
International Journal of Qualitative Theory of Differential Equations and Applications
Vol. 3, No. 1-2 (2009), pp. 8–14

Hopfield-type neural networks systems with piecewise

constant argument

M. U. Akhmeta,∗, E. Yılmaza

aDepartment of Mathematics and Institute of Applied Mathematics, Middle East

Technical University, 06531 Ankara, Turkey

Received October 10, 2008; accepted February 18, 2009

Abstract. In this paper we consider Hopfield-type neural networks systems with
piecewise constant argument of generalized type. Sufficient conditions for the exis-
tence of a unique equilibrium and a periodic solution are obtained. The stability of
these solutions is investigated.
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1. Introduction and preliminaries

In recent years, dynamics of delayed neural networks have been studied and developed
by many authors and many applications have been found in different areas such
as associative memory, image processing, signal processing, pattern recognition and
optimization (see [5, 7, 9, 10] and references cited therein). As is well known, such
applications depend on the existence of an equilibrium point and its stability.

Differential equations with piecewise constant argument combine the properties of
both the differential and difference equations. They play an important role in applica-
tions, see, for example, [11, 13]. Investigation of differential equations with piecewise
constant arguments of delay and advanced type had been initiated in [6, 12], where
the method of research was based on the reduction to discrete equations. Hence, qual-
itative properties of solutions which start at non-integer values can not be achieved.
Particularly, one can not investigate the problem of stability completely, since only
elements of a countable set are allowed to be discussed for initial moments. By intro-
ducing arbitrary piecewise constant functions as arguments, which can be interpreted
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Hopfield-type neural networks systems with piecewise constant argument 9

as piecewise constant deviated argument, the concept of differential equations with
piecewise constant argument has been generalized in [1],[3], where an integral repre-
sentation formula was proposed as another approach to meet the challenges discussed
above.

One of the most crucial idea of the present paper is that we assume Hopfield-type
neural networks may “memorize” values of the phase variable at certain moments
of time to utilize the values during middle process till the next moment. Thus, we
arrive to differential equations with piecewise constant delay. Obviously, the distances
between the moments may be very variable. Consequently, the concept of generalized
type of piecewise constant argument may be fruitful for the theory of neural networks.

Let us denote the set of all real numbers, natural numbers and integers by R,N,Z,

respectively, and a norm on R
m by || · || where ||u|| =

m
∑

j=1

|ui|.

In the present paper we shall consider the following Hopfield-type neural networks
system with piecewise constant argument

x′i(t) = −aixi(t) +

m
∑

j=1

bijfj(xj(t)) +

m
∑

j=1

cijgj(xj(β(t))) + di, (1.1)

ai > 0, i = 1, 2, · · · ,m.

where β(t) = θk if θk ≤ t < θk+1, k ∈ Z, t ∈ R, is an identification function, θk, k ∈ Z,

is a strictly increasing sequence of real numbers, |θk| → ∞ as |k| → ∞, and there
exists a positive real number θ̄ such that θk+1 − θk ≤ θ̄, k ∈ Z. Moreover, m denotes
the number of neurons in the network, xi(t) corresponds to the state of the ith unit
at time t, fj(xj(t)) and gj(xj(β(t))) denote, respectively, the measures of activation
to its incoming potentials of the unit j at time t and θk, k ∈ Z; bij , cij , di are real
constants; bij denotes the synaptic connection weight of the unit j on the unit i at
time t, cij denotes the synaptic connection weight of the unit j on the unit i at time
θk, di is the input from outside the network to the unit i.

The following assumptions will be needed throughout the paper:

(C1) The activation functions fj , gj ∈ C(R,R) with fj(0) = 0, gj(0) = 0 satisfy

|fj(u) − fj(v)| ≤ Lj |u− v|

|gj(u) − gj(v)| ≤ L̄j |u− v|

for all u, v ∈ R, where Lj , L̄j > 0 are Lipschitz constants, for j = 1, 2, . . . ,m;

(C2) θ̄ [α3 + α2] < 1;

(C3) θ̄
[

α2 + α3

(

1 + θ̄α2

)

eθ̄α3

]

< 1,

where

α1 =

m
∑

i=1

m
∑

j=1

|bji|Li, α2 =

m
∑

i=1

m
∑

j=1

|cji|L̄i, α3 =

m
∑

i=1

ai + α1.

2



10 M. U. Akhmet, E. Yılmaz

Theorem 1.1. Suppose (C1) holds. If the neural parameters ai, bij , cij satisfy

ai > Li

m
∑

j=1

|bji| + L̄i

m
∑

j=1

|cji|, i = 1, · · · ,m.

Then, (1.1) has a unique equilibrium x∗ = (x∗1, · · · , x
∗
m)T .

The proof of the theorem is almost identical to the verification in [10] with slight
changes which are caused by the piecewise constant argument.

We understand a solution x(t) = (x1, · · · , xm)T of (1.1) as a continuous function
on R such that the derivative x′(t) exists at each point t ∈ R, with the possible
exception of the points θk, k ∈ Z, where one-sided derivative exists and the differential
equation (1.1) is satisfied by x(t) on each interval (θk, θk+1) as well.

In the following theorem the conditions for the existence and uniqueness of solu-
tions on R are established. The proof of the assertion is similar to that of Theorem
2.3 in [1].

Theorem 1.2. Suppose that conditions (C1)-(C3) are fulfilled. Then, for every
(t0, x

0) ∈ R × R
m, there exists a unique solution x(t) = x(t, t0, x

0) = (x1, . . . , xm)T ,

t ∈ R, of (1.1), such that x(t0) = x0.

Now, let us give the following two equivalence lemmas of (1.1). The proofs are omitted
here, since they are similar to that of Lemma 3.1 in [1].

Lemma 1.1. A function x(t) = x(t, t0, x
0) = (x1, . . . , xm)T , where t0 is a fixed real

number, is a solution of (1.1) on R if and only if it is a solution of the following
integral equation on R: For i = 1, · · · ,m,

xi(t) = e−ai(t−t0)x0
i +

∫ t

t0

e−ai(t−s)

[ m
∑

j=1

bijfj(xj(s))

+
m

∑

j=1

cijgj(xj(β(s))) + di

]

ds. (1.2)

Lemma 1.2. A function x(t) = x(t, t0, x
0) = (x1, . . . , xm)T , where t0 is a fixed real

number, is a solution of (1.1) on R if and only if it is a solution of the following
integral equation on R: For i = 1, · · · ,m,

xi(t) = x0
i +

∫ t

t0

[

− aixi(s) +
m

∑

j=1

bijfj(xj(s))

+
m

∑

j=1

cijgj(xj(β(s))) + di

]

ds. (1.3)
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2. Stability of equilibrium

In this section, we will give sufficient conditions for the global asymptotic stability of
the equilibrium x∗. The system (1.1) can be reduced as follows. Let yi = xi − x∗i , for
each i = 1, · · · ,m. Then,

y′i(t) = −aiyi(t) +
m

∑

j=1

bijφj(yj(t)) +
m

∑

j=1

cijψj(yj(β(t))), (2.1)

i = 1, 2, · · · ,m,

where φi(yi) = fi(yi + x∗i ) − fi(x
∗
i ) and ψi(yi) = gi(yi + x∗i ) − gi(x

∗
i ). For each

j = 1, · · · ,m, φj(·), ψj(·), are Lipschitzian since fj(·), gj(·) are Lipschitzian with
Lj , L̄j respectively, and φj(0) = 0, ψj(0) = 0.

For simplicity of notation in the sequel, let us denote

ζ =
{

1 − θ̄
[

α2 + α3

(

1 + θ̄α2

)

eθ̄α3

]}−1

.

The following lemma, which plays an important role in the proofs of further theorems
has been considered in [4]. But, for convenience of the reader we place the full proof
of the assertion.

Lemma 2.1. Let y(t) = (y1(t), · · · , ym(t))T be a solution of (2.1) and (C1)-(C3) be
satisfied. Then, the following inequality

||y(β(t))|| ≤ ζ||y(t)|| (2.2)

holds for all t ∈ R.

Proof. For a fixed t ∈ R, there exists k ∈ Z such that t ∈ [θk, θk+1). Then, from
Lemma 1.2, we have

||y(t)|| =
m

∑

i=1

|yi(t)|

≤ ||y(θk)|| +

m
∑

i=1

∫ t

θk

[

ai|yi(s)| +

m
∑

j=1

|bji|Li|yi(s)| +

m
∑

j=1

|cji|L̄i|yi(θk)|

]

ds

≤ (1 + θ̄α2)||y(θk)|| +

∫ t

θk

α3||y(s)||ds.

The Gronwall-Bellman Lemma yields that

||y(t)|| ≤
(

1 + θ̄α2

)

eθ̄α3 ||y(θk)||. (2.3)

Furhermore, for t ∈ [θk, θk+1) we have

||y(θk)|| ≤ ||y(t)|| +

m
∑

i=1

∫ t

θk

[

ai|yi(s)| +

m
∑

j=1

|bji|Li|yi(s)| +

m
∑

j=1

|cji|L̄i|yi(θk)|

]

ds

≤ ||y(t)|| + θ̄α2||y(θk)|| +

∫ t

θk

α3||y(s)||ds.
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The last inequality and (2.3) imply that

||y(θk))|| ≤ ||y(t)|| + θ̄α2||y(θk)|| + θ̄α3

(

1 + θ̄α2

)

eθ̄α3 ||y(θk)||.

Thus, it follows from condition (C3) that

||y(θk)|| ≤ ζ||y(t)||, t ∈ [θk, θk+1).

Accordingly, (2.2) holds for all t ∈ R, which is the desired conclusion. �

From now on we need the following assumption:

(C4) γ − α1 − ζα2 > 0, where γ = min
1≤i≤m

ai is positive.

Theorem 2.1. Assume that (C1)-(C4) are fulfilled.Then, the zero solution of (2.1)
is globally asymptotically stable.

Proof. Let y(t) = (y1(t), · · · , ym(t))T be an arbitrary solution of (2.1). From Lemma
1.1, we have

||y(t)|| ≤ e−γ(t−t0)||y0|| +

m
∑

i=1

∫ t

t0

e−γ(t−s)

[ m
∑

j=1

|bji|Li|yi(s)| +

m
∑

j=1

|cji|L̄i|yi(β(s))|

]

ds

≤ e−γ(t−t0)||y0|| + (α1 + ζα2)

∫ t

t0

e−γ(t−s)||y(s)||ds.

It follows that

eγ(t−t0)||y(t)|| ≤ ||y0|| + (α1 + ζα2)

∫ t

t0

eγ(s−t0)||y(s)||ds.

By virtue of Gronwall-Bellman inequality, we obtain that

||y(t)|| ≤ e−(γ−α1−ζα2)(t−t0)||y0||.

The last inequality, in conjunction with (C4), deduces that the zero solution of system
(2.1) is globally asymptotically stable. �

3. Existence and stability of periodic solutions

In this part, we study the existence and global asymptotic stability of the periodic
solution of (1.1). The following conditions are to be assumed:

(C5) there exists a positive integer p such that θk+p = θk + ω, k ∈ Z with a fixed
positive real period ω;
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(C6) κ [ω (α1 + ζα2)] < 1, where κ = 1
1−e−γω .

Theorem 3.1. Assume that conditions (C1)-(C3) and (C5)-(C6) are valid. Then,
the system (1.1) has a unique ω–periodic solution.

We omit the proof of this assertion, since it can be proved in the same way as existence
of the periodic solution for the quasilinear system of ordinary differential equations
in noncritical case [8].

Theorem 3.2. Assume that conditions (C1)-(C6) are valid. Then, the periodic so-
lution of (1.1) is globally asymptotically stable.

Proof. By Theorem 3.1, we know that (1.1) has an ω–periodic solution x∗(t) =
(x∗1, · · · , x

∗
m)T . Suppose that x(t) = (x1, · · · , xm)T is an arbitrary solution of (1.1)

and let z(t) = x(t) − x∗(t) = (x1 − x∗1, · · · , xm − x∗m)T . Then, from Lemma 1.1, we
have

||z(t)|| ≤ e−γ(t−t0)||z0|| +
m

∑

i=1

∫ t

t0

e−γ(t−s)

[ m
∑

j=1

|bji|Li|zi(s)| +
m

∑

j=1

|cji|L̄i|zi(β(s))|

]

ds

≤ e−γ(t−t0)||z0|| + (α1 + ζα2)

∫ t

t0

e−γ(t−s)||z(s)||ds.

Also, the previous inequality can be written as,

eγ(t−t0)||z(t)|| ≤ ||z0|| + (α1 + ζα2)

∫ t

t0

eγ(s−t0)||z(s)||ds.

By applying Gronwall-Bellman inequality, we obtain that

||z(t)|| ≤ e−(γ−α1−ζα2)(t−t0)||z0||.

Thus, using (C4), the periodic solution of system (1.1) is globally asymptotically
stable. �
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