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Abstract. In this paper we are concentrated on the problem of absolute stability
for Lur’e systems with time-varying delay in a range. An appropriate Lyapunov-
Krasovskii functional is proposed to investigate the delay-range-dependant stability
problem.The time-varying delay is assumed to belong to an interval and no restriction
on its derivative is needed. We introduce some relaxation matrices which allow the
delay to be a fast time-varying function. Furthermore, numerical examples are given
to prove effectiveness and benefits of the proposed criteria.
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1. Introduction

The problem of stability of time-delay systems has received considerable attention
in the last two decades, since they are often a principle source of instability and
degradation in control performance in many control problems such as nuclear reactors,
chemical engineering systems including communication network. Due to time-delay
occurring in such practical systems, current efforts has been devoted on this topic.
For the recent progress, the reader is referred to [9, Gu, Kharitonov and Chen],[10,
Gu and Niculescu].

We shall note that studying of stability of time-delay systems have grown steadily.
Indeed, since 1940 all the results were delay independent see for examples [3, Bliman],
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[8, Gan and Ge], [14, He and Wu], [18, Li], [20, Liao], [24, Popov and Halanay], [25,
Somolines]. But, the problem is that when the time-delay is small, these results are
often overly conservative, especially, they are not applicable to closed-loop systems
which are open-loop unstable and are stabilized using delayed inputs. That’s why,
many efforts were sacrificed to provide delay-dependant stability criteria.

Since, the introduction of absolute stability by Lur’e (1957), the absolute stability
problem of nonlinear control systems with a fixed matrix in the linear part of the
system and one or multiple uncertain nonlinearities satisfying the sector constraints
has been the subject of many researchers see [2, Aizerman and Gantmacher], [17,
Khalil], [20, Liao], [21, Lur’e], [23, Popov], [28, Yakubovich and al.].

From the practical point of view and since that in general the delay is not known,
it is worth considering it as time-varying ([4, Chen et al], [27, Yangling Wang],[29,
Yan H et al]). For this object, one is interested in conditions that constrain the upper
and lower bounds of the delay and the upper bound of the first derivative of the
time-varying delay.

To the best of our knowledge, for the case where only the upper and lower bounds
of the interval time-varying delay are precisely known and the lower bound of the delay
is greater than zero, there is no result available for stability for such kinds of systems.
It should also be mentioned that even for the case where the lower bound of the time-
varying delay is zero and without considering the derivative of the time-varying delay,
there are few works available in the existing literature [6, Fridman and Shaked], [12,
Han and Jiang], [5, Fridman ] by using Lyapunov-Krasovskii functional approach.

For this reason we are motivated to provide new stability criterion, in order to
improve those in which some useful terms are ignored, when estimating the upper
bound of the derivative of Lyapunov functional [7, Fridman and Shaked], [10, Gu and
Niculescu].

Those resulting criteria are applicable to both fast and slow time-varying delay,
in contrast with previous works in which the upper bound of the first derivative of
the time-varying delay was either restricted to one or completely neglected, see [12,
Han and Jiang], [26, Wu, He, She and Liu], [30, Zhang, Min, She and He]. It is
important to mention that this became possible since the free matrices M1 and M2

of the proposition provide some extra freedom in their selection.
The stability criteria are formulated in the form of Linear Matrix Inequality

(LMI). Moreover, we give examples to show the applicability of our main results.

Notation: Throughout this paper, R is the set of real numbers, R
n denotes the n

dimensional Euclidean space, and R
n×m is the set of all n×m real matrices. I is the

identity matrix matrix. The set Cn,hM
:= C([−hM , 0], Rn) is the space of continuous

functions mapping the interval [−hM , 0] to R
n. The notation A > 0 is that the matrix

A is positive definite.
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2. Absolute stability analysis

We consider the following time-varying-delay system

ẋ(t) = A0x(t) + A1x(t − h(t)) + Bω(t)

y(t) = C0x(t) + C1x(t − h(t))

ω(t) = −ϕ(t, y(t)) (2.1)

where x(t) ∈ R
n is the system state, y(t) ∈ R

p the measured output, and the nonlinear
function ϕ(., .) : R+ × R

p → R
p is assumed to be continuous and belongs to sector

[0,K], i.e ϕ(., .) satisfies

ϕ⊤(t, y) [ϕ(t, y) − Ky] ≤ 0, ∀(t, y) ∈ R+ × R
p, (2.2)

where K is a positive definite matrix. The matrices A0, A1, B, C0, and C1 are real
matrices with appropriate dimensions.
The time delay h(t) is a time-varying continuous function that satisfies

0 ≤ hm ≤ h(t) < hM and ḣ(t) < µ, (2.3)

where hm, hM and µ are known constant reals.
Note that hm may not be equal to 0. The initial condition of (2.1) is given by

x(t) = φ(t), t ∈ [−hM , 0], φ ∈ Cn,hM
.

It is assumed that the right-hand side of (2.1) is continuous and satisfies enough
smoothness conditions to ensure the existence and uniqueness of the solution through
every initial condition φ.

We first introduce the following definition.

Definition 2.1. The system (2.1) is said to be absolutely stable in the sector [0,K]
if the system is globally uniformly asymptotically stable for any nonlinear function

ϕ(t, y(t)) satisfying (2.2).

We will extend the work of [1, Ben Abdallah, Ben Hamed and Chaabane], in
which, only systems with constant delay are studied, to systems with time-varying
delay in a range.

In addition to this, we propose to discuss the absolute stability and the stabiliza-
tion of a large class of systems, that is, the class of Lur’e systems with time-varying
delay.

Furthermore, we will improve the results of ([12, Han and Jiang], [26, Wu, He,
She and Liu], [30, Zhang, Min, She and He], etc), in which, the delay is assumed to be
time-varying in a range, by keeping in our account all informations about the delay
as well as its first derivative.

The development of the work in this paper requires the following lemma which
can be found in Reference [30, Zhang, Min, She and He].
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Lemma 2.1. Let x(t) ∈ R
n be a vector-valued function with first-order continuous-

derivative entries. Then, the following integral inequality holds for any matrices

M1,M2 ∈ R
n×n and X = X⊤ > 0, and a scalar function h := h(t) ≥ 0:

−

∫ t

t−h(t)

ẋ⊤(s)Xẋ(s)ds ≤ ξ⊤(t)Υξ(t) + h(t)ξ⊤(t)Γ⊤X−1Γξ(t), (2.4)

where

Υ :=

[

M⊤
1 + M1 −M⊤

1 + M2

∗ −M⊤
2 − M2

]

, Γ⊤ :=

[

M⊤
1

M⊤
2

]

, ξ(t) :=

[

x(t)
x(t − h(t))

]

.

Under the sector condition (2.2), we will give a sufficient condition for absolute
stability of system (2.1).

We have the following theorem.

Theorem 2.1. For given scalars 0 ≤ hm < hM , the system (2.1) with nonlinear

function satisfying (2.2) is absolutely stable if there exist a scalar ε > 0 and a positive

definite matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0, R3 > 0 , and

real matrices M1, M2, N1, N2, S1, S2 ∈ R
n×n, such that the following LMI

Ξ1=





































Ξ11 Ξ12 0 Ξ14 Ξ15 hMAT
0 R1 hMMT

1 Ξ18 0 hMAT
0 R3 hMST

1

∗ Ξ22 0 0 Ξ25 hMAT
1 R1 0 Ξ28 0 hMAT

1 R3 hMST
2

∗ ∗ Ξ33 Ξ34 0 0 0 0 Ξ39 0 0
∗ ∗ ∗ Ξ44 0 0 hMMT

2 0 Ξ49 0 0
∗ ∗ ∗ ∗ Ξ55 hMBT R1 0 Ξ58 0 hMBT R3 0
∗ ∗ ∗ ∗ ∗ −hMR1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hMR1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −hMR3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −hMR3





































<0

(2.5)

where

Ξ11 = A⊤
0 P + PA0 + Q1 + Q2 + Q3 + M⊤

1 + M1 + S⊤
1 + S1,

Ξ12 = PA1 − S⊤
1 + S2,

Ξ14 = −M⊤
1 + M2,

Ξ15 = PB − ǫ C⊤
0 K,

Ξ22 = −(1 − µ)Q3 − S⊤
2 − S2,

Ξ25 = −ǫ C⊤
1 K,

Ξ33 = −Q1 + N⊤
1 + N1,

Ξ34 = −N⊤
1 + N2,

Ξ44 = −Q2 − M⊤
2 − M2 − N⊤

2 − N2,
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Ξ55 = −2ǫ I,

Ξ18 = (hM − hm)AT
0 R2,

Ξ28 = (hM − hm)AT
1 R2,

Ξ58 = (hM − hm)BT R2,

Ξ88 = −(hM − hm)R2,

Ξ39 = (hM − hm)NT
1 ,

Ξ49 = (hM − hm)NT
2 ,

Ξ99 = −(hM − hm)R2,

holds.

Proof. We consider the Lyapunov-Krasovskii functional candidate

V (t, xt) = x⊤(t)Px(t) +

∫ t

t−hm

x⊤(s)Q1x(s)ds +

∫ t

t−hM

x⊤(s)Q2x(s)ds

+

∫ t

t−h(t)

x⊤(s)Q3x(s)ds +

∫ 0

−hM

∫ t

t+θ

ẋ⊤(s)R1ẋ(s)dsdθ

+

∫ −hm

−hM

∫ t

t+θ

ẋ⊤(s)R2ẋ(s)dsdθ

+

∫ 0

−h(t)

∫ t

t+θ

ẋ⊤(s)R3ẋ(s)dsdθ

where the matrices P, Q1, Q2, Q3, R1, R2, and R3 are positive definite.
The derivative of V along the trajectories of system (2.1) is given by

V̇ (t, xt) = 2ẋ⊤(t)Px(t) + x⊤(t)Q1x(t) − x⊤(t − hm)Q1x(t − hm)

+x⊤(t)Q2x(t) − x⊤(t − hM )Q2x(t − hM )

+x⊤(t)Q3x(t) − (1 − ḣ(t))x⊤(t − h(t))Q3x(t − h(t))

+hM ẋ⊤(t)R1ẋ(t) −

∫ t

t−hM

ẋ⊤(s)R1ẋ(s)ds

+(hM − hm)ẋ⊤(t)R2ẋ(t) −

∫ t

t−hM

−hmẋ⊤(s)R2ẋ(s)ds

+h(t)ẋ⊤(t)R3ẋ(t) −

∫ t

t−h(t)

ẋ⊤(s)R3ẋ(s)ds
(2.6)

Using (2.3) and applying the integral inequality (2.4) to the right-hand side of (2.6),
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we obtain

V̇ (t, xt) ≤ 2ẋ⊤(t)Px(t) + x⊤(t)[Q1 + Q2 + Q3]x(t) − x⊤(t − hm)Q1x(t − hm)

−x⊤(t − hM )Q2x(t − hM ) − (1 − µ)x⊤(t − h(t))Q3x(t − h(t))

+ẋ⊤(t)[hMR1 + (hM − hm)R2 + hMR3]ẋ(t)

+ξ⊤1 (t)Υ1ξ1(t) + hMξ⊤1 (t)Γ⊤

1 R−1
1 Γ1ξ1(t)

+ξ⊤2 (t)Υ2ξ2(t) + (hM − hm)ξ⊤2 (t)Γ⊤

2 R−1
2 Γ2ξ2(t)

+ξ⊤3 (t)Υ3ξ3(t) + hMξ⊤3 (t)Γ⊤

3 R−1
3 Γ3ξ3(t)

with

ξ1(t) =

[

x(t)
x(t − hM )

]

; Γ⊤

1 =

[

M⊤
1

M⊤
2

]

; Υ1 =

[

M⊤
1 + M1 −M⊤

1 + M2

∗ −M⊤
2 − M2

]

ξ2(t) =

[

x(t − hm)
x(t − hM )

]

; Γ⊤

2 =

[

N⊤
1

N⊤
2

]

; Υ2 =

[

N⊤
1 + N1 −N⊤

1 + N2

∗ −N⊤
2 − N2

]

ξ3(t) =

[

x(t)
x(t − h(t))

]

; Γ⊤

3 =

[

S⊤
1

S⊤
2

]

; Υ3 =

[

S⊤
1 + S1 −S⊤

1 + S2

∗ −S⊤
2 − S2

]

.

Rearranging the terms of the right-hand side yields:

V̇ (t) ≤ η⊤(t) Π η(t), (2.7)

where

Π :=













Π11 Π12 0 Π14 Π15

∗ Π22 0 0 Π25

∗ ∗ Π33 Π34 0
∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ Π55













, η(t) :=













x(t)
x(t − h(t))
x(t − hm)
x(t − hM )

ω(t)













with

Π11 = A⊤

0 P + PA0 + Q1 + Q2 + Q3 + hMA⊤

0 R1A0 + (hM − hm)A⊤

0 R2A0

+hMA⊤

0 R3A0 + M⊤

1 + M1 + hMM⊤

1 R−1
1 M1 + hMS⊤

1 R−1
3 S1 + S⊤

1 + S1,

Π12 = PA1 + hMA⊤

0 R1A1 + (hM − hm)A⊤

0 R2A1 + hMA⊤

0 R3A1 − S⊤

1 + S2

+hMS1R
−1
3 S2,

Π14 = −M⊤

1 + M2 + hMM⊤

1 R−1
1 M2,

Π15 = PB + hMA⊤

0 R1B + (hM − hm)A⊤

0 R2B + hMA⊤

0 R3B,

Π22 = −(1 − µ)Q3 − S⊤

2 − S2 + hMA⊤

1 R1A1 + (hM − hm)A⊤

1 R2A1 + hMA⊤

1 R3A1

+hMS⊤

2 R−1
3 S2,

Π25 = hMA⊤

1 R1B + (hM − hm)A⊤

1 R2B + hMA⊤

1 R3B,

Π33 = −Q1 + N⊤

1 + N1 + (hM − hm)N⊤

1 R−1
2 N1,
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Π34 = −N⊤

1 + N2 + (hM − hm)N⊤

1 R−1
2 N1,

Π44 = −Q2 − M⊤

2 − M2 + hMM⊤

2 R−1
1 M2 + (hM − hm)N⊤

2 R−1
2 N2 − N⊤

2 − N2,

Π55 = hMB⊤R1B + (hM − hm)B⊤R2B + hMB⊤R3B.

A sufficient condition for absolute stability of the system (2.1) is that there exist
real matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0 and R3 > 0, such that

V̇ (t) ≤ η⊤(t)Πη(t) < 0, (2.8)

for all η(t) 6= 0.
In order to show that Σ < 0, we shall use Shur complement and the S-procedure.

Using (2.2) implies

ω⊤(t)ω(t) + ω⊤(t) [KC0x(t) + KC1x(t − h(t))] ≤ 0.

Using the S-procedure, we can find ǫ > 0 such that

η⊤(t) Π η(t) − 2ǫ ω⊤(t)ω(t) − 2ǫ ω⊤(t) [KC0x(t) + KC1x(t − h)] < 0, (2.9)

for all η(t) 6= 0.
Rewrite (2.9) as

η⊤(t) Σ η(t) < 0, (2.10)

where

Σ =













Σ11 Σ12 Σ13 Σ14 Σ15

∗ Σ22 Σ23 Σ24 Σ25

∗ ∗ Σ33 Σ34 Σ35

∗ ∗ ∗ Σ44 Σ45

∗ ∗ ∗ ∗ Σ55













,

with

Σij = Πij , (i, j = 1, 2, 3, 4),

Σ15 = Π15 − ǫ C⊤

0 K,

Σ25 = Π25 − ǫ C⊤

1 K,

Σ35 = Π35,

Σ45 = Π45,

Σ55 = Π55 − 2ǫ I.

Finally, from Shur complement, the LMI (Σ < 0) is equivalent to the LMI (2.5).
This completes the proof. ¤

Next, we give examples showing a slight amelioration in the allowable upper bound
of h(t).
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3. Numerical examples

Example 3.1.

Consider the time delay system (2.1) with the nonlinear function satisfying (2.2)
and

A0 =

[

−2 0
0 −1

]

, A1 =

[

−1 0
−1 −1

]

, B =

[

0.01 0
0 0.04

]

,

C0 =

[

160 0
0 1.25

]

, C1 =

[

10 0
0 7.5

]

, K =

[

1 0
0 1

]

. (3.1)

For given µ, the computed upper bounds h2, which guarantee the stability of system
(2.1) for given lower bounds h1, are listed in Table 1. When h1 = 0, it is clear that
our result is improvement over those in [7, Fridman and Shaked] and [13, Han and
Jiang]. This comparison prove the merits of Theorem 2.1.

h1 h2 (Fridman and Shaked) h2 (Han and Jiang) h2 (new criterion)
0 0.7692 0.8654 0.8963022

0.05 - 0.8763 0.8847
0.10 - 0.8873 0.88866
0.15 - 0.8984 0.98248
0.20 - 0.9097 0.91412
0.30 - 0.9330 0.95324
0.40 - 0.9575 0.9724

Table 1: Allowable upper bound of h2 with given h1

Example 3.2.

Consider the following system with

A0 =

[

−2 0
0 −0.9

]

, A1 =

[

−1 0
−1 −1

]

.

B = C0 = C1 = K = 0.

Table 2 summarizes the results obtained in the literature and compares them to
the upper bounds h2 obtained by using Theorem 2.1 given in this paper. h2 is the
maximal allowable delay proved by each method. It is obtained by a linear search.
Clearly, our method produces much less conservative results, thus demonstrating its
validity.This example demonstrates the benefits of the proposed criterion for linear
systems with time varying-delay.
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Table 2: Allowable upper bound of h2 with given h1 for unknown µ

h1 Methods h2

0 Li and De Sousa(1997) 0.8571
Niculescu and al(1995) 0.99

Our method 1.5309

0.01 Li and De Sousa(1997) -
Niculescu and al(1995) -

Our method 1.5323

1 Jiang and Han(2005) 1.64
He,Wang,Lin and Wu(2006) 1.74

Our method 1.88

4. Stabilization of nonlinear delay system

This section presents the delay-dependent stabilization condition obtained by using
the absolute stability proposed in section 2.

Consider the following nonlinear control time-varying delay system

ẋ(t) = A0x(t) + A1x(t − h(t)) + Bω(t) + Gu(t)

y(t) = C0x(t) + C1x(t − h(t))

ω(t) = −ψ(t, y(t)) (4.1)

where A0, A1, B, G, C0, C1 are real matrices with appropriate dimensions, and the
nonlinearity ψ(t, y) belongs to the sector [0,K], K > 0.

The initial condition of (4.1) is given by

x(t) = φ(t), t ∈ [−hM , 0], φ ∈ Cn,hM
.

The time delay h(t) is a time-varying continuous function that satisfies

0 ≤ hm ≤ h(t) < hM and ḣ(t) < µ,

where hm, hM and µ are known constant reals. It is assumed that the right-hand
side of (4.1) is continuous and satisfies enough smoothness conditions to ensure the
existence and uniqueness of the solution through every initial condition φ.

The closed-loop system with the state control feedback

u(t) = Nx(t), (4.2)
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is given by

ẋ(t) = (A0 + GN) x(t) + A1x(t − h(t)) + Bω(t). (4.3)

The following theorem gives a sufficient condition for stabilization of the system by
means a state feedback when the nonlinearity ψ(t, y) belongs to the sector [0,K].

Theorem 4.1. For given scalars 0 ≤ hm < hM , λi, αi, βi ∈ R, i = 1, 2, if there

exist a scalar ǫ > 0, positive definite matrices P > 0, Q1 > 0, Q2 > 0, Q3 > 0, R1 >

0 R2 > 0, R3 > 0, and a matrix Y ∈ R
r×n such that the LMI

Ξ2 =





































Ξ11 Ξ12 0 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 0 Ξ110 Ξ111

∗ Ξ22 0 0 Ξ25 Ξ26 0 Ξ28 0 Ξ210 Ξ211

∗ ∗ Ξ33 Ξ34 0 0 0 0 Ξ39 0 0
∗ ∗ ∗ Ξ44 0 0 Ξ47 0 Ξ49 0 0
∗ ∗ ∗ ∗ −2ε.I hMBT 0 Ξ58 0 hMBT 0
∗ ∗ ∗ ∗ ∗ −hMR1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −hMR1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −hMR3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −hMR3





































< 0

(4.4)

where

Ξ11 = P (A0 + (λ1 + α1)I)⊤+(A0 + (λ1 + α1)I)P + GY + Y ⊤G⊤+ Q1 + Q2 + Q3,

Ξ12 = A1P + (α2 − α1)P ,

Ξ14 = (λ2 − λ1)P ,

Ξ15 = B − ǫPC⊤

0 K,

Ξ16 = hMPA⊤

0 + hMY ⊤G⊤,

Ξ17 = λ1hMR1,

Ξ18 = (hM − hm)PA⊤

0 + (hM − hm)Y ⊤G⊤,

Ξ110 = hMPA⊤

0 + hMY ⊤G⊤,

Ξ111 = α1hMR3,

Ξ22 = −(1 − µ)Q3 − 2α2P ,

Ξ25 = −ǫPC⊤

1 K,
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Ξ26 = hMPA⊤

1 ,

Ξ28 = (hM − hm)PA⊤

1 ,

Ξ210 = hMPA⊤

1 ,

Ξ211 = α2hMR3,

Ξ33 = −Q1 + 2β1P ,

Ξ34 = (β2 − β1)P ,

Ξ39 = β1(hM − hm)R2,

Ξ44 = −Q2 − 2(λ2 + β1)P ,

Ξ47 = λ2hMR1,

Ξ49 = β2(hM − hm)R2,

Ξ58 = (hM − hm)BT ,

Ξ88 = −(hM − hm)R2,

Ξ99 = −(hM − hm)R2

hold. Then the origin of the controlled system (4.1) is stabilized by the linear state

feedback (4.2) where

N = Y P
−1

.

Proof. Let 0 ≤ hm < hM , λ1, λ2, α1, α2, β1 and β2 are fixed reals. Using Theorem
2.1, the closed-loop system is stable if there exist positive definite matrices P > 0,
Q1 > 0, Q2 > 0, Q3 > 0, R1 > 0, R2 > 0, R3 > 0, and M1, M2, N1, N2, S1, S2 ∈
R

n×n such that the LMI (2.5) with replacing A0 by A0 + GN holds, then the origin
of system (4.1) is globally uniformly asymptotically stable. This is equivalent to the
feasibility of the following LMI

T⊤ Ξ2 T = ΞT < 0,

where

T = diag{P−1, P−1, P−1, P−1, I, R−1
1 , R−1

1 , R−1
2 , R−1

2 , R−1
3 , R−1

3 }.

Denoting

P = P−1, Q1 = P−1Q1P
−1, Q2 = P−1Q2P

−1, Q3 = P−1Q3P
−1,

R1 = R−1
1 , R2 = R−1

2 , R3 = R−1
3 , NP−1 = Y,

and picking Mi = λiP , Ni = βiP , Si = αiP , i = 1, 2, we obtain the desired LMI
(4.4). ¤
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5. Conclusion

The problem of absolute stability of a class of time-varying delay systems with sector-
bounded nonlinearity have been considered. New delay-dependant stability and sta-
bilization criteria with sector condition have been proposed. Some new results are
given and illustrated by numerical examples, treated with Matlab, in order to show
effectiveness of the main results. Those criteria have been formulated in the form of
linear matrix inequalities (LMI).
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