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Abstract. In this paper the following three-dimensional nonlinear system is consid-
ered:

x′ =
∂

∂y
H(x, y), y′ = − ∂

∂x
H(x, y) + z, z′ = − ∂

∂y
H(x, y) − z.

This system contains a subsystem described by a Hamiltonian function. Under the
assumption that all orbits of the Hamiltonian system near to the origin are isolated
closed curves surrounding the origin, sufficient conditions are given for the zero solu-
tion to tend to the origin as t → ∞.
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1. Introduction

Let Bρ =
{
(x, y) ∈ R

2 : 0 < x2 + y2 < ρ2
}

for any ρ > 0 and let H(x, y) be a
continuous function on Bρ having continuous first partial derivatives. Suppose there
exist constants α1, α2, β1, β2, γ and µ with 0 < α1 ≤ α2, 0 < β1 ≤ β2, γ > 0 and
0 < µ ≤ 1 such that

α1

(
x2 + y2

)
≤ H(x, y) ≤ α2

(
x2 + y2

)
, (C1)

β1

(
x2 + y2

)
≤ x

∂

∂x
H(x, y) + y

∂

∂y
H(x, y) ≤ β2

(
x2 + y2

)
, (C2)

lim
(x,y)→(0,0)

∂

∂x
H(x, y) = lim

(x,y)→(0,0)

∂

∂y
H(x, y) = 0, (C3)
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0 ≤ |x| < µ|y| implies γ|y| ≤
∣∣∣∣

∂

∂y
H(x, y)

∣∣∣∣ . (C4)

Then, in a neighborhood of the origin (0, 0), all solutions of the system

x′ =
∂

∂y
H(x, y), y′ = − ∂

∂x
H(x, y) (1.1)

are periodic, namely, all orbits near to the origin are isolated closed curves surrounding
the origin. Hence, the zero solution of (1.1) is stable, but not attractive (for the
definition, see Section 2).

One of the most simple examples of (1.1) is the pendulum system without friction,

x′ = y, y′ = − sinx. (1.2)

In this case, we may consider H(x, y) = 1− cosx+ y2/2. Hence, for ρ > 0 sufficiently
small, conditions (C1)–(C4) are satisfied with α1 = 1/4, α2 = 1/2, β1 = 1/2, β2 = 1,
γ = 1 and µ = 1. To take another example of (1.1) , we consider the Lotka–Volterra
system

X ′ = aX − bXY, Y ′ = − cY + dXY

on R
2
+, R+ = (0,∞), where a, b, c and d are positive constants; X and Y are the

densities of the prey and predator, respectively. Let

x = − log(bY/a) and y = − log(dX/c).

Then, we can transform the Lotka–Volterra system into the system

x′ = c(1 − e−y), y′ = a(e−x − 1), (1.3)

which has the form of (1.1) with

H(x, y) = a(e−x + x − 1) + c(e−y + y − 1).

It is clear that for ρ > 0 sufficiently small, conditions (C1)–(C4) are satisfied with
α1 = min{a, c}/4, α2 = max{a, c}, β1 = min{a, c}/2, β2 = 2 max{a, c}, γ = c/2 and
µ = 1. It is easy to find other nonlinear phenomena described by system (1.1) in pure
and applied science.

All solutions (x(t), y(t)) of (1.1) do not converge to the origin. Then, can x(t)
and y(t) converge to zero by adding the third variable to system (1.1)? To deal with
this problem, we consider the three-dimensional time-varying nonlinear system

x′ =
∂

∂y
H(x, y), y′ = − ∂

∂x
H(x, y) + z, z′ = − ∂

∂y
H(x, y) − z. (1.4)

If subsystem (1.1) is linear, then the well-known Routh-Hurwitz criterion may be
useful for our problem. However, if system (1.4) contains a nonlinear subsystem, such
as system (1.2) or (1.3), then the Routh-Hurwitz criterion is of no use to system (1.4)
directly.
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2. Main Result

Consider a system of differential equations of the form

x′ =
∂

∂y
H(x, y), y′ = − ∂

∂x
H(x, y) + z, z′ = − ∂

∂y
H(x, y) − z. (E)

Let x(t) = (x(t), y(t), z(t)) and x0 = (x0, y0, z0) ∈ R
3, and let ‖ · ‖ be the Euclidean

norm. We denote the solution of (E) through (t0,x0) by x(t; t0,x0). It is clear that
system (E) has the zero solution x(t) ≡ 0.

The zero solution is said to be stable, if for any ε > 0 and any t0 ≥ 0, there exists
a δ(ε, t0) > 0 such that ‖x0‖ < δ implies ‖x(t; t0,x0)‖ < ε for all t ≥ t0. The zero
solution is said to be attractive, if for any t0 ≥ 0, there exists a δ0(t0) > 0 such that
‖x0‖ < δ0 implies ‖x(t; t0,x0)‖ → 0 as t → ∞. The zero solution of (E) is said to be
asymptotically stable if it is stable and attractive. The stability and the attractivity
are completely different concepts in nonlinear systems, such as (E) (refer to the books
[1, 2, 3, 4, 5]).

The following theorem is our main result.

Theorem. Suppose that conditions (C1)–(C4) are satisfied . Then the zero solution

of (E) is asymptotically stable.

Proof. (i): Define

M1 = min

{
α1,

1

2

}
and M2 = max

{
α2,

1

2

}
.

To prove the stability of the zero solution of (E), for a given ε ∈ (0, ρ), we select

δ(ε) =

√
M1

M2
ε.

Recall that ρ is the constant given in (C1). Needless to say, δ < ε. Let t0 ≥ 0 and
x0 = (x0, y0, z0) be given. We will show that ‖x0‖ =

√
x2

0 + y2
0 + z2

0 < δ and t ≥ t0
imply ‖x(t; t0,x0)‖ < ε. For convenience of notation, we write x(t) = x(t; t0,x0) and
(x(t), y(t), z(t)) = x(t).

Suppose that there exists t1 > t0 with ‖x(t1)‖ = ε and

‖x(t)‖ < ε < ρ for t0 ≤ t < t1.

Note that (x(t), y(t)) ∈ Bρ for t0 ≤ t ≤ t1. Let

v(t) = H(x(t), y(t)) +
1

2
z2(t)

for t ≥ t0. Then, from (C1) it turns out that

v(t) ≥ α1

(
x2(t) + y2(t)

)
+

1

2
z2(t) ≥ M1x

2(t) (2.1)
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for t0 ≤ t ≤ t1. Since
v′(t) = −z2(t) ≤ 0 for t ≥ t0,

it follows that

v(t) ≤ v(t0) = H(x0, y0) +
1

2
z2
0 ≤ α2(x

2
0 + y2

0) +
1

2
z2
0 < M2δ

2 = M1ε
2

for t ≥ t0. Hence, together with (2.1), we obtain

‖x(t)‖ < ε for t0 ≤ t ≤ t1.

This contradicts the assumption that ‖x(t1)‖ = ε. Thus, we see that

‖x(t)‖ < ε < ρ for t ≥ t0, (2.2)

and therefore, the zero solution of (E) is stable. This completes the proof of part (i).
Hereafter, we will show that the zero solution of (E) is asymptotically stable. To

this end, it is enough to show that it is attractive, namely, x(t) converges to 0 as t
increases. Since v′(t) is nonpositive for t ≥ t0, the function v(t) has a limiting value
v0 ≥ 0. If v0 = 0, then by (2.1), the solution x(t) tends to 0 as t → ∞. This completes
the proof. Hence, the remainder is the case in which v0 > 0. We will demonstrate
that this case does not occur.

For the sake of simplicity, let

u(t) =
1

2
z2(t).

Then, we have v(t) = H(x(t), y(t))+u(t) and v′(t) = −2u(t). From (2.2), we see that
u(t) is bounded. Hence, u(t) has the inferior limit and the superior limit.

(ii): We will show that the inferior limit of u(t) is zero. Suppose that

lim inf
t→∞

u(t) > 0.

Then there exist an ε1 > 0 and a T1 ≥ t0 such that u(t) > ε1 for t ≥ T1. Hence,

∫
∞

t0

v′(s)ds = −2

∫
∞

t0

u(s)ds ≤ −2ε1

∫
∞

t0

ds = −∞.

On the other hand, since v(t) ≥ 0 for t ≥ t0,

∫
∞

t0

v′(s)ds ≥ −v(t0).

This is a contradiction. Thus, we see that lim inft→∞ u(t) = 0. This completes the
proof of part (ii).

(iii): We next show that the superior limit of u(t) is zero. The proof is by

contradiction. Suppose that ν
def
= lim supt→∞

u(t) > 0. Since lim inft→∞ u(t) = 0,
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we can choose two sequences {tn} and {sn} with t0 < tn < sn < tn+1 such that
u(tn) = ν/2, u(sn) = 3ν/4 and

ν

2
< u(t) <

3ν

4
for tn < t < sn.

Let I =

∞⋃

n=1

[tn, sn]. Then, we have

−v(t0) ≤
∫

∞

t0

v′(s)ds = −2

∫
∞

t0

u(s)ds < −2

∫

I

u(s)ds < −ν

∞∑

n=1

(sn − tn),

so that
∞∑

n=1

(sn − tn) <
v(t0)

ν
.

Hence, it turns out that
lim inf
n→∞

(sn − tn) = 0. (2.3)

Since ∂H(x, y)/∂y is continuous, it follows from (C3) and (2.2) that there exists an
l > 0 such that ∣∣∣∣

∂

∂y
H(x(t), y(t))

∣∣∣∣ ≤ l for t ≥ t0.

Hence, we obtain

u′(t) = v′(t) − ∂

∂y
H(x(t), y(t))z(t) ≤ v′(t) +

∣∣∣∣
∂

∂y
H(x(t), y(t))

∣∣∣∣ |z(t)| ≤ v′(t) + l ε

for t ≥ t0. Integrating this inequality from tn to sn, we get

ν

4
= u(sn) − u(tn) ≤

∫ sn

tn

v′(s)ds + l ε(sn − tn) = v(sn) − v(tn) + l ε(sn − tn)

for each n ∈ N. This contradicts (2.3), thereby completing the proof of part (iii).
Since v(t) tends to a positive value v0 as t → ∞, we can choose a T2 ≥ t0 such

that

0 <
v0

2
< v(t) <

3v0

2
for t ≥ T2. (2.4)

If β1 ≥ γ/(
√

2β2), then we have

β̃1

(
x2 + y2

)
≤ x

∂

∂x
H(x, y) + y

∂

∂y
H(x, y) ≤ β2

(
x2 + y2

)
,

where β̃1 = γ/(
√

2β2). Hence, we may assume without loss of generality that β1β2 <
γ/

√
2. Let ε2 > 0 be so small that ε2 < ν/2,

√
4α2ε2

v0 − 2ε2
<

β1

2
, (2.5)
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tan

(
π

2
− π

2β1

√
4α2ε2

v0 − 2ε2

)
>

ε

µ

√
2α2

v0 − 2ε2
, (2.6)

√
4α2ε2

v0 − 2ε2
+ β1β2 <

γ√
2
, (2.7)

where α2, (β1, β2) and (γ, µ) are numbers given in (C1), (C2) and (C4), respectively.
(iv): From parts (ii) and (iii) above, we see that limt→∞ u(t) = 0. Hence, we can

choose a T3 ≥ T2 such that 0 ≤ u(t) < ε2 for t ≥ T3, and therefore,

|z(t)| ≤
√

2u(t) ≤
√

2ε2 for t ≥ T3. (2.8)

Let x = r cos θ and y = r sin θ. Then we can rewrite system (E) as the form

r′ =
∂

∂y
H(x, y) cos θ − ∂

∂x
H(x, y) sin θ + z sin θ,

θ′ =
z

r
cos θ − 1

r2

{
x

∂

∂x
H(x, y) + y

∂

∂y
H(x, y)

}
,

z′ = − ∂

∂y
H(x, y) − z.

(Ẽ)

Let (r(t), θ(t), z(t)) be the solution of (Ẽ) corresponding to x(t). Using (2.2), (2.4),
(2.8) and (C1), we obtain

v0 − 2ε2 < 2(v(t) − u(t)) = 2H(x(t), y(t)) ≤ 2α2

(
x2(t) + y2(t)

)
< 2α2ε

2

for t ≥ T3, so that √
v0 − 2ε2

2α2
< r(t) < ε for t ≥ T3. (2.9)

Taking into account of (2.8) and (2.9), we see that the solution (r(t), θ(t), z(t)) of (Ẽ)
stays in the thin disc

D =

{
(r, θ, z) :

√
v0 − 2ε2

2α2
< r < ε, −π < θ ≤ π and |z| ≤

√
2ε2

}

for t ≥ T3. It follows from (C2), (2.8) and (2.9) that

−
√

4α2ε2

v0 − 2ε2
− β2 < −|z(t)|

r(t)
− β2 ≤ θ′(t) ≤ |z(t)|

r(t)
− β1 <

√
4α2ε2

v0 − 2ε2
− β1

for t ≥ T3. Let

ω− = β1 −
√

4α2ε2

v0 − 2ε2
and ω+ = β2 +

√
4α2ε2

v0 − 2ε2
.

Then, we have
−ω+ < θ′(t) < −ω− < 0 for t ≥ T3. (2.10)
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From (2.5), we can estimate that

β1

2
< ω− < β1 ≤ β2 < ω+ < β2 +

β1

2
≤ 3

2
β2. (2.11)

Define a region Ω by

Ω =

{
(r, θ) :

√
v0 − 2ε2

2α2
< r < ε and

πω−

2β1
≤ θ ≤ π

(
1 − ω−

2β1

)}
.

The region Ω is non-empty because ω− < β1. Consider the movement of (r(t), θ(t)).
Then, from (2.9) and (2.10), we see that (r(t), θ(t)) stays in the annulus

A =

{
(r, θ) :

√
v0 − 2ε2

2α2
< r < ε and − π < θ ≤ π

}
⊃ Ω

for t ≥ T3 and it moves clockwise. Hence, we can find two divergent sequences {an}
and {bn} with T3 < an < bn such that θ(an) − θ(bn) = π(1 − ω−/β1) and

(r(t), θ(t)) ∈ Ω for an ≤ t ≤ bn. (2.12)

By (2.10) and (2.11), we have

θ(an) − θ(bn) < ω+(bn − an) <
3

2
β2(bn − an),

so that

bn − an >
2(θ(an) − θ(bn))

3β2
=

2π(β1 − ω−)

3β1β2
>

2(β1 − ω−)

β1β2
(2.13)

for each n ∈ N. It follows from (2.5) that

πω−

2β1
=

π

2

(
1 − 1

β1

√
4α2ε2

v0 − 2ε2

)
>

π

2

(
1 − 1

β1

β1

2

)
=

π

4
.

Hence, together with (2.12), we obtain

|y(t)| >

√
v0 − 2ε2

2α2
sin

πω−

2β1
>

√
v0 − 2ε2

2α2
sin

π

4
=

1√
2

√
v0 − 2ε2

2α2

for an ≤ t ≤ bn. Since we can rewrite (2.7) as

β1 − ω− + β1β2 <
γ√
2
,

we have
1√
2

√
v0 − 2ε2

2α2
>

1 + β1β2/(β1 − ω−)

γ

√
2ε2.

We therefore conclude that

|y(t)| >
1 + β1β2/(β1 − ω−)

γ

√
2ε2 for an ≤ t ≤ bn. (2.14)
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From (2.12), we see that

0 ≤ |x(t)| < ε cos
πω−

2β1
and |y(t)| >

√
v0 − 2ε2

2α2
sin

πω−

2β1
> 0

for an ≤ t ≤ bn. Hence, by (2.6) we have

|x(t)| < ε cos
πω−

2β1
< ε

√
2α2

v0 − 2ε2

|y(t)|
tan (πω−/(2β1))

< µ|y(t)|

for an ≤ t ≤ bn, and therefore, by (C4) we get

γ|y(t)| ≤
∣∣∣∣

∂

∂y
H(x(t), y(t))

∣∣∣∣ for an ≤ t ≤ bn. (2.15)

From the third equation of (E) with (2.8), (2.14) and (2.15), we obtain

|z′(t)| ≥ γ|y(t)|− |z(t)| > γ
1 + β1β2/(β1 − ω−)

γ

√
2ε2−

√
2ε2 =

β1β2

β1 − ω−

√
2ε2 (2.16)

for an ≤ t ≤ bn. Since z′(t) is continuous for t ≥ t0, we see that
∣∣∣∣∣

∫ bn

an

z′(s)ds

∣∣∣∣∣ =

∫ bn

an

|z′(s)|ds.

Hence, by (2.8), (2.13) and (2.16), we have

2
√

2ε2 ≥ |z(an)| + |z(bn)| ≥
∫ bn

an

|z′(s)|ds >
β1β2

β1 − ω−

√
2ε2(bn − an) > 2

√
2ε2,

which is a contradiction. Thus, the case of v0 > 0 does not happen. We therefore
conclude that the zero solution of (E) is asymptotically stable.

The proof of the theorem is now complete. �
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