈[0,T ] g(t, ξ) < +∞ for all ξ ∈ R
n;

3. For any ξ ∈ R
n there exists a continuous function x∗(·, ξ) : [0, T ] → R

n such
that the pointwise and componentwise estimates

|x∗(t, ξ) − xm (t, ξ)| ≤ Gm(In − G)−1g(t, ξ), t ∈ [0, T ] , m = 1, 2, . . . , (4.5)

are true.

Proposition 4.1. Let for certain G ∈ GLn (R) and g : [0, T ] → [0, +∞) the succes-
sive approximation method (4.1) be applicable to boundary value problem (2.1), (2.2)
with the estimate of the type (G, g) . Then:

1. For any fixed ξ ∈ R
n, the function x∗ : [0, T ] × R

n → R
n appearing in (4.5)

coincides with the uniform limit of sequence (4.1):

lim
m→∞

max
t∈[0,T ]

|x∗(t, ξ) − xm (t, ξ)| = 0.

2. The function x∗(·, ξ) for arbitrary ξ ∈R
n satisfies the initial condition x∗(0, ξ)=

ξ and the boundary condition (3.2);

3. For any ξ ∈ R
n, the function x∗(·, ξ) is an absolutely continuous solution of

the integro-functional equation

x (t) = ξ + f̃(t) +
t

T

[

B−1d −
(

B−1A + In

)

ξ
]

+
k
∑

j=0

∫ t

0

Pj (s)x (βj (s)) ds

−
t

T

k
∑

j=0

∫ T

0

Pj (s)x (βj (s)) ds, t ∈ [0, T ] . (4.6)

Proof. This assertion is easily obtained by taking Definition 4.1 and Lemma 4.1 into
account. �

It is clear that the function x∗(·, ξ) in Proposition 4.1 is also a solution of the
initial value problem

x(0) = ξ (4.7)

for the forced functional differential equation

x′(t) =
k
∑

j=0

Pj (t)x (βj(t)) + f(t) + µξ(x), t ∈ [0, T ] , (4.8)
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where the linear mapping µξ : C([a, b], Rn) → R
n is defined by the formula

µξ(x) :=
1

T

[

B−1d −
(

B−1A + In

)

ξ
]

−
1

T

∫ T

0

( k
∑

j=0

Pj (s)x (βj (s)) + f (s)

)

ds (4.9)

for any x ∈ C([a, b], Rn).
Let us establish the relation between the limit function x∗(·, ξ) of the sequence

(4.1) and the solutions of the given two-point boundary value problem (2.1), (2.2).
For this purpose, fix some ξ ∈ R

n and consider the initial value problem (4.7) for the
forced equation

x′(t) =

k
∑

j=0

Pj (t)x (βj(t)) + f(t) + µ, t ∈ [0, T ] , (4.10)

where µ ∈ R
n is a vector parameter.

Proposition 4.2. Let us fix an arbitrary ξ ∈ R
n and assume that the successive

approximation method (4.1) for boundary value problem (2.1), (2.2) is applicable with
an estimate of type (G, g) for certain G ∈ GLn (R) and g : [0, T ] → [0, +∞) . Then a
solution x(·) of the initial value problem (4.10), (4.7) satisfies the boundary condition
(2.2) if, and only if

µ = µξ(x
∗(·, ξ)) (4.11)

where x∗ (·, ξ) : [0, T ] → R
n is the uniform limit of sequence (4.1):

x∗ (·, ξ) = lim
m→∞

xm(·, ξ). (4.12)

Proof. By virtue of Proposition 4.1, for an arbitrary ξ ∈ R
n, the function x∗ (·, ξ)

defined by formula (4.12) satisfies the integro-functional equation (4.6). Differentiat-
ing (4.6), we find that x = x∗ (·, ξ) is a solution of the initial value problem (4.10),
(4.7) with the value of the parameter µ given by equality (4.11). �

Proposition 4.2 implies the following statement.

Proposition 4.3. Let the successive approximation method (4.1) be applicable to
problem (2.1), (2.2) with an estimate of type (G, g) for certain G ∈ GLn (R) and
g : [0, T ] → [0, +∞). Then the limit function x∗ (·, ξ) of the recurrence sequence
(4.1) is a solution of the boundary value problem (2.1), (2.2) if, and only if the value
of the vector parameter ξ ∈ R

n in (4.1) satisfies the system of determining equations

B−1d −
(

B−1A + In

)

ξ −

∫ T

0

( k
∑

j=0

Pj (s)x∗ (βj (s) , ξ) + f (s)

)

ds = 0. (4.13)

21



134 A. Rontó, M. Rontó

Proof. It suffices to apply the Proposition 4.2 and notice that equation (4.8) coincides
with (2.1).if and only if relation (4.13) holds. �

Remark 4.1. In practice, it is convenient to fix some natural m and, instead of
(4.13), consider the “approximate” determining equation

B−1d −
(

B−1A + In

)

ξ −

∫ T

0

( k
∑

j=0

Pj (s)xm (βj (s) , ξ) + f (s)

)

ds = 0. (4.14)

If equation (4.14) has an isolated solution ξ = ξm in a certain open domain D ⊂ R
n,

then under some additional assumptions one can show that the corresponding exact
determining equation (4.13) is also solvable and, by virtue of Proposition 4.3, the
boundary value problem (2.1), (2.2) has a solution (see, e. g., [6, Theorem 3.1] or
[19, Theorem 7.1]). In this case, the function

[0, T ] ∋ t 7−→ Xm(t) := xm(t, ξm)

can be regarded as the mth approximation to a solution of the boundary value problem
(2.1), (2.2).

Theorem 4.1. Let Pj : [0, T ] → GLn (R), j = 0, 1, 2, . . . , k, be matrix-valued func-
tions with essentially bounded elements, the argument deviation functions βj : [0, T ] →
[0, T ], j = 0, 1, 2, . . . , k, be measurable, and the matrix B in the boundary conditions
(2.2) be non-singular. Moreover, assume that the inequality

r
(

P̃0 + P̃1 + · · · + P̃k

)

<
2

T
, (4.15)

is satisfied, where

P̃j := ess sup
t∈[0,T ]

|Pj(t)| , j = 0, 1, 2, . . . , k. (4.16)

Then the successive approximation method (4.1) is applicable to the boundary value

problem (2.1), (2.2) with an estimate of the type
(

1
2T
∑k

j=0 P̃j , γ
)

, where

γ(ξ) :=
1

2
Tδ(ξ) +

∣

∣B−1d −
(

B−1A + In

)

ξ
∣

∣ (4.17)

and

δ(ξ) :=
1

2

(

ess sup
t∈[0,T ]

(Q(t)ξ + f(t)) − ess inf
t∈[0,T ]

(Q(t)ξ + f(t))

)

for all ξ ∈ R
n, and Q :=

∑k

j=0 Pj .
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Successive approximation technique 135

Here and below, the symbols ess sup, ess inf, ≤, ≥, |·|, and similar relations for
vector-valued and matrix-valued functions are understood componentwise. For the
sake of convenience, we put

(J y)(t) :=

∫ t

0

(

y (s) −
1

T

∫ T

0

y(τ)dτ

)

ds, t ∈ [0, T ],

for all y ∈ L1([0, T ], R). Similarly, for a matrix-valued function Y = [y1, . . . , yn]
with the columns yi ∈ L1([0, T ], R), i = 1, 2, . . . , n, we use the notation J Y :=
[J y1, . . . ,J yn].
Proof. Let us show that, under the conditions assumed, sequence (4.1) is a Cauchy
sequence in the Banach space C ([0, T ] , Rn) equipped with the usual uniform norm.
Due to Lemma 3.1, it follows from (4.1) that for m = 0 and an arbitrary fixed ξ ∈ R

n

|x1 (t, ξ) − ξ| =
∣

∣(JQ)(t) ξ + (J f)(t) + tT−1
[

B−1d −
(

B−1A + In

)

ξ
]∣

∣

≤ α1(t)δ (ξ) + δ1 (ξ) , (4.18)

where the function α1 is given by equality (3.2) and

δ1 (ξ) :=
∣

∣B−1d −
(

B−1A + In

)

ξ
∣

∣ , ξ ∈ R
n. (4.19)

According to formulae (4.1), for all t ∈ [0, T ] , ξ ∈ R
n, and m = 1, 2, , . . . , we can

write

rm(t, ξ) := xm (t, ξ) − xm−1 (t, ξ) =

(

J

k
∑

j=0

Pj(·) rm−1(βj(·), ξ)

)

(t)

=

(

1 −
t

T

) k
∑

j=0

∫ t

0

Pj (s) rm−1(βj(s), ξ)ds

−
t

T

k
∑

j=0

∫ T

t

Pj (s) rm−1(βj(s), ξ)ds. (4.20)

Equalities (4.20) imply that

|rm+1 (t, ξ)| ≤

k
∑

j=0

P̃j

((

1 −
t

T

)
∫ t

0

|rm (βj (s) , ξ)|ds

+
t

T

∫ T

t

|rm (βj (s) , ξ)| ds

)

(4.21)

for all t ∈ [0, T ] , ξ ∈ R
n, and m = 1, 2, . . . . From (4.18) we obtain

|r1 (t, ξ)| = |x1 (t, ξ) − ξ| ≤ α1(t)δ (ξ) + δ1 (ξ) ≤
T

2
δ (ξ) + δ1 (ξ) = γ(ξ). (4.22)
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Let us now estimate r2 (t, ξ) using (4.20) and (4.22):

|r2 (t, ξ)| ≤
k
∑

j=0

P̃j

((

1 −
t

T

)
∫ t

0

|r1 (βj (s) , ξ)| ds (4.23)

+
t

T

∫ T

t

|r1 (βj (s) , ξ)| ds

)

(4.24)

≤

k
∑

j=0

P̃j

(

(

1 −
t

T

)
∫ t

0

γ(ξ)ds +
t

T

∫ T

t

γ(ξ)ds

)

(4.25)

≤

k
∑

j=0

P̃jγ(ξ)α1(t) (4.26)

≤
T

2

k
∑

j=0

P̃jγ(ξ). (4.27)

By the method of mathematical induction we then obtain that the estimate

|rm (t, ξ)| ≤

(

T

2

)m−1
(

P̃0 + P̃1 + · · · + P̃k

)m−1

γ (ξ) = Gm−1γ (ξ) , (4.28)

is true for all t ∈ [0, T ] , ξ ∈ R
n, and m = 1, 2, . . . , where

G :=
T

2

k
∑

j=0

P̃j .

Estimate (4.28), according to (4.20), yields

|xm+j (t, ξ) − xm (t, ξ)| ≤

j
∑

i=1

|rm+i (t, ξ)| ≤ Gm

j−1
∑

i=0

Giγ (ξ) ,

whence we obtain

|xm+j (t, ξ) − xm (t, ξ)| ≤ Gm

∞
∑

i=0

Giγ (ξ) = Gm (I − G)
−1

γ (ξ) , (4.29)

where, by virtue of assumption (4.15), limm→∞ Gm = 0. It follows from estimate
(4.29) that {xm (·, ξ)}

∞

m=0 is a Cauchy sequence in C([0, T ] , Rn), and therefore

lim
m→∞

xm (t, ξ) = x∗ (t, ξ)

uniformly in t ∈ [0, T ] for any fixed ξ ∈ R
n. Passing to the limit as j → ∞ in (4.29),

we obtain the estimate

|x∗ (t, ξ) − xm (t, ξ)| ≤ Gm (I − G)
−1

γ (ξ)

for all t ∈ [0, T ], ξ ∈ R
n, and m = 1, 2, . . . . According to Definition 4.1, this leads us

to the assertion of Theorem 4.1. �
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5. Convergence of successive approximations for the special

deviation functions

If the cases where deviation functions βj : [0, T ] → [0, T ], j = 0, 1, 2, . . . , k, satisfy the
condition

ess inf
t∈[0,T ]

(βj (t) − t) sign

(

t −
T

2

)

≥ 0 (5.1)

of type (3.7), the assumption (4.15) of Theorem 4.1 can be weakened.

Theorem 5.1. If the deviation functions βj : [0, T ] → [0, T ], j = 0, 1, 2, . . . , k, pos-
sesses property (5.1), and, moreover, the inequality

r
(

P̃0 + P̃1 + · · · + P̃k

)

<
10

3T
(5.2)

is satisfied, then the successive approximation method (4.1) is applicable to the bound-

ary value problem (2.1), (2.2) with an estimate of the type
(

3T
10

∑k

j=0 P̃j , g
)

, where

g(t, ξ) :=
10

9
α1(t)γ(ξ), t ∈ [0, T ] , ξ ∈ R

n,

and the function γ is defined by formula (4.17).

Proof. It follows from Lemma 3.3 that condition (5.1) ensures the validity of estimates

α1 (βj(t)) ≤ α1 (t) , t ∈ [0, T ] , j = 0, 1, 2, . . . , k, (5.3)

where α1 is the function (3.2). Let us estimate the value of r2 (t, ξ). Using (4.21),
(4.22), and (5.3), we have

|r2 (t, ξ)| ≤

k
∑

j=0

P̃j

((

1 −
t

T

)
∫ t

0

(

T

2
δ (ξ) + δ1 (ξ)

)

ds (5.4)

+
t

T

∫ T

t

(

T

2
δ (ξ) + δ1 (ξ)

)

ds

)

≤

k
∑

j=0

P̃j γ(ξ)α1(t) (5.5)

for all t ∈ [0, T ] and ξ ∈ R
n. By induction, we arrive at the pointwise and coordi-

natewise estimates

|rm+1 (t, ξ)| ≤

( k
∑

j=0

P̃j

)m

γ (ξ)αm(t), t ∈ [0, T ] , ξ ∈ R
n, (5.6)

where αm, m ≥ 0, are the functions of sequence (3.1). By virtue of [6, Lemma 2.4],
the estimates

αm+1(t) ≤
3T

10
αm(t) ≤

10

9

(

3T

10

)m

α1(t) (5.7)
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are true for all t ∈ [0, T ] and m ≥ 1. Taking (5.7) into account and using (5.6), we
arrive at the inequalities

|rm+1 (t, ξ)| ≤
10

9

(

3T

10

k
∑

j=0

P̃j

)m

γ (ξ) α1(t)

valid for all t ∈ [0, T ], ξ ∈ R
n, and m = 1, 2, . . . The rest of the argument is similar

to that of the proof of Theorem 4.1. �
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