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1. Introduction

In the present paper we shall consider weak solutions of initial-boundary value prob-
lems for the equation

Dou— 3" Dilas(t, 2,0, Dus (o ()] (1, ), 7))
i=1

+ad(t, z,u, Du;u([yo(w)](t, ), z)) + ap(t, z, u, Du;u([y1 (w)](t, ), z))

+ad(t, x,u, Du; Du([y2(uw)](t, z),2)) = f (1.1)
where the functions _

ai,al : Qr x R" x L2(Qr) — R

satisfy modified conditions of [9] and v; : L?(Qr) — C(Qr) are continuous (nonlinear)
operators such that [y;(u)](-, z) is absolutely continuous for a.e. fixed z,
0
ot
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with some constant cq > 0.

This work was motivated by works where nonlinear parabolic functional differen-
tial equations were considered which arise in certain applications. (See references in
[8].) In [8] and [9] existence theorems and some qualitative properties were proved on
solutions to initial value problems for the functional equations (connected with the
above applications)

Dyu — ;Di[ai(tvxa u(t, z), Du(t, x);u)] + ao(t, v, u(t, ), Du(t,z);u) = f. (1.2)

In the present paper we consider (1.1) as a particular case of (1.2) and apply the
results of [9] to the equation (1.1).

Differential equations and systems with state-dependent delay in one variable were
considered thoroughly e.g. in [3] - [5] (see also the references there).

In Section 2 the existence of weak solutions will be proved and in Section 3 we
shall formulate conditions which imply boundedness of solutions, further, stabilization
of solutions will be shown as t — oo.

2. Existence of solutions

Denote by Q C R™ a bounded domain having the uniform C! regularity property (see
[1]), Q7 = (0,T) xQ and p > 2 be a real number. Let V. C W1?(Q2) be a closed linear
subspace of the usual Sobolev space WP(2) (of real valued functions) containing
W, P(€2) (the closure of C§°(€2)). Denote by LP(0,T;V) the Banach space of the set
of measurable functions u : (0,7) — V with the norm

T
o= [ I le) I .

The dual space of LP(0,T;V) is L2(0,T;V*) where 1/p+1/q = 1 and V* is the dual
space of V' (see, e.g., [11]).

First we formulate a slight modification of Theorem 1 in [9] which can be proved
in the same way.

Assume that functions a; satisfy the following conditions.

(Ay). The functions a; : Q7 x R**! x LP(0,T;V) — R satisfy the Carathéodory
conditions for arbitrary fixed v € LP(0,T;V) (i =0,1,...,n).

(A3). There exist bounded (nonlinear) operators g; : L?(Qr) — Rt and k; :
L?(Q7) — L4(£2) such that

jai(t, z, Go, )| < g (w)l[CofP ™ + [P + [ka ()] ()
for a.e. (t,7) € Qr, each (¢p,¢) € R"™! and u € LP(0,T; V).

n

(A3). Y @it 2, Go, Gu) = @it 2, Go, 5 w))(G = ¢) = [g2()](B)IC = ¢ (2.1)

i=1
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where
—0

[g2(w)](t) > ¢* [1+ [ u o))~ 5 t€[0,T] (22)
¢* is some positive constant, 0 < o* < p — 1.

(Aa). Xoigai(t, z, Go, Gu)G = [ga(w)](B)[|Cof? + [CIP] — [Ra(w)](£, @)

where ko(u) € L'(Q7) satisfies with some positive constant o < p — o*
| Ka(u) Nl (u < const [1+ || w loosn] "+ t€ 0,7,

(As). If (ur) — w weakly in LP(0,T;V), (Diuy) — Diu weakly in L9(0,T;V™),
(¢k) — ¢o in R and (¢¥) — ¢ in R™ then for a.e. (t,7) € Qr

klingo &1(ta ‘T’C(]f, Ckvuk) = (Nli(t,$, COa Cvu)a i=0,1,..,n,

for a subsequence, in the case i = 0 assuming that (Djuy) — Dyu in L*(Qr) (I =
1,...,n) holds, too.

Remark 2.1. Assumption (A4s) is weaker than the corresponding assumption in [9],
assumptions (Ap) - (A4) are the same.

Definition 2.1. Assuming (A1 )-(As), define operator A : LP(0,T; V) — Li(0,T; V*)
by

[A(u),v] = / {Z a;(t, z,u, Du;u)D;v + ao(t, z, u, Du; u)v} dtdx (2.3)

i=1
where the brackets [-,-] mean the dualities in spaces L1(0,T;V*), LP(0,T;V).

Since the assumptions (A1) - (A4) are the same as in [9], we obtain that operator
A is bounded, demicontinuous and coercive. By using the same arguments as in [9],
one gets by (A4s) that A is pseudomonotone with respect to D(L) = {u € L?(0,T;V) :
Dyu € L(0,T;V*),u(0) = 0}. According to the theory of monotone type operators
(see, e.g. [2], [10]) we have

Theorem 2.1. Assume (A1) - (As). Then for any f € L(0,T;V*) and ug € L?(Q2)
there exists w € LP(0,T;V) such that Dyu € L1(0,T; V™),

Dyu+ A(u) = f,  u(0) = ug. (2.4)

Now we formulate assumptions on functions a;, aé in equation (1.1).

(B1). The functions ai,ag : Qr x R x L2(Q7) — R satisfy the Carathéodory
conditions for arbitrary fixed v € L?(Qr) (i=1,...,n, j =0,1,2).

(By). There exist bounded (nonlinear) operators g; : L*(Qr) — RT and ky :
L?(Q7) — L9(f2) such that

Jai(t, 2, Go, CG;v)| < g1(0)[1CoP ™" + [CIP7H] + [k1 (v))(=),
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Jab (¢, 2, Go. G 0)| < g1 ()G~ + (¢ + [k (v)] ()
for a.e. (t,7) € Qr, each ({p,¢) € R"™ and v € L?(Q7).

n

(Bs). Y lait,z,Co,Gv) = ailt, 2,0, ¢*30)](Gi = ¢) = [2()](D]¢ — C*7 - (2.5)

i=1

where .
lg2(](t) > ¢ [1+ | v |2qn] » t€[0,T], (2.6)

c* is some positive constant, 0 < o* < p — 1.

(By). Z?:o ai(t, x, o, ¢ v)G + a8(t7m, Co, ¢ 0)Co > [g2(0)](B)[ICo|P + [€]P),
lad (t, %, Co, C;0)| < (B (0)](E 2)[1 + |Col? + [¢)7], j=1,2

Withogﬁj <p-1,

/ |[h§(v)](r,x)|qidrda: < const (1+ || v || z2(q,))” where

t

o<p-ot, q=pl/l-1), pi=p/(p;+1).
(Bs). If (v) — v in L2(Qr), (¢§) — (o in R and (¢¥) — ¢ in R™ then for a.e.
(t,z) € Qr, for a suitable subsequence

khm ai(t7xan’Ck;vk) = ai(t7x7<0ag;v)7 1= 17 e N,
—00

Jim aj(t, 2,65, o) = af(t 2, 6o, o), 5 =012,

On operators 7; assumithat
(G) v : L*(Qr) — C(Qr), (j = 0,1,2) are continuous (nonlinear) operators such
that [v;(w)](-,z) is absolutely continuous for a.e. fixed = € €,

0
F Wt 2) 2 co, 0= [y (w)](t,2) <t
with some constant ¢ > 0 and 2 [y2(-)] : L*(Q7) — C(Qr) is continuous operator.

Example 2.1. Condition (G) is fulfilled e.g. by the operators of the form

B(w)(t,z) = t8 { | rrr g deg}

where T, %—1;

01 < 8 <1 with some constant §; > 0 and 3’ > 0.

are continuous on Qr x Qr, further, I', %% > 0, 8 € C'(R) satisfies
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Definition 2.2. Assuming (B1) - (Bs), (G), define operator A : LP(0,T;V) —
L0, T; V™) by

Z/ a;(t, z,u, Du; u([yo(w)](t, z), z))D;v dtdx
—l—Z/ ab (t, z,u, Dus u([y; (w)](t, ), ) )v dtda
j=0"Qr

+/ a%(t,x,u,Du;Du(['yg(u)](t,x),x))vdtdx.

T

Theorem 2.2. Assume (B1) - (Bs), (G). Then for any f € L0, T;V*) and ug €
L?(Q) there exists u € LP(0,T;V) such that Dyu € L4(0,T;V*),

Diu+ A(u) = f,  u(0) = up. (2.7)

Proof. Define functions a; by

ai(t, =, Co,CGu) = ai(t, v, o, G u([vo(w)](t

ao(t, x,Go,Gu) = ag(t, z, o, G ullyo(w)(t, z), z)
+ag(t, , Co, G u(ln (w)(t, ), )
+ag(t, z, Co, ¢ Du([y2(w)](t, ), x)).

We shall show that these functions a; satisfy the assumptions (A4;) - (As). Clearly,
(A1), (As) are satisfied by (Bi1), (Bs3). Further, by using the notation ¢;(t,z) =
i (W](t, ) and (G),

[ u(lys(W](t,2),2) (112, = / {/ |U([%(U)](ta$)vx)|2dt} dx
{/ [u(t;(t, ) |2 }

< %HUHQL%Qf)v j=0,1 0<t<T,

,(17),1’))7 i=1,...,n
)

and thus we obtain (Az) from (Bs). Similarly,

| Du(fro(w)](t, ), 2) 112, 0 || Du ||2(q,) -
Inequality (2.8) implies

g (u(fro (]t 2), 2))] (£) > comst [1+ || u || 2g] ™ (2.9)
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and by (By)
/Q [h%(u([%(u)](t,17),3:))](1i (r,z)drdr < const [1—&— Il w ”L"’(Qt)ra (2.10)
/ [h%(DU([’}Q(U)](f,(E)7l'))]q? (r,z)drdx < const [1—&— || Du ||L2(Qt)]g

t

Hence, by using the notations

vi(t,x) = ([ 1(W)](t, z), z),
| P(t2) = Dulbp(t2),2),
laf)(t, z, Co, G 07)Co| < [M(v))](t, )const [1+ [GolP7 1 + [¢]P7H!] (2.11)
< lga (@GP + 161 + CE{ NI )% + 1}, 5 =1,2

where q{ = pjl/(p]1 - 1), p]i = p/(p; + 1). Choosing sufficiently small ¢ > 0, one
obtains (A4) for functions a; from (By) and (2.10) with
Fo(](ta) = C(e) {Phuln @]t e), )" (o) +1}
+0(@) B3 (Dula (u))(t, ), 2)] % (¢, ).

Finally, we show that functions a; satisfy (As). Assume that (ug) — u weakly in
LP(0,T;V), (Dyug) — Dyu weakly in L2(0,T;V*), (¢§) — ¢ in R, (¢¥) — ¢ in R™.
Then (uy,) — u strongly in L?(Q7), for a subsequence and for j = 0,1

wr ([ (w)J(E, ), @) — u([y; (W)@, 2), @) = {ur([y; (ue)] (¢ @), 2) — ully; (we)l(t, @), 2)}
[y (wn)](t, 2), ©) — u(ly; (w)](t, z), 2)}-
(2.12)

For the first term in the right hand side of (2.12) we have (by using the notation
Uyt z) = [y;(un)](t ), (G))

T
/Q { / g (5 () (8, 2), ) u([w(ukn(t,w),xﬁdt} dr

T
< 1 |ug (1, ) — u(T, l’)\szda: o
Qr

Further, w € LP(0,T;V), Dyu € L9(0,T;V*) imply u € C([0,T]; L%(Q)) (see, e.g.
[11]). Thus u : [0,7] — L2(f2) is uniformly continuous, hence for arbitrary ¢ > 0
there exists § > 0 such that

/Q [u(f; (un)](, 2), ) = u(ly; (W)](¢, @), 2)Pde < e
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i [y (ur)(t, ) = [ (W]t 2)| < 6 for all (¢, 2) € Qr.

Since the operator v; : L?(Qr) — C(Qr) is continuous, there exists ko such that
[ (wn)I (¢, @) = [y (w)](8, )| < 6 for k > ko.

Consequently, for k > kg

/ [ (ui))(t, 2), 2) = u(ly; (w)](t, 2), 2)|*dudt < €T,

T

i.e the second term on the right hand side of (2.12) is converging to 0 in L*(Q7).
Thus we have for the functions

Ui(tv z) = uk(h/j (ur)](t, z), z), v’ (t,z) = u([’yj (W]t x),x), j=0,1
that (v]) — v’ strongly in L?(Qr). Similarly, by using assumption (G) and the
substitution in (2.8), for

Uz(t7x) = Dluk‘([rm(uk)](t?x)?x)’ Uz(t7m) = Dlu([’}@(u)](t,l‘),$) (l =1, ’n)

we have (v) — v? strongly in L?(Qr), assuming that (Djuy) — Dju in L*(Qr).
So by (Bs) assumption (As) is satisfied for a; (i = 0,1,...,n). Therefore, by
Theorem 2.1 we obtain the existence of solutions to (2.7). U

Now we formulate an existence theorem in (0,00) which can be obtained from
Theorem 2.2, by using a diagonal process and the Volterra property (see, e.g. [7]).
Denote by LP (0,00;V) the set of functions u : (0,00) — V such that for each fixed

finite T > 0, ulo.r) € LP(0.T5 V) and let Qoo = (0,00) x €, L (Qu) the set of
functions u : Qs — R such that u|g, € L*(Qr) for any finite T. On operators v;
assume

(G) Operators v; : L} (Qoo) — C(Qo) are of Volterra type, ie. v;(u)|on
depends only on u|g,, for any finite T and -;, %[72(-)] : L?(Qr) — C(Qr) are
continuous for every T'. Further, [y;(u)](-, ) is absolutely continuous for a.e. fixed

x € Q, 5
Wt 2) 2 co, 0< [y;(u)](t,2) <t

with some constant cq > 0.

Theorem 2.3. Assume that
ai,aé t Qoo X R x LZQOC(QOO) —R, 7;: LfOC(QOO) — C(Quo)

satisfy assumptions (Goo) and (B1)—(Bs) for any finite T, further, a;(t, z, Co, (;u)|Qr
ab(t,z,Co,Cu)|lgr depend only on ulg, (Volterra property). Then for any f €
L1 (0,00; V*), ug € L*() there exists u € LY (0,00; V) which is a solution of (2.7)

for any finite T .



On nonlinear functional parabolic equations with state-dependent delays 95

3. Boundedness and stabilization

Theorem 3.1. Let the assumptions of Theorem 2.3 be satisfied such that vo(u) is
depending only on t (not on x) and for all u € L? (Qu), sufficiently large t we have

loc

on operators gs, h (in (Bs))

—o* /2
[g2(w)](t) > const|1+ sup /UQ(T,.’I?)CZ.%“| , t€(0,00), (3.1)
T€[0,t] JQ
) , 5/2
/Q[hg(u)](t,x)qldm < const |1+ (/Qu (t,:b)dw) ] , (3.2)

where 0 < & < p—o0*, ¢ < 2. In the particular case when v1(u) is depending only on
t and not on x, we assume (instead of (3.2))

[ bty (5.3)
Q

o/2 (r-0")/2
< const |1+ sup </ u2(t,x)dx) + p(t) < sup / u2(t,x)dx>
T€[0,t] Q T€[0,t] JQ

where limy ¢ = 0. Further, for all u € LP(0,00;V)
|h3(u)| < const. (3.4)

Finally, || f(t) ||v+ is bounded for t € (0, 00).
Then for a solution u € L} (0,00; V) of (2.7) in (0,00), [, u?(t,x)dx is bounded
fort € (0,00).

Proof. Let u € L}, (0,00; V) be a solution of (2.7). Applying (2.7) to u(t) € V, we
obtain for

() = / Wt a)dz,  yolt) = / (o (w)](£), 2)de,

) = [ w(nla).)ds,
by using (2.11) with sufficiently small € > 0,

1

S7(0) + Soaull0)](0), )(®) [ w(t) I (35)

¢ { [ tatn @, a)tas + [ Du(ba(e). o) s+ 1}
<1l £0) Ty~ w(t) v

< const || u(t) ||v -
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Young’s inequality implies

lu® v < S galulbo(@0,2) | ulo) I 3.5
+L !
qe? go(u([yo(w)](t), x))Q/P'

Choosing sufficiently small € > 0, by

Il ut) [If> constg(t)”?
we obtain in the case (3.3), when -4 (u) is not depending on z,
—o* /2

7(t) + gt |1+ sup yo(7)

T€[0,t]

< const

1+ sup y1(r)7/2+o(t) sup yi(r)P=7/2 4+ sup yi(r) @/ p)(g*/z)]'
T€[0,t] T€[0,¢] T€[0,t]

Since [v;(u)|(T) < 7, sup,epo, ¥ (T) < supr¢jo,q 9(7) (j = 0,1), thus we have

ORETOLE

—o* /2
1+ sup g(T)]
T€[0,t]

< const

L+ sup §(r)7/2 + () sup §(r)*~/% 4 sup g<7><q/P><"*/2>].
T€[0,t] T€[0,¢] T€[0,t]

Since 0 < p — 0™, limy, ¢ = 0 and (g/p)o* < p — o*, one obtains (as in [8]) that the

above inequality implies the boundedness of §(t).
In the case (3.2) (when v;(u) may depend on ¢, ),

g |u<h1<u>1<t,x>,x>|2dx)&/2] .

Hence, by using the notation (¢, ) = [y1(u)](t, )

[ mbatestane . oppar

/Q |hs (u [y (w))(t, w),x))|q}dac < const

5/2

< const(Ty — T1) —|—const/ {/ [e([y1 (w)](t, x), )|2dx] dt
w(T2 36)

< const(Ty — T ) + const / |u(7’,:1:)|2dx} dr
1/J(Tlaﬂf)
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Thus from (3.5), (3.6) one obtains
T2

JH(To) — H(T1) + & /T (1)

P (T2,) 3/2
< const(Ty — T ) + const / / lu(r, z)|2dr | da
Q P (Th,x)

doTs 5/2
< const(Ty — T4 ) + const / g(r)dr
d

—o* /2
1+ sup g(7) dt
T€[0,t]

1Ty

with some constants dy,ds > 0. Since & < p — o*, the last inequality implies (as
above) the boundedness of §. U

Now we formulate a theorem on stabilization of u(t) as t — co.

Theorem 3.2. Assume that the conditions of Theorem 3.1 are fulfilled with Volterra
operators
g1 L}, (Qs) — RY, (3.7)

k;l : LlZ()C(QOO) - LQ(Q) (38)

such that a}(t,z,p,(;0) = 0 and the following monotonicity condition is satisfied
with some constant co > 0:

n

> lai(t @, o, Gu) — ailt, 2, G5, ¢ w)l(G - ¢) (3.9)

1=1
+ [ag(tv$a<07C§U)—ag(t,$7<8»C*5U)](CO—CS)
> [g2(W](OIC = 1P + 160 — G 1P+ 2o — 6)*.

Further, for arbitrary fized u € LY (0,00;V) N L>®(0,00; L3(2)), with Dyu €

loc

LY (0,00;V*), ((o,¢) € R*L q.a. 2 € Q

loc
|ai(ta$7C0;C§U) - a’i,oo(x7<07g>| S q)(t>[1 + |C0‘p—1 + ‘C'p_lL 1= 13 ceey 1,
lag (t, 2, o, G u) = ag oo (%, G0, O < D)1+ |G~ + ¢, (3.10)

with some Carathéodory functions a; ., af o, where [ ®(t)1dt < oo, [~ ¥(t)?dt <
o0. On a} we assume for every w € V the inequality

lag(t, 2, o, G5 w) — @ oo (w3 w)] < V()L + [Gol]

where CL(ILOO : Q xV — R is such that a(1)7oo(~;w) s measurable; there exist constants
a > 0,0 < cg < cg such that for all u,u*,v € LY (0,00;V) N L>*(0,00; L*(12)),

loc
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T > Ty > 0,
T
/ / lay(t, 2, v, Dv;u) — ap(t, x, v, Dv;u*)|*dtds (3.11)
T Q
T2
< cocg/ / [u — u*)?dtdz, [v1(w)](t,z) >t — a.
max{0,T1—a} JQ

Finally, there exists foo € V* such that
| f(t) = foo llve< @(2). (3.12)

Then for a solution of (2.4) in (0,00) we have

N

/0 | w(t) — uso |1} dt 00, /0 I w(t) — voo ||2L2(Q) dt < oo, (3.13)

lim || u(t) ~ use z20) = (3.14)

0,
/ | u(t) — too ||%2(Q) dt < const{ e T (3.15)
T

+/OT [e—’ﬂT—t) /too(q)(T)q + \I/(T)Q)dT:| dt}

with some constant 7 > 0 where u, € V is the unique solution to
Ao (o) = foo (3.16)

and the operator A, : V. — V* is defined for z,v € V by

n
(Ao (2),v) :Z/ ai,oo(x,z,Dz)Divdx—l—/ag,oo(a:,z,Dz)vdx—l—/ aém(x;z)vdx.
— Jo Q Q

Proof. Since the functions a; - and ag?oo satisfy the Carathéodory condition and
ap o (+; 2) is measurable, we obtain from (Bs), (3.10) that Ay : V — V* is bounded
and demicontinuous. From (3.9), (3.10), (3.11) it is not difficult to derive that A is
strictly monotone and by (B,) A is coercive. Thus there exists a unique solution of
(3.16).

If u is a solution of (2.4) in (0, c0) then by (3.16) one obtains

(Defu(t) = uoo], u(t) = uoo) + ([A(w)]() = Aco (o), ult) — tos) = (3.17)

(fF(8) = foor u(t) = too)
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By using the notation

n

((Au0:2) = [ S ittt o), Do) o)t ).0)) Dz

+/ﬂa8(t,x,uoo(:n),Duoo(x);u([’yo(u)]( ,x),x))zdx

+ / ap(t, o, u, Du;uss )z da
Q

+/ ag (t, ,u, Du; Du([y2(w)](t, x), 2))z dx,
Q
(3.9) and Young’s inequality, we obtain for the second term in (3.17)

([A(w)](t) = Aco (to0 ), u(t) — Uoo) (3.18)
= ([AW)](#) = [Au(tso)](t), u(t) — tioo) + ([Au(co)](t) — Aso(tss), ult) — uco)

> [g2(u(lo(W)](t, ), 2))I(E) | u(t) = use (I} +C2/Q|U(t) — Uso|*d

- ‘ /Q[a(l)(t, x,u, Dusu([y1(w)](t, ), ) — ap(t, 2, u, Du; teo )| [u(t) — oo ]dz
= [{[Au(uoo)](#) = Ao (uoo), ult) — ool

For arbitrary € > 0

[([Au(too)] () = Aoo(too), u(t) — uoo)|

2
3
< 5 lhul) —uee Iy 45 ult) - ue 122 (0)

+C(e) Z/Q |a;(t, , Yoo, Dtoo; u([yo(w)](t, &), %)) — @ 00 (T, Uso, Do |dz

(5)/9|a8(t,w,uoo,Duoo;u([’yo(u)](t,x),m)) —agm(x,uoo,DuOOPdm

+C(e) [ |ad(t, z,u, Dusus) — aém(x;uoo)Fdx
Q

+C(e) Qlaﬁ(t,x,u,DU; Du([ra(w)](t, @), ))[*da

and

[(f(t) = foo, u(t) — uso)| < €P/p || u(t) — uso [y, +C(e) | f(t) = foo I+ -
Thus, since [, u*(t)dx is bounded and

(Di[u(t) — tool, u(t) — too) = ) where y(t / [u(t) — uoo|*dz,
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integrating (3.17) over (T1,T5), we obtain with sufficiently small &

T2 T2

I ut) — e 2 dt + & /T y(t)dt (3.19)

y(Ty) — y(Th) + & /

T
1/2

T
/ / lad (t, 2, u, Du; u([y1(w)](t, ), x)) — ab(t, z,u, Du; us )|*dtdz
m Jo

T 1/2 T T
X / ydt <c / PUdt +/ W2dt
T Ty Ty
with some constants ¢*, ¢, é > 0 where ¢35 < é& < co. By (3.11) for sufficiently large
T

T
/ / lad (t, 2, u, Du; u([y1(w)](t, ), x)) — ab(t, z,u, Du; us )|*dtdz
m Jo

T
< ad | [l 0) — v )P
max{0,T1—a} LJQ
T>
< c%/ {/ |u(T, ) —uoo(z)|2d:c} dr.
max{0,T1 —2a} L/ Q

Since y is bounded, c3 < & and [ ®dt < oo, [ W2dt < oo, we obtain from (3.19)
with 71 = 0 (3.13).
Thus by (3.11), (3.19)

/ / lag (t, z,u, Dus u([y1 (w))(t, ), 2)) — ab(t, x, u, Du;us )| *dtdr < oo,

and, consequently, lim., y = 0.
Because, first observe that by (3.13)

liminfy(t) =0
t—o0
Hence there exist

T <Ty <..<T,<..— 400 such that klim y(Tx) = 0.

Applying (3.19) to Ty = T}, and To = T with T' > T}, we obtain
0<y(T) <y(Tg)+ar where lim a; =0

k—o0

and so lim, y = 0.
Finally, from (3.11), (3.14), (3.19) we obtain as Tp — oo

oo

—y(Th) + c*/ | w(t) — uso |1}/ dt—l—ég/ ydt

T1 Tl

—c3 [/ ydt} [/ ydt} < const [/ O(t)dt +/ \P(t)th} .
T1—2a T Ty 4
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Hence, by using the notation Y (T) = [ y(t)dt,

Y/(Tl) + (52 - 63/2)Y(T1) - (C3/2)Y(T1 - 2a) (320)
< YT + &Y (Th) — esY (Th — 2a)V/2Y (Ty)V/?

< const {/ @thJr/ \IJZdt}
T T

Since the real part of the roots of the characteristic equation
A+ (G2 —c3/2) — (c3/2)e 2 =0

is negative, we obtain for the solution the inequality (3.15). a

Example 3.1. Consider examples of the following type:
ai(ta‘r7<07<;u) = b(t7x7 [H(u)](tvx))CZ‘C|p_27 i = 17"'7”7
ag(tax,CmC;U) = bo(t,IL‘, [HO(U)](tvx))CO|CO‘p72 +62<07 C2 Z 0

where b, by are bounded Carathéodory functions satisfying with some positive constant
c3

b(t,z,0) > 1;%, bo(t,z,0) > lf%;
aj(t, @, o, Gu) = by, @, [Fy(w)](t, 2))ad (t, 2, G0, (), j=1,2 (3.21)
(or a% is a sum of such products), where functions oz%, bé satisfy
(2, Go, )] < comst[1+ [Gol™ +[CI7], (b (t,2,0)[ < comst(1+ |6]2).
Finally,

H Hy: L*(Qr) — C(Qr), Fj:L*(Qr)— L*(Qr)

are continuous operators of Volterra type, satisfying

| H(u) logy< const | ul[r2q,, | Ho(w) oy < const || wllrzq,),

c/2
/ |Ej(u)]? < const </ |u|2> . t>0.
Qt Qt

It is not difficult to show that the conditions of the existence Theorem 2.2 are fulfilled.
If the above conditions hold for all T' > 0 and ¢ > 0 then the conditions of Theorem
2.3 are satisfied.

Further, assumptions of Theorem 3.1 are fulfilled if the following additional as-
sumptions are satisfied. Assumption (3.1) is satisfied if

1/2
| Hu) lc@, < const sup {/ u2(7',x)dx} ,
¢ T€[0,t] Q

IN

1/2
const sup {/ u%r,x)dw} t>0,
Q

| Ho(u) lloqn €[0,4]
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(3.2) is satisfied if

5/2
/ [Py (u)]?(t, x)dz < const </ uz(t,x)dx> for all £ > 0,
Q Q

(3.3) is satisfied if for all t > 0

/2
sup /uQ(tx)dx
T€[0,t] JQ

‘|(p—0*)/2

/\Fl(u)\z(t,a:)dx < constg 1+
Q

+o(t) | sup /Quz(t,x)da?

T€[0,t]

Inequality (3.4) is satisfied if
|b3(t, x,0)| < const.

Finally, the assumptions of Theorem 3.2 are fulfilled if the following additional condi-
tions are satisfied for our example. c3 > 0, there exist measurable functions b, by, oo
such that for all fixed u € L7 (0,00; V)N L>(0, 00; L*(2)), with Dyu € L (0, 00; V™)

loc loc

bt (@] (2)) — b (@)] < B0 Pt 2, [H(](E,2)) — b (0)] < D)
|b8(t7$76)| < (I)(t),

Functions b, by may have the form

. boo () _ boool(T)
b(tax70) - 1 +(I)(t)|9|o.*a bo(t,ﬂf,e) - 1+(I)(t)‘0‘0.*

where boo, by, o0 are measurable functions having values between two positive constants.
Further,

aé(ta €, CO: Cv u) = b(ll,oo(xa Fy (U)) + ﬂ(tv <07 <)7 (322)
where

1B, Co, O < () (1 + [Col),

the Carathéodory function by ., satisfies the Lipschitz condition
166,00 (2, 6) = b o0 (w,0")] < €510 — 07|
and the operator F satisfies
T2 T2
/ / | Py (u) — Fy(u))?dtde < coég/ / lu — u*|Pdtdz, co > E3és.
T JQ max{0,T1—a} JQ

(In this case af is a sum of two products of the form (3.21).)
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A simple example satisfying the conditions of Theorem 3.1 is
Dyu— Dpu+ [ufPu+ cqu + by (t, 2, ([ (w)](1), ) + b3(t, @, Du([y2(w)](t), 2)) = f

where A\, is the p-Laplacian, defined by Ayu =377, D;(|Du|P~2Dju).
If the fourth term is given by (3.22) and [b3(¢,x,0)| < ¥(¢) then Theorem 3.2
holds.
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