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Abstract. We consider the classical solutions of mixed problems for infinite, count-
able systems of parabolic partial functional differential equations. Difference methods
of two types are constructed and convergence theorems are proved. In the first type,
we approximate the exact solutions by solutions of infinite difference systems. Meth-
ods of second type consist in truncation of the infinite difference system, so that the
resulting difference problem is finite and practically solvable. The proof of stability is
based on a comparison technique with nonlinear estimates of the Perron type for the
given functions. The comparison system is infinite. Parabolic problems with deviated
variables and integro-differential problems can be obtained from the general model
by specifying the given operators.
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1. Introduction

For any metric spaces X and Y, we write C(X,Y) for the class of all continuous
functions from X into Y, unless stated otherwise. Let N and Z be the sets of nat-
ural numbers and integers, respectively. The inequalities between vectors should be
understood componentwise.

Denote by [*° the class of all real sequences p = {pi }ren having the property

[Plloe = sup {|px| : k& € N} < occ.
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The class of all n x n matrices with real elements will be denoted by M, «,. For the
norm in R™, let us choose

m
Iyl =>"luil, =1 n):
j=1

For r, re Man, [Tij]i,j=1,...,n7 [’Fij}i,jzl,...,ny we write r S 7 if Z (Tij _’Fij)Ai)\j S 0
ij=1
for any A = (Aq,...,A\n) € R™.
Let a >0, dy € Ry, Ry =[0,+00), d = (dy,...,dp) € R}, and b= (by,...,b,) €
R? be given where b; > 0 for 1 < j < n. Let us define
E =[0,a] x (=b,b), D =[—do,0] x [—d,d], Eg = [—dp,0] X [-b—d,b+d],
OE = ([0,a] x [-b—d,b+d))\ E, E*=FEyUEUOQJE.

Suppose that z : E* — R and (¢,7) € E are fixed, where E stands for the closure of
E. We define the function z(;,) : D — R by

Z(t,x)(Cvg) = Z(t +¢z +€)7 (C?g) €D.

The function z(; 4 is the restriction of z to [t —do, t] X [v —d, 2 +d] and this restriction
is shifted to D. For a domain U C R!*™ and a function z : U — [® of the variables
(t,z) we will write 0;z = {0:21 }ren, provided that respective derivatives exist.
Put @ = E x C(D,1?°) x R™ X My« and let
F:o=012 f={fPhen, @B URE —1%,
ap = {0,k tren B — 1™, o E—I%
be given. We introduce the notation ay = (ag k, o}, ). It is required that ag (¢, z) <t

and ay(t,x) € E for (t,x) € E, k € N. For a function z : E* — [*°, and for a point
(t,z) € E, we write

Za(ta) = L) an(to) ven and  F[2](t,2) = F®[2](t, 2),

where
F®OLR(t,2) = fF (2, 20000, O zi (b, ), Oge2i (L, ).

We deal with the following mixed problem:

Oz(t,x) = F[z](t, x) (1.1)
2(t,x) = o(t,z) on EgUOyFE. (1.2)

A function v : E* — 1, v = {vg }ken, is a classical solution of problem (1.1), (1.2) if

(i) v e C(E*,1°°), derivatives O;vx, O, Uk, Oz;e;Vk, 1 < 4,5 < n, exist and are
continuous on F for all £ € N,

(ii) o satisfies (1.1) on E and the condition (1.2) holds true.
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A classical solution v = {vg }ren of (1.1) is called a parabolic solution of (1.1) in
FE if for any two symmetric matrices 7, ¥ € M, x,, the inequality » < 7 implies

f(k) (t7 z, Ua(t,:v)7 a'rvk (ta .’E), T) § f(k) (ta z, ’Ua(t,:v)v aka (ta .I'), F)

for (t,x) € E, k € N.

Difference methods for nonlinear parabolic differential or functional differential
problems were considered by many authors and under various assumptions. It is easy
to construct an explicit Eulers type difference method which satisfies the consistency
conditions on all sufficiently regular solutions of a differential functional problem. The
main task in these investigations is to find a finite difference scheme which is stable.
The method of difference inequalities and simple theorems on recurrent inequalities
are used in the investigations of the stability of nonlinear difference or functional
difference equations generated by parabolic problems, see, for example, [5, 7, 10].
Difference methods for (weakly or strongly coupled) parabolic systems with time
delays were considered in [8, 9].

Within the last few years, numerous papers have been published, concerning vari-
ous problems for infinite systems of parabolic partial functional differential equations.
The monograph [1] contains up-to-date exposition of results concerning parabolic sys-
tems, including existence of solutions in Sobolev spaces. Various applications of infi-
nite countable systems of parabolic partial integro-differential equations, such as the
discrete coagulation-fragmentation model [12], are also listed in this monograph.

In this paper we use general ideas presented in [3, 6].

The paper is organized as follows. In section 2 we prove theorems on infinite
systems of ordinary functional differential inequalities. Section 3 deals with a the-
oretical approximation method, based on an infinite system of difference equations.
Numerical analysis of finite systems of functional difference equations, corresponding
to the original problem, is presented in the section 4. Finally, numerical examples
are given, covering both types of functional dependence admissible here, that is, an
integral differential system and a system of equations with deviated variable.

2. Extremal solutions of functional differential systems

Let I3° be the set of sequences p € [*° such that p € Ry for k € N. Put Iy = [—dp, 0]
and I = (0,a). Denote by C(Ip UI,15°) the space of all functions w = {wy }ren such
that wg € C(Io UI,Ry). For such w we write w'(t) = {w}.(t)}ken and D_w(t) =
{D_wi(t)}ren where D_wy(t) stands for the left-hand lower Dini derivative of wy, at
the point t.

For n : IyUI — R and t € I we define 1y : Iy — R by ng) (1) = n(t + 1),
T € Ip. Forp: IgUI — 1, n = {n}ren, the symbol 7 should be understood
componentwise.

By abuse of notation, let us write C(lo,1$°) for the class of all functions n =
{nk tren such that n, € C(Ip,Ry), k € N, and with finite norm

Inlo = sup {|mklo : k € N} < 400,
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where || is the supremum norm of 7 in the space C(Iy, R).
Put 2 = I x C(lo,I5°) and suppose that

o={oktren, ox:E—Ry and n={m}tren, m:lo— Ry,
are given. We consider the Cauchy problem
w'(t) = o(t,wyy), (2.1)
Wiy =1
Let p, p € 1°°, p = {pr}ren, D = {Pr}ren. We will write
p<p if pr <pr for keN. (2.3)

—_
=)

Assumption Hy [0]. The function {0} }ren = 0 : E — 1, is such that 04, : £ — R
is continuous for each k € N, and

1) the following monotonicity condition holds: if w, @ € C(Iy,1$) are such that
w(t) < w(t) on Iy, then o(t,w) < o(t, w),

2) there are ag, by € R4 such that
lo(t, w)]leo < agllw||eo +bo on ZE.

Lemma 2.1. Suppose that Assumption Hy [o] is satisfied and 1 = {ng}ren, n €
C(1o,1°). Thus there exists the maximum solution

w(-n) ={wrC,mtren, wi(n): LUl — Ry,

of the Cauchy problem (2.1), (2.2). Moreover, if ¢ = {¢i}ren, ¢ € C(Io U 1,1),
and @ satisfies the system of functional differential inequalities

D_p<o(t,ew), tel, (2.4)
and the initial estimate holds

o(t) <n(t) for tely, (2.5)
then

o(t) <w(t,n) for tel. (2.6)

Proof. Take a function v = {¢x }ren, ¥ € C(lp U 1,1%°), and put

Ak.d)(tv C) =0k (t7 Py [t7 Ca 1/)]),

for (¢,¢) € I x C(Ip,R) and

Pk[tv CJ/’] = ((1/11)(75)’ R (ql)k—l)(t)a Cv (’l/)k+1)(t)7 . )
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There is (see [4]) the right-hand maximum solution Wy [¢] of the Cauchy problem

Et) =Myt ), Eo) =M,

and the solution is defined on Iy U I. Put Wy = {Wg[¢]}ken. It follows from the
monotonicity condition for o and from a theorem on functional differential inequalities
(see [4]) that for two functions v, 1 € C(Ip U I,15°) such that ¢(t) < ¢ (t) on Iy U T
we have

WYl(t) < Wplt) on I

Denote by A the class of all functions w = {wy }ren, w € C(IpUI,13), satisfying the
differential inequality
D—w(t) SO’(t,’UJ(t)), tGI,

and the initial estimate w(t) < n(t) for t € Iy. For every k € N the family of functions
{Wx[¥]}pea is bounded and equicontinuous on Iy U I. Hence

Ok(t) =sup{Wp[¥](t) :p € A}, telyUILkeN,

exists and is a continuous function. Moreover, wy(t) nk(t) on Iy for k € N. Put

© = {Ok}tren. Thus @ € C(Ip U I,I5°) and W[zﬂ](t)é Wy|(t) for p € A, t € I.
Therefore,
o) <Wwl(t) for tel. (2.7)

On the other hand, we have

%Wk [©](t) = Apa(t, (Wi[©]) @) = or(t, Pult, Wi[o], 0]).

Hence, by (2.7) and by the monotonicity condition for o we obtain

%Wk[&](t) < onlt, WE)w), telkeN,

and consequently W[w] € A. This gives
Wi [@](t) < sup {Wi[Y](t) :¢p € A} =w(t) for tel,keN

and we conclude that
Ww)(t) <w(t) for tel. (2.8)

Inequalities (2.7) and (2.8) imply @ = W[w]. Thus @ is the right-hand maximum
solution of (2.1), (2.2). It follows from (2.4), (2.5) that ¢ € A and estimate (2.6) is
proved. O

Let V : C(D,1°) — C(Io,13°) be the operator defined by
(Vw)k(t) =max {Jwg(t,z)| : x € [-d,d]}, keN

for w € C(D,1*®), w = {w }ren, and t € [—dp, 0]. For a function w : A — [, A C R,
w = {wg }ren, and for a € R we will write w = a if wy, = a for k € N.

17



W. Czernous

Assumption H [f,o]. There is a comparison function
o:IxC(Io,1T) =17, o = {0k }ken,

of variables (¢, w), satisfying Assumption Hy [0] and such that
1) oy :1IxC(lp,l5°) — Ry is non-decreasing with respect to ¢, k € N,

2) for 0 € C(1y,1), 6 =0, holds o(-,0) =0,

3) the maximal solution of the Cauchy problem

m.(t) = or(t,nw)), tel, keN,

is {Mktren =7 : o UT — 17,7 =0,

4) for {er}ren = € € IT°, the maximum solution w(-,e) : Iy U — I$° of the
Cauchy problem

Me(t) = on(t,ne) +€) + €, tel, keN,
n(t):€7 t e,

is such that

lim g, =0 implies lim wg(-,e) =0 uniformly on I,

k—oo k—oo

5) for the above Cauchy problem, lim._,q ||w(¢,€)||cc = 0 uniformly on I,

6) the upper bounds on growth of f with respect to the functional argument are
‘f(k)(ta z,w,q, 7") - f(k) (ta x,W,q, T)| < Uk(tv V(’UJ - ’ZD)), ke Na

for (t7 x? w7 q7 T)7 (t7 x’ w? q’ T) e Q'

3. Infinite systems of difference equations

We formulate a difference problem, corresponding to (1.1), (1.2). We define a uniform
mesh on E* in the following way. Let h = (ho,h’), i’ = (h1,...,hy,), stand for steps
of the mesh. Then we choose nodal points ("), z(™)) by

t) = rhy, 2™ = (:rgml), o alm)y = (myhy, L mphy),
for (r,m) € Z*™. We write H for the set of all h such that there is —Ny € Z with
the property —Noho = —dp and there is N; € N satisfying N;h; = b; for each index

J such that d; = 0. Let t(Ko) be the last temporal node, that is, t(50) < g < ¢(Kot1),
We put ||h|| = ho + h1 + ...+ hy. Using the notion of the set of all nodal points in
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R+ R,lf" = {(t(”),x(m)) 2 (r,m) € ZH'”}, we define various parts of the discrete
domain simply by:

Eon=E N E,=EnR™, 9B, =0ENR™,
E;: = Fg.p UER,UOyE}.

The discrete counterparts of sets Iy, I and Iy U I:
Top = {t(") Ny <r< o} R - {t“‘) 0<r< KO}, I = I, U,
will also be needed. The difference equation will be considered at the points lying in
B = {(t(T)7x(m)) €E,:0<r<Ko— 1}.
We now describe the interpolation operator T}, that has been presented in [2].

Ty, maps real functions defined on the mesh E} into real functions defined on E*.
Suppose that z : Eff — R. For (¢,z) € E*, three cases will be distinguished.

(i) There is (r,m) € Z*™ such that (¢, 20™)), (tr+) 2(m+Dy ¢ B¥ and ¢ <
t <t gtm) < g < 20D where m +1 = (my +1,...,m, +1). We

define
t_t(r) 1‘—.13(m) o x_x(m) 1—pn
(-5 3 s )
(Th2) (¢, ) (1 " ) D h (1 h
nef{0,1}n
t — t(r) T — x(m) I T — x(m) 1—p
(r+1,m+u)( ) ( _ )
+( hO Z z h 1 h bl
ne{0,1}n
using the notation
x—xMy\n noxy— 2
(=—) = I—=—)
h . h; ’
Jj=1
1 T — x(m) 1—n n ) m] _ l“ng) 1—p;
(-—=—) - HO-=——) "

<.
I
—

We adopt here the convention that 0° = 1.

(ii) Suppose that z lies near the boundary of [—b —d, b+ d], namely that N;h; <
|z;| <bj+d;j < (N;+1)h; for some j, 1 < j < n. Then we put Tpz(t,z) =
Trz(t, &), where

j, |lzj| < Njh;
Tj = 7Njhj, T < 7Njhj 1 < ,7 <n.
Njhj, ;> Njhj,
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(iii) The last case is Kohg < t < a. Then we set Tpz(t,x) = Tpz(Koho, x).

Note that 7}, is a linear operator, mapping real functions defined on Ej} into
continuous functions defined on E*. Furthermore, since T}, z; interpolates z; by use
of convex combinations of z;,’s values, the equality

(Thzn)(t, o) = _ max |20 (3.1)

max
t<t(") | ze[—b—d,b+d) i<r, ~K<m<K

holds for —Ng < r < Kj.
The following lemma is a direct consequence of the definition of T}.

Lemma 3.1. Suppose that v : E* — R is a continuous function, and w : Ry — R4
its modulus of continuity. Then

|(Thon — 0)(t, ) < w([|A]]),

where vy, = v

.o
Eh

The symbol T}, % for z : Ef — [*° should be understood componentwise.

Write e; = (0,...,0,1,0,...,0) € Z™ with the 1 standing on the i-th place. Put
J={(i,7): 1 <1i,j <n,i+#j}, and suppose that for each k € N we have defined two
disjoint (one possibly empty) subsets Jx 4, Ji.— of J, such that Ji + UJp._ = J. We
assume that (i,5) € Jy 4 if (j,i) € Jr4. Let z: E* — [ and (¢, (™) € E}. The
definitions of difference operators, involved in our difference scheme, will be given
with the aid of

T,m 1 rm-—re; T,m — T,m 1
5;”,2,(C )zﬁ[z,(ﬂ’ +‘)—z,(€’ )] and ¢; Z,(C ):E

[Zlir7m) _ Z(r,mfei)] 7

for 1 <i<mn, k€ N. Then, let &g, 6 = (61,...,0,), [0Pi;]ij=1,....n be defined by

T 1 s m T
502}(C m) 7[212 +1,m) Z]i ,m)]

ho
. 1
§;2"™ = 5[5? +67120™ 1<i<n,

)

Jgf)zl(f’m) = 5?(5;2*1(;’7”)7 1<i<n,
r 1 - s r .

8Dz = 30565 +6; Itz for (i,5) € Ji.—,
,m ]‘ — c— ,m ..

5§?)z,(€ ™) = 5[5Z+5;r +6; 65 ]Z,(€ ™ for (4,7) € Jp+.

Let us write F}Ek) [2]>™) as a short for

f(k) (t(r)7 x(m)v (Thz)a(t”) a(m))s 521(:,m)’ 5(2)21(:,m)).
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Given ¢y, : Eg.p U 9gER — 1°°, we consider the difference-functional problem

502(T’m) = Fh[z](r’m), (32)
20 = o™ on By U 0o B, (3.3)

where FJ,[z]("™) = {F,Ek) [2]"™)}en and Gpz(™) = {(SOzlir’m)}keN. It is evident that
there exists exactly one solution u, = {un.k }ren of (3.2)-(3.3).

The comparison technique used in the proof of convergence (Theorem 3.2) requires
analogues of already defined operators: T} and the Hale operator, for functions defined
on I;. First, we introduce the interpolation operator T} ¢, mapping real functions
defined on I into real functions defined on IpUI. For w: I} — Rand t € IyUI, we
put

t—tm +— ¢ )
(Thow)(t) = ——w™D 4 (1 w™,
hO ho

when t(") <t < t0+D for some —Ny < r < Ko — 1, and
(Th.ow)(t) = w0,

when t(50) < t < a. We define Tj, gw for w : Iy, — R in a similar way. The symbol
Thow, for w: I}y — 1 or w: Iy — [°° should be understood componentwise.

Next, for 0 < r < Ky, we define the discrete Hale operator, mapping real functions
w defined on the mesh I} into real functions wy, defined on Io.n, by: wp (1) =
w(t(T) +7), 7 € Ipp. When w : I — [°°, the symbol wy,) should be understood
componentwise.

It is clear that for w: I} — Rand 0 <r < K

(Th.ow) 41y = Theo Wiy (3.4)

Lemma 3.2. If z: B} = R andw : I} — R, is defined by
W = max{|z(i’m)| vi<r, 2™ e [=b— d,b+d]}, t" e Iz,

then
V(Th2)(t2) < (Thow)yy for (tz) € E. (3.5)

Proof. Put A =[-b—d,b+d] and A, = [—do,t")] x A. With this notation, (3.1)
reads
max |(Th2)(t,z)] < w. (3.6)
(t,z)EA,

Moreover, straight from the definition of T},

t—tm

— ¢
T)t0) = @m0+ (1- 55 G0,
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Hence, and by (3.6),

max | (Th2) ¢, )|

t— ¢t + ¢
S Ty hax (Th2) (¢ +D, 7)) + (1 i > max |(T) 2) ™, z)|
t—t T - PG .
= t
< (t;@“u V)2 ( LY om0 )

+
<t7ﬂ>wwﬂ) =t e
S

= (Th.ow)(®).

By the definition of V' and by the above inequality,

(V(Thz)t,2))(s) = yg[lf;fd] |(Thz)(t+ 5,2 +y)|
< max|(Tuz)(t + ,)| < (Thow)(t +5) = (Thow)w (5),

for s € Iy, which proves (3.5). L

Corollary 3.1. If z: B} — 1 and w : I} — IS is defined by
w,(:) = max{|z,(:’m)| ci<r, 2™ e [—b— d,b+d]}, t™ eI,

then
V(Thz)qtm < Tho Wi (t(r),$(m)) € Ey. (3.7)

Proof. Clearly, monotonicity of w implies
(Th ow)(t )y = (Th Ow)(tz) for t1 < to. (38)
The assertion follows from the condition ag(t,x) < t, k € N, and from relations

(3.4), (3.8). O

Theorem 3.1. Suppose that Assumption H [f, o] is fulfilled, and w : I} — 1 satis-
fies the recurrent inequality

W < W 4 hoo (), Tho wiry) + hoy(h), (3.9)
for0<r < Ko—1,
oo <y(h)  for 7)€ Iy, (3.10)

where v: H — R4, }1111% ~v(h) =0, and the steps of the mesh are small enough to fulfil

ho explaoal(ag + bo + (1 + 2a0)y(h)) < 1, (3.11)
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with ag, by from Assumption Hy [o]. Then there is ¥ : H — Ry such that

o lle <) for 0 €lh and JmFR)=o.  (312)

Proof. Consider the Cauchy problem

ne(t) = ox(t,ne + C(h)) +~(h), tel, keN, (3.13)
oy =7(h) on Iy, (3.14)

where
C(h) = hg explaga)(ag + bo + (1 + 2a0)y(h)), (3.15)

and ag, by are such that ||o(t, w)]ec < agl|w|lec + bo on E (see Assumption Hy [0]).
Since the function o with additions y(h) and C(h) still satisifies Assumption Hy [0],
the Lemma 2.1 assures the existence of maximum solution 7, = {ns.k tren of (3.13),
(3.14) and ny, is defined on Iy U I. The condition (3.11) implies (C'(h))r <1, k € N,
and, consequently,

M) < okt () +1) +y(h), keN.

Since npk : IoUI — R, k € N, are differentiable, convex, and such that ||}, (¢)|| is
finite, we have D_||n5,(t)|loc < ||7},(t)|loc on I. In view of this and of the Assumption
Hy [o], the function ¢ (t) = ||nn ()|l satisfies

D_1(t) < aop(t) + ao + bo + (1 + ao)y(h).
Hence
U(t) < ag ' (explaot] — 1)(ag + bo + (1 + ag)y(h)) + v(h) explaot]
and, consequently,
M (t) < explaot](ag + bo + (1 + 2a0)v(h)), k€N,
on Iy UI. Majorizing the right-hand side by taking ¢t = a, we obtain (recall (3.15)):
honp, < C(h) on ILyUI, keN,

and hence
Mk +Ch) > Tholpe on IgUI, keN,

where 7, is the restriction of n, to Ij. The function 7, satisfies the difference in-
equality

it > i+ hoow (), (mn) ey + C(h) + hoy(h)
> i) + hoon(t"), Thoo (Mh) ) + hoy(h) (3.16)
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for 0 <r < Ky —1 and k € N. By the (3.16), (3.14) and (3.9), (3.10) we have
w™ < n,(lr) for 0<r<Kj. (3.17)
Moreover, by Lemma 2.1 and by the condition 5) of Assumption H [f, o],

]&ir% Imn(t)]|oo =0, uniformly on 1.
Thus we get (3.12) for (h) = lim; .- |71 (t)]|co. This completes the proof. U

Assumption H [f, H]. The function f : Q — [* of the variables (¢, z, w, q, ), where
q=(q1,...,qn) and [rj]; j=1,...n, satisfies the conditions:

1) for k€N, f®) € C(Q,R) and there is B € R, such that

|f(P)looc <B for PeQ,

2) the derivatives

04 f ") = g, M, 00, f M), 0 f® =100, f )iy,

exist on 2 and are continuous with respect to (g,r) for each fixed (¢, z,w) €
E x C(D,l™),

3) the matrix 9, f*) is symmetric and

Oy, fB(P) >0 for (i,§) € Tyt On, fF(P) <0 for (i,5)€ Ji_,
(3.18)

1
1—2hoz am FEP)+ho Y m|a,.ijf<’“>(P)|zo, (3.19)

(ipyes

1 1 "1 .
~510a f O P + =0, SO P) =D hfjlar,ijf<’“)(P)\ >0, 1<i<n,
0 =1
J#i

for P € ().

Remark 3.1. Note that continuity and monotonicity of o, together with the condition
or(t,0) = 0, k € N, imply continuity of o(t,-) at point the (t,0). This continuity is
uniform with respect tot € I.
Theorem 3.2. Suppose that Assumptions H [f, H|, H [f, o] are satisfied and

1) there is A € Ry such that ||go(rm loo < A on EgpUdEp,

2) up: Ef — 1, up, = {upktren, 15 a solution of (3.2) with initial boundary
condition (3.3) giwen by {¢n.k}ken = ©n,
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3) there is f°) : H — Ry such that
loi ™ = ot 2™ oo < () on o LB (3.21)
i O)(p) =
and }LEHOB (h) =0,
4) U E* = 1% is a solution of (1.1), (1.2),

5) the functions Uy, OyUk, OraUk, k € N, are equicontinuous,

6) there exists Cy € Ry such that hl-hj_l < Cp forl1<i, 5 <m.
Then, there exists ¥ : H — Ry such that

”u(r,m) U(t( ) ]5.( L))” < ’Y(h) on Eh* (3'22)
h“ Y = U.

Proof. Tt is obvious that the condition 1), together with 1) of Assumption H [f, H],

imply the existence of w, with values in [*°. Precisely, the estimate ||u§:’m)||oo <
A+t B holds on Ej,.
Put 05, = {0n.k tken where 0y, 1 is the restriction of o to Ej, k € N. We have on
o
JoBy"™ = Fy[o,) "™ - T (3.23)

where Fgf’m) = {FEI’,;")}%N. Hence, by Remark 3.1 and by the regularity of ¢ and
Lemma 3.1, there is 8() : H — R, such that

T o < 8V (R) on Ej

and }llin%) ﬂ(l)(h) = 0. Let the function ¢, : Ej — I°°, e, = {ep.k}ren, be given by

€n = up — Up. Define wy, : I, = 15°, w, = {wh.k fren, by
w}(f])c = max {ﬁ(o)(h), max {\nglzn)\ ci<ra™ e [—b—d b+ d]}},
for 0 <r < Ky, keN.

Our next goal is to estimate the function ¥ = V [(Thup, — Thop)4emm]. We con-
clude from Corollary 3.1 that

U < V[(Then)atm] < Th.owniy- (3.24)
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Subtracting (3.2) and (3.23) by sides,

A = B
= (r m) +h f (k) (t(f) 2(m) 7(Thuh)a(t<v> x<m>)75uh " (5(2)
—h()f(k)@(r) (m) (Thn) g, m(m)),(gu(T’M) 5@y, (Tm
+hof®(t7),
)

)
)
i 6 “M>
— hof P (), 2 (T400) arier aomry, 58 1, 8@T) — hol'y ™
)
)

™) (ThTn) (i) ) OU
= 627",:1) + ho f®) (¢ 2 (m), (Thun) o, JV(m)),(suh rim) 0@y (T m)
— ho f P (), 2 (T4 Tn) 0 uer wmy, Supl o), 6w (Tm
+ho > 0, FPQBie T +ho S B, FQSD e — hol'
im1 ig=1

where @ € Q is an intermediate point. We have, in view of condition 3) of Assumption
H [f, H], and definitions of difference operators (see page 60),

’E&erm +hOZaqif(k)( 5€(rm) + ho Z F) ”f(k) Q) 5@ Tm)‘
i=1

1,j=1

<EEI(1 20 Y i fO@ b Y i, 19 @)
=1 7

@g)es

+ h[)z |€(r ,m+e;)

( 55200 @+ g SOQ) =3 57100, 79(@))

+ h()z |€(rm e:)

(50 @)+ 20 S9Q) =3 75100, (@))

i = hih;
J#i
(k) (Tm ej+ej) (r m—i—ez—ej)
ol 3 Qg
+ ho Z |3le f(k) 2h h (Tm ei—ej) 4 ;Lrlgn+el+ej)|
(4,9)€Jk.+
< Wi

Now, from Assumption H [f, H] and from the monotonicity of o with respect to the
functional variable, follows

el < @ik + hook (), Tho wipy) + hos™ (h)

for each —K < m < K and k € N. Put y(h) = max{3© (h), 3V (h)}. We have
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li =
lim ~v(h) = 0 and
w,(:,jl) < w}(lr])C + hoO’k(t(T), Tho wh[r]) + h()’y(h) (3.25)

for0<r<Ky—1,%keN, and

o lloo < 7(B) on Iy (3.26)
Hence, assertion follows from the Theorem 3.1. O

4. Finite systems of difference equations

Let us define
E*[t] = [~do,t] x [-b—d,b+d], telgUul

and
[2ll(¢) = sup {|z(7,2)| : (T,x) € E*[t]}
for z: E* — R.

Lemma 4.1. Suppose that 6: Z — I5° fulfils Assumption Hy [o] and is non-decreasing
with respect to t, and the function f: Q — 1, f = {f®)}ren, satisfies the estimates

|f®(t,2,w,0,0)| < 61(t, Vw), keN,

for (t,z,w) € ExXC(D,1%). Suppose that uw = {uk }ren s a classical parabolic solution
of (1.1) in E satisfying the homogeneous initial boundary condition

ug(t,x) =0 on EyUOyE, keN
and {witken = w : IgUT — 1 is the maximum solution of the Cauchy problem

n'(t)=atnw) o =0.

Then, for k € N,
lurllfe) < we(t), tel.

Proof. Put Wy (t) = ||uglls), k € N, t € [gUI, and let W = {W}. }ren. We will prove
that for fixed k € N,

D_Wi(t) < op(t, W)
for t € I. Let us fix £ € I. Since W = 0 on Iy, W}, is non-decreasing, and &, attains

non-negative values, we may assume Wy(t) > 0 without loss of generality. There is
(t,x) € E*[t] such that

(a) Wi(t) = up(t, ) or (b) Wi(t) = —ug(t,z).
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Consider the case (a). We conclude that (¢,z) is an interior point of E and thus
Oruk(t, )= 0, Opzui(t,z) < 0. We obtain, due to monotonicity of &,
D7Wk(£) < wak(t) < atuk(ta l‘) = f(k)(tv Ty Ua(t,x)s aa:uk(tv x)a 6@::1:Uk(t7 !L‘))
< f(k) (t7 Ly Ua(t,x)s Oa 0) < 5—k(t7 Vuoc(t,;v)) < oy (ia W({))

If we consider the case (b) then yuy (¢, 2) = 0 and —0,,ug(t, ) < 0. Since D_Wj(t) <
D_Wy(t) < —0wu(t, x), we have

D_Wi(f) < —f¥(t, 2, ua(t,0), Ok (t, @), Duwun(t, ))
< _f(k) (t7 T, U (t,x), 0, 0) < o (tv Vua(t,z)) < o (iv W(f))

The assertion follows from Lemma 2.1. O

We consider again the problem (1.1), (1.2). Let ¢ : E* — [, ¢ = {Pk }ren, be such
that ¢(t,z) = ¢(t,z) on EgUE. Fix N € N. Forw : E* —» RN w = (wy,...,wy),
or w: E* — 1, w = {wg }ren, and for w : E* — I, @ = {W, }ren, put

Wk, lngNv

1N _ _
b - 9 h -
[w, 0] {@Wy}ren, where wy {wb Lo N

Consider the differential functional system

Ozt x) = fO(t, 2, [z, @10 0y On2k(t, ), Onezi(t, @), 1< k<N, (4.1)
where z = (z1,..., zx), with the initial boundary condition
zp(t,x) = pr(t,x) on EyUdyE, 1<k<N. (4.2)

Assumption H [f, ¢, 0]. The Assumption H [f, o] is satisfied and

1) the function ¢ € C(EyU dyE, 1) is such that there exists ¢ € C(E*, 1),
@ = {Pk }ren, with the properties:

(1)55(15,5”) = @(tax) for (t,l’) € EO U 80E7

(ii)for each k € N the function @x(-,x) : [0,a] — R is of class C! and
Pr(t, ) : [-b,b] — R is of class C2, z € [~b,b], t € [0, a],

(iii) there is d € Ry such that for each k € N
|Oz,c,Pr(t,z)| <d on E, 1<i,j<mn,
2) for each k € N there is Cj € Ry such that for (¢,z) € F
TRt 2, Pagen), 0o Pr(t, @), 02sPr(t, ) — Oi(t, )| < Ci

and limy_, o Cr = 0.
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Remark 4.1. If we assume that for each k € N there are Ay, B, € R4 such that for
(t,x) e E

|f(k) (t?xﬂ @a(t,w)aazgak(t?x)a amm@k(tax)” < Akv |at95k(tax)| < Bk

and limy,_, o0 Ay, = limy_oo By = 0, then the condition 2) of Assumption H [f, ¢, 0] is
satisfied.

Lemma 4.2. If Assumption H [f,p, o] is satisfied and the function v : E* — [*°,
v = {vk}tren, s a classical parabolic solution of (1.1), (1.2), then for each k € N
exists wy, € C(I,R4) such that

vk — Grlle) < @r(t), (t,z) € E,
and limy_, o @k (t) = 0 uniformly on I.

Proof. Define ¢ : E* — 1°°, v = {vg }ren, by O = v — ¢ on E*. With this notation,
we have 0(t,z) = 0 on Eg U 0o F and

0ot x) = FP [0+ @l(t,2) — pr(t,z), (t,x) € E, keN.
Let the function {Gj}ren = G be defined on Q by
Gi(t,x,w,q,r) = f(k)(t, T, W+ Pot) 4+ OePr(t, ), 7 + OpePr(t, x)) — O Pr(t, x)
for k € N. It satisfies the estimate
IGi(t,2,w,0,0)] < [fP(t2,w+ Gagra), 0Pk(t, @), OuPi(t, T))
~ (.2, Gata), OxPr(t, @), OuaBi(t, )|

+|f(k) (t, T, @a(t,w)a 8m<)5k(ta ‘T)7 azz¢k(t’ :L')) - at@k(t’ :C)|
< ox(t,Vw) + Cy

for (t,z,w) € Ex C(D,I*) and k € N. It is easy to see that 0 is a parabolic solution
of the mixed problem

Opzi(t,x) = Gi(t, 2, Za(t,0), Oz 2k (t, T), Oze2i(t, ) on FE, keN,
zi(t,x) =0 on EyUOyE, keN.

By Assumption H [f, ¢, 0], the function 6 = o + C fulfils, together with o, the
conditions of Lemma 4.1, and hence

[or(t, )| < @k(t) on E, keN,
where {@ }reny = @ is the maximal solution of the problem
W'(t) = o(t,wr) +C, w(o) = 0.

Since limy_,» Cx = 0, the assertion follows from the condition 4) of Assumption
H [f,o]. 0
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Lemma 4.3. Suppose that Assumption H [f,,0] is satisfied and the function v :
E* — 1%, v = {vi }ren, 18 a classical parabolic solution of (1.1), (1.2) and

1) there is co € Ry such that
102,20k (t,2) <co on E, 1<i,j<n, keN,
2) for each N € N the function ulVl . B* — RN 4N = (u[lN],...,uEf,V]), s a

solution of (4.1), (4.2).
Then for each N € N there is wNl € C(I,Ry) such that

log — ul |y < ™), tel0,a), 1<k<N,
and limy _ oo wN () = 0 uniformly on I.

Proof. Let us fix N € N. We introduce the function vV : E* — 1, v = {v}. }ren,
defined as
ULN] =w—u™ oN on E*

With this notation, we have
8tv,[€N] (t,z) = f(k) (t, 2, Vo (t,2), Ok (t, ), amvk(t x)),
= 1Ot 2, [N, By Doy (,2), Dy (8, 2)
for 1 <k <N, (t,z) € E. Let HN: Q — [®° H = {H}}ren, be defined on Q by

H’[CN]:{Hkv 1<E<N,
0, k>N,

where

ANtz w,q.7)
= (Ot 2w+ [, 0], . q+8u£f“< o), + Oy (1, 2)
_ f(k)(t’ [ (N ]790}o¢(t x)’a uk (t x) azzugc }(t QIJ)) 1< k < N.

For 1 < k < N, it satisfies the estimate

2, 0,0,0)] < [£9 (1w, + o] o), 00l (4, 2), 000l 1, 2))

t,, [l o)y b Bat (¢, 7), Duguyy (E, )

(

—f® (it z, [ulM v}a(t 2 Oa “k ](tvx);azquN] (t’f‘”))’
(
(t,, [N, G oy el (8 @), Badl ) (8, 2))
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which implies
N -
IHM (1, 2,0,0,0)] < o3,(t, V) + 0k (t, VI0,0 — GIN, ,)-
By Lemma 4.2, for (t,x) € E

V(Uk — @k)a(t,w) < lim (.:)k(T) =¢r, kEN, and lim e = 0.

T—a— k— o0

Put e = M}y, where

N 0, 1<k<N,
k €k, k> N.

Clearly, limy_ o ||e™]|oc = 0. Hence, and by Remark 3.1, for each N € N there is
CINl € R, such that for k € N, (t,z) € E

okt V[0,v = @IN, o) < on(t,e™) < V]

and limpy_ o, CV1 = 0. Moreover, vV s a parabolic solution of the mixed problem
Oz (t,x) = H,LN] (t, 2, Za(t,2), Ow2k(t, ), Opz 2 (t, ) on FE, keN,
zp(t,z) =0 on EyUOyE, keN.

By Assumption H [f,, 0], the function & = {0} + CV1},cy fulfils, together with
vV the conditions of Lemma 4.1, and hence

N N
ol |y < wl

') on E, keN,
where {w,EN]}keN is a solution of the problem

(1) = ont.nw) + O™, keN,
Since limy_.o. CIV1 = 0, the assertion follows, for
wM(t) = max {w,[j“(t) 1<k< N}, tel,

from the condition 5) of Assumption H [f, o] and from Lemma 2.1. U

Let ¢ : Egp U OEL, — 1, on = {©n.k}ren, be given. Consider the difference
problem

50Z](€T7m) = f(k) (t(r)7 x(m)7 [Thza ‘:Z]g(t,a:)a 5216 (t(r)’ x(m))7 6(2)zk (t(r)’ x(m)))’ (43)

Z](Cr,m) = (pg’km) on FEypUEy, (44)
for 1 <k < N, where z = (z1,...,2yx). We are ready to prove the main theorem in

this part of the paper.
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Theorem 4.1. Suppose that Assumptions H [f, H], H [f, ¢, 0] are satisfied and
1) derivatives of f with respect to r and q are bounded,
2) the function v : E* — 1, v = {vk}ren, s a parabolic classical solution of

(11), (1:2),

3) the derivatives Oyvk, OraVk, k € N, are equicontinuous,

4) for each N € N the function ulNl : E* — RN 4[N = (u[lN], .. ,ugi,v]), s a so-
lution of (4.1), (4.2), and the constant cy, € Ry is such that |0y, uECN] (t,x)] <
Ck OTLE, ].SZ,]STL,].SkSN,

5) for each N € N, h € H the function uElN} CEf RN WV = (u[th], .. .,UL]Y]]V),

is a solution of (4.3), (4.4),
6) initial-boundary data oy, satisfy the condition 3) of the Theorem 3.2.
Then there is 4 : H — Ry such that, for any N € N,
Cmnx(h N) = max ()0 — (7, 2 < () + N, (45)

" z(Mm)eEy,
1<k<N

and }lbin%) F(h) =0 and limy_o e™ = 0.

Proof. Let us fix N € N. Using the method from the proof of Theorem 3.2, we can
prove that

@N)em) _ N0y < 5(h) on B, 1<k<N,

where }llirr%) #(h) = 0. Uniformity of this estimate, with respect to N, follows from the

relevant uniformity of estimates 5(°)(h), (V) (h) in the above mentioned proof.
Moreover, from Lemma 4.3,

o (£, 2y — w10 20y <INt )) on B, 1<k <N

Thus we obtain the assertion (4.5) with el = lim,_,,~ w!™(¢). O

Remark 4.2. We may choose o to be linear: o(t,w) = Aw(T), where A € L(I§°) N
L(I%°) and T € Iy, and I is the space of those sequences of nonnegative real numbers,
which converge to zero. The o, so chosen, fulfils all the preceding Assumptions, as
follows from the thoery of linear differential inequalities in Banach spaces (see, for
example, §72 in [11]). Sufficient condition for an inifinite rank matric A = [p;;],
pij € Ry, to be in L(I§°) N L(I°°) is to have a diagonal such that row sums starting
from the diagonal are uniformly bounded, while partial row sums to the left of diagonal
are vanishing with the row number:

o i+ng—1
Jne  Iver, Vi Z pij <M and llggo Z pi; = 0.
j=1

Jj=i+no
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Example 4.1. Suppose that F' : E X [*° X R™ X My, — [*° is given. Then, for
fe(t,x,w,q,7) = Fi(t,x,w(0,0),q,7), k € N, the equation (1.1) reduces to the infinite
system with deviating variables

Oz (t,x) = F(t,x, z(a(t, x)), Opzk(t, ), O zi(t, x)), k€N,
where z(a(t,x)) = {zr(ak(t,2)) tren-

Example 4.2. Suppose that the function F is given, as in the previous Fxample.
Then, for fi(t,z,w,q,r) = F(t,z, Aw, q,7), where (Aw), = fD wi(s,y)dsdy, k € N,
the equation (1.1) reduces to the infinite system of integro-differential equations

Opzi(t, ) = Fk(t,m,/ 2, 052k(t, x), O 2k (t, ©)), k€N,
a(t,x)+D

/ z= / zi(s,y) ds dy
a(t,z)+D ay (t,z)+D

5. Numerical examples

where

keN

Example 5.1. Let n = 2, a < 1 and E = [0,a] x (-1,1)?, Ey = {0} x [-1,1]?,
O F =[0,a] x ([—1, 1%\ (-1, 1)2). Consider the mixed problem

Orzn(t, ) = fr(t, @, 2a(t,2), Or 2k (t, ), Opa2i(t, 7)), keN, (5.1)
2e(t,x) =k on EyUOE, k€N, (5.2)

where, for k € N, ay(t,2) = (t, 22, 21),

fk(taxaw7qar) = arctan (Tll + roo — gk(t,lﬂ)wk(o,(])),
+ (22 = 1)(22 — Dwi(0,0) + gr(w(0,0)),

ar(t,x) = 4222 (22 — 1)? 4+ 4?23 (2% — 1)% + 2ta? + 2l — 4t,

) 0, k=1,
gk\P) = 4 2

Pt + Py — 28 i E o e k> 1
The exact solution is zx(t,x) = k=5 exp[t(z? — 1) (2% — 1)]; we take P (t,z) = k> on
E*. The following table shows the values of the maximal error epyax(h, N) (see (4.5)),
for a = 1/4 and for chosen h and N.

N —logyhy —logyhy F(h) 4 el —log,(7(h) + )
4 7 2 3.075600 - 10~4 11.666845
8 9 3 7.367134 - 1075 13.728537
16 11 4 1.823902 - 10~° 15.742612
32 13 5 1.060963 - 10~ 16.524267
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Example 5.2. Let n = 1, a < 1 and F = [0,a] x (-1,1), Ey = {0} x [-2,2],
O F =[0,a] x ([—2, —1]J U1, 2]) Consider the mixed problem

Orzr(t, ) = fr(t, @, 2ot 2), Or 2k (t, ), Opa2i(t, T)), keN, (5.3)
zp(t,x) =0 on EyUOyE, keN, (5.4)
where, for k € N, ay(t,2) = (¢, —z),
k+1
fe(t,z,w,q,7) = arctan (7‘ - Z dntay, (t)by_1(z)[(4n + 1)2? — 3])
n=2
—z+1
2

+/  (wegr — wi)(0,5)ds + gi(t ),

2
k+1

ar(t) = 52 G (1) 0~ ) + 3 2o
)32t 1422, v e[-1,4] B2t —1-22, we[-4,1]
5(x)_{0’ xe(%71]3 77(‘%)_{0, Z‘E[—i—%)v
an(t) = (=1)" 4(”2;)!4 2t () =22 - 1), n>2.

The exact solution is zx(f,z) = Zﬁié tan(t)bn(x), k € N; we take, for k € N,

. 8zsint(1t(z2 — 1 on F,
@k(t7$) = (2 ( ))
0 on Eo @] 80E

The following table shows the values of the maximal error eyax(h, N) (see (4.5)), for
a = 1/4 and for chosen h and N.

N —logoho —logahy  F(h)+e™ —logy(5(h) + M)
4 6 2 3.607181 -107° 14.758768
8 8 3 8.435167 - 10~ 16.855152
16 10 4 2.084722 - 1076 18.871714
32 12 5 5.218899 - 10~7 20.869751

Example 5.3. Our result seems to be new also in the classical case, that is, without
the functional dependence. An interesting problem, arising in applications (the dis-
crete coagulation-fragmentation model which describes the dynamics of cluster growth
and arises in polymer science, atmospheric physics, and colloidal chemistry), is con-
sidered in the work [12], in the following form (a sum over an empty range is meant
to be zero):

k—1 0o 0o
8uk 1
W =dipAug + 5 ;(ak,jﬁjuk,juj — bk,j’juk) — Ug jzz:lakjuj + jz::lbijukJrj,
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k=1,2,...,0n Q, = (0,a) x Q, Q@ C R”, with an initial condition and homogeneous
Neumann condition. As mentioned in [12], for this problem a Galerkin numerical
approximation were considered; we apply a finite difference approximation, presented
here.

We choose n =1, Q = (-2, 2), and the coefficients: d =1 and ax; = by; = gkt
g € (0,1), for all k£ and j. Testing the difference scheme is done against the known
solution, namely ¥y, = ¢~ % (vp_1—wy), with v, (¢, ) = p*vi(skz+asin(t/(k+1))) and v
being a cosine, extended by zero outside [—m/2,7/2]. The constants are: ¢ = 27/32,
p =1/4, s = 3/2, a = 3/10. Such a system satisfies conditions assumed in [12]
for global existence. Specifically, the solution components are nonnegative, and the
overall mass, that is, the sum of integrals of k - 0 over space domain {2, is constant
in time.

Thus our exemplific problem, which we have made inhomogeneous (F}) for sake
of simplicity, yields

k—1

Ouy, 1 k k = J k - J
W:Auk—i—iq ;(uk,juj—uk)—q uk;q u; +q j;q uk+j—Fk,

k=1,2,3,..., and ug(0,7) = ¢ FpF~L(v*(s*~1z) — pvt(sFa)), up(t, —2) = us(t,2) =
0. Provided that solutions wj are uniformly bounded (which is a fairly reasonable
assumption, and possible to check with the aid of partial differential inequalities),
respective right-hand side is Lipschitz continuous with respect to u, and the Lipschitz
coefficients form a matrix of infinite rank, in a way exactly as stated in the Remark
4.2. The term Fj depends only on k, t and x, and it is so chosen, that the above
mentioned solution is valid.

The following table shows the values of the maximal error epyax(h, N) (see (4.5)),
for a = 1/4, for various sizes of the finite system, and for various step sizes; the last
ones are controlled by the choice of hy = 2/N; and by the CFL condition (3.19), in
which equality holds. In calculations, we have used the extension ¢ of data, given
by @k (t, ) = ux(0,2); then Z;’;NH ¢’u; = vn(0,2), so that the right-hand side of
(4.3) may be effectively computed.

logo(N) logs(N1)  errmas —log,(errmaz)
2 4 0.00352021 8.15012
3 4 0.00950878 6.71652
1 4 0.00406853 7.94128
2 5 0.000864932 10.1751
2 6 0.000221877 12.1380
2 7 0.000196772 12.3112
3 7 5.32112e-05 14.1979
4 7 0.000174529 12.4842
3 8 1.33044¢e-05 16.1977
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