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Creating a chaos in a system with relay
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Abstract. We address a special initial value problem of a differential equation with
relay function. The concept of Li-Yorke chaos [8] is considered.
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1. Introduction and Preliminaries

The method of construction of chaotic motions has been proposed in [1]-[3]. We
consider a special initial value problem for relay systems and impulsive systems, whose
initial moments of time are from a Cantor set. Using the map, which is topologically
conjugate to symbolic dynamics, as the generator of moments of the relay switching in
the multidimensional system, we observe in paper [1] Devaney’s ingredients of chaos
for a relay system with linear elements. Existence of a quasi-minimal set has been
proved in [3]. The approach has been used, also, in [2] to construct the Li-Yorke chaos
[8] for impulsive differential equations. In the present article we attempt to shape the
chaos for the multidimensional non-linear relay system.

Let us recall the definition of chaos for maps. Consider an infinite nonvoid compact
metric space (X, ρ) with metric ρ and a continuous map T : X → X. A pair (x, x′) ∈
X ×X,x 6= x′, is called a Li-Yorke pair [5] if it is proximal and not asymptotic, that
is, lim infi→∞ρ(T

i(x), T i(x̃)) = 0 and lim supi→∞
ρ(T i(x), T i(x̃)) > 0, respectively.

The map T : X → X is Li-Yorke chaotic, if: it has points with all periods p ∈ N;
there exists an uncountable subset X ′ ⊂ X, the scrambled set, that does not contain
periodic points and each pair (x, x′) ∈ X ′ ×X ′, x 6= x′, is a Li-Yorke pair. Consider
the sequence space [9]

Σ2 = {s = (s0s1s2 . . .) : sj = 0 or 1}

E-mail address: marat@metu.edu.tr (M. U. Akhmet)

International Journal of Qualitative Theory of Differential Equations and Applications
Vol. 5, No. 1 (January-June, 2019)

Received: 06th January 2018   Revised : 17th March  2018    Accepted: 13th  April 2018

9



4 M. U. Akhmet

with the metric

d[s, t] =

∞
∑

i=0

|si − s̃i|

2i
,

where s̃ = (s̃0s̃1 . . .) ∈ Σ2, and the shift map σ : Σ2 → Σ2, such that σ(s) = (s1s2 . . .).
The pair (Σ2, σ) is the symbolic dynamics. The map is continuous, cardPern(σ) =
2n, P er(σ) is dense in Σ2, and there exists a dense orbit in Σ2. It is known that the
dynamics (σ,Σ2) is chaotic in the sense of Li-Yorke with a scrambled set Σ′

2.

Let h : Λ → Λ, where Λ is a subset of the interval [0, 1], be a map topologically
conjugate to σ, and Λ′ is an image of Σ′

2 by the congjugacy.
For every t0 ∈ Λ one can construct a sequence κ(t0) of real numbers κi, i ≥ 0,

such that κi+1 = h(κi) and κ0 = t0. Sequence ζ(t0) = {ζi(t0)} in (2.1) is defined as
ζi(t0) = i+ κi(t0), i ≥ 0.

By applying the conjugacy of h and σ, one can verify that map h has the following
useful chaotic properties.

Lemma 1.1. If t, t′ ∈ Λ′, then there exist sequences ki, li → ∞, as i→ ∞, such that
maxj=0,1,...,li |h

ki+j(t) − hki+j(t′)| → 0 as i→ ∞.

Lemma 1.2. There exists a positive number η, such that for every pair t, t′ ∈ Λ′, t 6=
t′, there exists a sequence mi → ∞, as i→ ∞, such that |hmi(t) − hmi(t′)| ≥ δ.

2. The Li-Yorke chaos

The main object of our investigation is the following special initial value problem

z′(t) = Az(t) + f(z) + v(t, t0),

z(t0) = z0, (t0, z0) ∈ Λ × R
n, (2.1)

where z ∈ R
n, t ∈ R+ = [0,∞), i ≥ 0. Cantor set Λ ⊂ I = [0, 1] , and sequence of

impulsive moments ζi(t0) were described in the last section.

v(t, t0) =

{

m0 if ζ2i(t0) < t ≤ ζ2i+1(t0), i ∈ Z,

m1 if ζ2i−1(t0) < t ≤ ζ2i(t0), i ∈ Z,

where m0,m1 ∈ R
n are vectors. The function f satisfies the Lipshitz condition with

a positive constant L, A is an n × n constant real valued matrix with real parts of
eigenvalues all negative. Denote the maximal of them α < 0.

For a fixed t0 ∈ Λ, system (2.1) is a differential equation with discontinuous right
hand side of a specific type when discontinuities happen on vertical planes in the
(t, z)−space.

A function z(t), z(t0) = z0, is a solution of (2.1) on [t0,∞) if: (i) z(t) is contin-
uous on [t0,∞); (ii) the derivative z′(t) exists at each point t ∈ R with the possible
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exception of the points ζi(t0), where left-sided derivatives exist; (iii) equation (2.1)
is satisfied on each interval (ζi(t0), ζi+1(t0)], i ≥ 0.

It can be easily verified that problem (2.1) has a unique solution z(t, t0, z0) for
each t0 ∈ Λ, z0 ∈ R

n.

There exists a positive number N such that ‖eAt‖ ≤ Neαt, t ≥ 0.
The solution z(t) = z(t, t0, z0), t0 ∈ Λ, z0 ∈ R

n, of (2.1) satisfies the following
integral equation

z(t) = eA(t−t0)z0 +

∫ t

t0

eA(t−s)[f(z(s)) + v(s, t0)] ds. (2.2)

In what follows we assume that sup
Rn |f(z)| = M0 < ∞, NL < α. Fix a sequence

ζ(t0), t0 ∈ Λ. Using the standard technique one can verify that all solutions eventually,
as t increases, enter the tube with the radius M = M0[1 + N

α−NL
], t ∈ R. Moreover, if

the sequence κ(t0) is periodic with a period p ∈ N, then there is a solution of (2.1) with
the same period, and its integral curve is placed in the tube. One can easily see that
all these solutions are different for different p. Let us, introduce the following distance.
If φ, ψ are continuous on R functions, then denote ‖φ(t)−ψ(t)‖J = supJ ‖φ(t)−ψ(t)‖,
where J is an interval of R. We use the following definitions. They are taken from
[5, 8, 9] and adapted for (2.1).

Definition 2.1. A pair of solutions of (2.1) z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1),
t0, t1 ∈ Λ, is proximal if for each ǫ > 0, E > 0 there exists an interval J ⊂ [t0,∞)
with length not less than E such that ‖z1(t) − z(t)‖E < ǫ.

Definition 2.2. The solutions of (2.1) z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), t0, t1 ∈
Λ, are not asymptotic if there exist positive numbers ǫ0 and a sequence ξi, i ≥ 0,
ξi → ∞, as i→ ∞, such that ||z1(ξi) − z(ξi)|| > ǫ0.

Definition 2.3. A couple z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), t0, t1 ∈ Λ, of solutions
of (2.1) is a Li-Yorke pair if they are proximal and not asymptotic.

Definition 2.4. Problem (2.1) is Li-Yorke chaotic on Λ′ if:

1. there exist solutions φ(t, t0) with all periods p ∈ N;

2. each couple of solutions z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), with t0, t1 ∈
Λ′, t0 6= t1, is Li-Yorke pair;

Theorem 2.1. Problem (2.1) is Li-Yorke chaotic on Λ′.

Proof. Let us show that each pair of solutions is proximal. Fix numbers t0, t1 ∈
Λ′, t0 6= t1, solutions z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), z0, z1 ∈ R

n, of (2.1), and
E, ǫ > 0. There exists a number T̄ such that both solutions z, z1 are in the tube
with the radius M if t ≥ T̄ . By the proximal property of map h, Lemma 1.1, and its
uniform continuity, there exist arbitrarily large numbers T̃ > T̄ , E1 > 0, such that
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‖ζi(t1)− ζi(t0)‖ < δ, where ζi(t1), ζi(t0) ∈ (T̃ , T̃ +E1 +E). We shall find a sufficiently
large E1 so that ‖z(t)− z1(t)‖J < ǫ if J = (T̃ + E1, T̃ + E1 + E). We have that

z(t) = eAtz(T̃ ) +

t
∫

T̃

eA(t−s)f(z(s))ds+

t
∫

T̃

eA(t−s)v(s, t0)ds,

z1(t) = eAtz(T̃ ) +

t
∫

T̃

eA(t−s)f(z1(s))ds+

t
∫

T̃

eA(t−s)v(s, t1)ds.

Consequently,

‖z(t) − z1(t)‖ ≤ Neα(t−T̃ )‖z(T̃ ) − z1(T̃ )‖ +

∫ t

T̃

Neα(t−s)L‖z(s)− z1(s)‖ds

+

∫ t

T̃

Neα(t−s)‖v(s, t0) − v(s, t1)‖ds

≤ Neα(t−T̃ )‖z(T̃ ) − z1(T̃ )‖ +

∫ t

T̃

Neα(t−s)L‖z(s)− z1(s)‖ds

+

∫ t

T̃

Neα(t−s)δ‖m0 −m1‖ds.

Next, we denote u(t) = ‖z(t) − z1(t)‖e
−αt, and apply Lemma 2.2 [6], to obtain that

‖z(t) − z1(t)‖ ≤
Nδ‖m0 −m1‖

α+NL
[e(α+NL)(t−T̃ ) − 1] +Ne(α+NL)(t−T̃)‖z(T̃ ) − z1(T̃ )‖.

On the basis of the last inequality one can easily see that ‖z(t) − z1(t)‖ < ǫ if t ∈ J,

where E1 is sufficiently large, and δ is a sufficiently small positive number.
Consider a pair of solutions z(t) = z(t, t0, z0), z1(t) = z(t, t1, z1), with t0, t1 ∈ Λ′,

t0 6= t1. By Lemma 1.2 there exists a sequence ik, ik → ∞ as k → ∞, such that
|κik

(t0) − κik
(t1)| > η.

Fix ik, and assume that κik
(t0) < κik

(t1). The case κik
(t0) > κik

(t1) can be
analyzed similarly. There exists a positive number ν, sufficiently small so that

ν1 = −
N‖m0 −m1‖

α
[1 − eαη] −Nνeαη +

NLν

α
[1 − eαη] > 0.

Denote ǫ0 = min{ν, ν1}. We shall show that there is a number ξk between ζik
(t0) and

ζik
(t1) that satisfies ‖z(ξk)−z1(ξk)‖ ≥ ǫ0.Assume on the contrary that ‖z(t)−z1(t)‖ <
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ǫ0, t ∈ [ζik
(t0), ζik

(t1)]. Then,

‖z(ζik
(t1) + η) − z1(ζik

(t1) + η)‖

≥ ‖eAη‖‖z(ζik
(t1)) − z1(ζik

(t1))

−

∫ ζi
k
(t1)+η

ζi
k
(t1)

‖eA(ζi
k
(t1)+η−s)‖‖z(s)− z1(s)‖ds

−

∫ ζi
k
(t1)+η

ζi
k
(t1)

‖eA(ζi
k
(t1)+η−s)‖‖v(s, t0) − v(s, t1)‖ds

≥ −
N‖m0 −m1‖

α
[1 − eαη] −Nνeαη +

NLν

α
[1 − eαη] ≥ ǫ0.

We get a contradiction, which proves the assertion. Evaluations made do not depend
on the choice of k. Existence of periodic solutions is obvious. The theorem is proved.

�

Remark 2.1. The constant ǫ0 is common for all chaotic solutions in the last proof.
In paper [4] we have weakened the condition by discussing a map, which is conjugate
to a Li-Yorke chaotic map, which is not necessarily the symbolic dynamics.
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