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Abstract. We consider second order quasilinear parabolic equations where also the
main part contains functional dependence on the unknown function. Existence and
some qualitative properties of the solutions are shown.
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1. Introduction

This work was motivated by works where nonlinear parabolic functional differential
equations were considered which arise in certain applications. (See references in [4].)
In [4] existence theorems and some qualitative properties were proved on solutions to
initial value problems for the functional equations (connected with the above appli-
cations)

Dtu−

n
∑

i=1

Di[ai(t, x, u(t, x), Du(t, x);u)] + a0(t, x, u(t, x), Du(t, x);u) = f. (1.1)

The aim of the present paper is to formulate existence theorems if certain modified
(in some sense more general) assumptions are fulfilled and to show further qualitative
properties of solutions to such equations.
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2. Existence of solutions

Denote by Ω ⊂ R
n a bounded domain having the uniform C1 regularity property (see

[1]), QT = (0, T )×Ω and p ≥ 2 be a real number. Let V ⊂W 1,p(Ω) be a closed linear
subspace of the usual Sobolev space W 1,p(Ω) (of real valued functions). Denote by
Lp(0, T ;V ) the Banach space of the set of measurable functions u : (0, T ) → V with
the norm

‖ u ‖p
Lp(0,T ;V )=

∫ T

0

‖ u(t) ‖p
V dt.

The dual space of Lp(0, T ;V ) is Lq(0, T ;V ⋆) where 1/p+ 1/q = 1 and V ⋆ is the dual
space of V (see, e.g., [6]).

On functions ai assume
(A1). The functions ai : QT × R

n+1 × Lp(0, T ;V ) → R satisfy the Carathéodory
conditions for arbitrary fixed u ∈ Lp(0, T ;V ) (i = 0, 1, ..., n).

(A2). There exist bounded (nonlinear) operators g1 : Lp(0, T ;V ) → R
+ and

k1 : Lp(0, T ;V ) → Lq(Ω) such that

|ai(t, x, ζ0, ζ;u)| ≤ g1(u)[|ζ0|
p−1 + |ζ|p−1] + [k1(u)](x)

for a.e. (t, x) ∈ QT , each (ζ0, ζ) ∈ R
n+1 and u ∈ Lp(0, T ;V ).

(A3).

n
∑

i=1

[ai(t, x, ζ0, ζ;u) − ai(t, x, ζ0, ζ
⋆;u)](ζi − ζ⋆

i ) ≥ [g2(u)](t)|ζ − ζ⋆|p (2.1)

where
[g2(u)](t) ≥ c⋆

[

1+ ‖ u ‖Lp(0,t;V )

]−σ⋆

, t ∈ [0, T ] (2.2)

c⋆ is some positive constant, 0 ≤ σ⋆ < p− 1.
(A4).

∑n
i=0 ai(t, x, ζ0, ζ;u)ζi ≥ [g2(u)](t)[|ζ0|

p + |ζ|p] − [k2(u)](t, x)
where k2(u) ∈ L1(QT ) satisfies with some positive constant σ < p− σ⋆, t ∈ [0, T ]

‖ k2(u) ‖L1(Qt)≤ const
[

1+ ‖ u ‖Lp(0,t;V )

]σ
t ∈ [0, T ].

(A5). There exists δ > 0 such that if (uk) → u weakly in Lp(0, T ;V ), strongly in
Lp(0, T ;W 1−δ,p(Ω)), (ζk

0 ) → ζ0 in R and (ζk) → ζ in R
n then for a.e. (t, x) ∈ QT

lim
k→∞

ai(t, x, ζ
k
0 , ζ

k;uk) = ai(t, x, ζ0, ζ;u).

Remark 1. Assumption (A5) is weaker than the corresponding assumption in [4]
thus equation (1.1) may contain more general ”nonlocal” terms in the present paper.
(See the examples in Section 3.)

Definition Assuming (A1) - (A5), define operator A : Lp(0, T ;V ) → Lq(0, T ;V ⋆)
by

[A(u), v] =

∫

QT

{

n
∑

i=1

ai(t, x, u,Du;u)Div + a0(t, x, u,Du;u)v

}

dtdx (2.3)
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where the brackets [·, ·] mean the dualities in spaces Lq(0, T ;V ⋆), Lp(0, T ;V ).
By using the theory of monotone type operators, one can prove the following

modifications of Theorems 1.2, 2.1 in [4]. (See [5].)

Theorem 2.1. Assume (A1) - (A5). Then for any f ∈ Lq(0, T ;V ⋆) and u0 ∈ L2(Ω)
there exists u ∈ Lp(0, T ;V ) such that Dtu ∈ Lq(0, T ;V ⋆),

Dtu+A(u) = f, u(0) = u0. (2.4)

Now we formulate an existence theorem in (0,∞). Denote by Lp
loc(0,∞;V ) the set

of functions u : (0,∞) → V such that for each fixed finite T > 0, u|(0,T ) ∈ Lp(0, T ;V )
and let Q∞ = (0,∞) × Ω, Lα

loc(Q∞) the set of functions u : Q∞ → R such that
u|QT

∈ Lα(QT ) for any finite T .

Theorem 2.2. Assume that the functions

ai : Q∞ × R
n+1 × Lp

loc(0,∞;V ) → R

satisfy the assumptions (A1) - (A5) for any finite T and that ai(t, x, ζ0, ζ;u)|QT
depend

only on u|(0,T ) (Volterra property). Then for any f ∈ Lq

loc
(0,∞;V ⋆), u0 ∈ L2(Ω)

there exists u ∈ Lp

loc
(0,∞;V ) which is a solution of (2.4) for any finite T .

3. Boundedness and stabilization

Theorem 3.1. Let the assumptions of Theorem 2.2 be satisfied such that for all
u ∈ Lp

loc
(0,∞;V ), sufficiently large t

[g2(u)](t) ≥ const [1 + sup
τ∈[0,t]

y(τ)]−σ⋆/2 (3.1)

∫

Ω

[k2(u)](t, x)dx ≤ const

[

sup
[0,t]

yσ/2 + ϕ(t) sup
[0,t]

y(p−σ⋆)/2 + 1

]

(3.2)

with some positive constants where

y(t) =

∫

Ω

u(t, x)2dx, 0 < σ⋆ < p− 1, lim
∞
ϕ = 0, 1 ≤ σ < p− σ⋆.

Further, ‖ f(t) ‖V ⋆ is bounded for t ∈ (0,∞).
Then for a solution u ∈ Lp

loc
(0,∞;V ) of (2.4) in (0,∞), y is bounded in (0,∞).

The proof of Theorem 3.1 is the same as that of Theorem 2.3 in [4].
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Theorem 3.2. Assume that the conditions of Theorem 3.1 are fulfilled with Volterra
operators

g1 : Lp
loc(0,∞;V ) ∩ L∞(0,∞;L2(Ω)) → R

+, (3.3)

k1 : Lp
loc(0,∞;V ) ∩ L∞(0,∞;L2(Ω)) → Lq(Ω) (3.4)

such that the following monotonicity condition is satisfied:

n
∑

i=1

[ai(t, x, ζ0, ζ;u) − ai(t, x, ζ
⋆
0 , ζ

⋆;u)](ζi − ζ⋆
i )+ (3.5)

[a0(t, x, ζ0, ζ;u) − a0(t, x, ζ
⋆
0 , ζ

⋆;u)](ζ0 − ζ⋆
0 ) ≥ [g2(u)](t)[|ζ − ζ⋆|p + |ζ0 − ζ⋆

0 |
p].

We assume that for arbitrary fixed u ∈ Lp
loc(0,∞;V ) ∩ L∞(0,∞;L2(Ω)), (ζ0, ζ) ∈

R
n+1, a.a. x ∈ Ω

lim
t→∞

ai(t, x, ζ0, ζ;u) = ai,∞(x, ζ0, ζ), i = 0, 1, ..., n, (3.6)

exist and are finite where ai,∞ satisfy the Carathéodory conditions (for fixed u). Fi-
nally, there exists f∞ ∈ V ⋆ such that

lim
t→∞

‖ f(t) − f∞ ‖V ⋆= 0. (3.7)

Then for a solution u ∈ Lp
loc(0,∞;V ) of (2.4) we have

lim
t→∞

‖ u(t) − u∞ ‖L2(Ω)= 0, lim
T→∞

∫ T+a

T−a

‖ u(t) − u∞ ‖p
V dt = 0 (3.8)

for arbitrary fixed a > 0, where u∞ ∈ V is the unique solution to

A∞(u∞) = f∞ (3.9)

and the operator A∞ : V → V ⋆ is defined (for z, v ∈ V ) by

〈A∞(z), v〉 =

n
∑

i=1

∫

Ω

ai,∞(x, z,Dz)Divdx +

∫

Ω

a0,∞(x, z,Dz)vdx. (3.10)

Proof. It is not difficult to show that A∞ : V → V ⋆ is bounded, hemicontinuous,
strictly monotone and coercive which implies the existence of a unique solution of
(3.9) (see, e.g., [6]).

If u is a solution of (2.4) in (0,∞) then by (3.9) one obtains

〈Dt[u(t) − u∞], u(t) − u∞〉 + 〈[A(u)](t) −A∞(u∞), u(t) − u∞〉 = (3.11)

〈f(t) − f∞, u(t) − u∞〉.
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By using the notation

〈[Au(u∞)](t), z〉 =

∫

Ω

n
∑

i=1

ai(t, x, u∞(x), Du∞(x);u)Dizdx+

∫

Ω

a0(t, x, u∞(x), Du∞(x);u)zdx,

(3.5) and Young’s inequality, we obtain for the second term in (3.11)

〈[A(u)](t) −A∞(u∞), u(t) − u∞〉 = 〈[A(u)](t) − [Au(u∞)], u(t) − u∞〉+ (3.12)

〈[Au(u∞)](t) −A∞(u∞), u(t) − u∞〉 ≥ [g2(u)](t) ‖ u(t) − u∞ ‖p
V −

εp/p ‖ u(t) − u∞ ‖p
V −1/(qεq) ‖ [Au(u∞)](t) −A∞(u∞) ‖q

V ⋆

with arbitrary ε > 0. By Vitali’s theorem we obtain from (A2), (3.3), (3.4), (3.6)

lim
t→∞

‖ [Au(u∞)](t) − A∞(u∞) ‖V ⋆= 0. (3.13)

Finally, by Young’s inequality we have for the right hand side of (3.11)

|〈f(t) − f∞, u(t) − u∞〉| ≤ εp/p ‖ u(t) − u∞ ‖p
V −1/(qεq) ‖ f(t) − f∞ ‖q

V ⋆ .

Thus, choosing sufficiently small ε > 0, since
∫

Ω u(t, x)
2dx is bounded, (3.1), (3.7),

(3.11) - (3.13) and Hölder’s inequality yield for y(t) =‖ u(t) − u∞ ‖2
L2(Ω)

y′(t) + c̃y(t)p/2 ≤ y′(t) + c⋆ ‖ u(t) − u∞ ‖p
V ≤ ψ(t), (3.14)

where limt→∞ ψ(t) = 0 and c⋆, c̃ are positive constants. It is not difficult to show
that (3.14) implies the first part of (3.8) (see [3]). Combining the first part of (3.8)
and the second part of (3.14) one obtains the second part of (3.8).

Theorem 3.3. Assume that the conditions of Theorem 3.2 are fulfilled in the follow-
ing modified form:

a0(t, x, ζ0, ζ;u) = a1
0(t, x, ζ0, ζ;u) + a2

0(t, x, ζ0;u) (3.15)

where a1
0 satisfies (A1), (A2) and a2

0 satisfies

|a2
0(t, x, ζ0;u) ≤ g1(u)|ζ0| + [k̃1(u)](x)

with some k̃1(u) ∈ L2(Ω) and for all u, u⋆, v ∈ Lp
loc(0,∞;V ) ∩ L∞(0,∞;L2(Ω)),

T2 > T1 ≥ 0,

∫ T2

T1

∫

Ω

|a2
0(t, x, v;u) − a2

0(t, x, v;u
⋆)|2dtdx ≤ c23

∫ T2

max{0,T1−a}

∫

Ω

[u− u⋆]2dtdx (3.16)
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with some constants a, c3 > 0 and instead of (3.5) we have

n
∑

i=1

[ai(t, x, ζ0, ζ;u) − ai(t, x, ζ
⋆
0 , ζ

⋆;u)](ζi − ζ⋆
i )+ (3.17)

[a1
0(t, x, ζ0, ζ;u) − a1

0(t, x, ζ
⋆
0 , ζ

⋆;u)](ζ0 − ζ⋆
0 )

≥ [g2(u)](t)[|ζ − ζ⋆|p + |ζ0 − ζ⋆
0 |

p] + c2|ζ0 − ζ⋆
0 |

2

where the constant c2 satisfies c2 > c3. Further, assume that for any fixed u ∈
Lp

loc(0,∞;V ) ∩ L∞(0,∞;L2(Ω)), w ∈ V

|ai(t, x, ζ0, ζ;u) − ai,∞(x, ζ0, ζ)| ≤ Φ(t)[|ζ0|
p−1 + |ζ|p−1], i = 1, ..., n, (3.18)

|a1
0(t, x, ζ0, ζ;u) − a1

0,∞(x, ζ0, ζ)| ≤ Φ(t)[|ζ0|
p−1 + |ζ|p−1],

|a2
0(t, x, ζ0;w) − a2

0,∞(x;w)| ≤ Φ(t)(1 + |ζ0|), ‖ f(t) − f∞ ‖V ⋆≤ Φ(t)

with limit functions a1
0,∞ : Ω × R

n+1 → R, a2
0,∞ : Ω × V → R where

lim
∞

Φ = 0,

∫ ∞

0

Φ(t)qdt <∞. (3.19)

Then for a solution of (2.4) in (0,∞) we have

∫ ∞

0

‖ u(t) − u∞ ‖p
V dt <∞,

∫ ∞

0

‖ u(t) − u∞ ‖2
L2(Ω) dt <∞, (3.20)

lim
t→∞

‖ u(t) − u∞ ‖L2(Ω)= 0, (3.21)

∫ ∞

T

‖ u(t)− u∞ ‖2
L2(Ω) dt ≤ const

{

e−γT +

∫ T

0

[

e−γ(T−t)

∫ ∞

t

Φ(τ)qdτ

]

dt

}

(3.22)

with some constant γ > 0 where u∞ ∈ V is the unique solution to

A∞(u∞) = f∞ (3.23)

and the operator A∞ : V → V ⋆ is defined for z, v ∈ V by

〈A∞(z), v〉 =

n
∑

i=1

∫

Ω

ai,∞(x, z,Dz)Divdx+

∫

Ω

a1
0,∞(x, z,Dz)vdx+

∫

Ω

a2
0,∞(x; z)vdx.

Proof Integrating (3.11) over (T1, T2), one obtains by (3.16) for y(t) =
∫

Ω
[u(t, x) −

u∞]2dx (by using Young’s inequality, similarly to (3.14))

y(T2) − y(T1) + c⋆
∫ T2

T1

‖ u(t) − u∞ ‖p
V dt+ c2

∫ T2

T1

y(t)dt− (3.24)
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[

∫ T2

T1

∫

Ω

|a2
0(t, x, u;u) − a2

0(t, x, u;u∞)|2dtdx

]1/2 [

∫ T2

T1

ydt

]1/2

≤

∫ T2

T1

Φqdt.

Since y is bounded, (3.16), (3.24) with T1 = 0 and c2 > c3 and (3.19) imply (3.20).
Further, by (3.20), (3.16)

∫ ∞

0

∫

Ω

|a2
0(t, x, u;u) − a2

0(t, x, u;u∞)|2dtdx <∞

thus (3.20), (3.24) imply (3.21). Because, first observe that by (3.20)

lim inf
t→∞

y(t) = 0

Hence there exist

T1 < T2 < ... < Tk < ...→ +∞ such that lim
k→∞

y(Tk) = 0.

Applying (3.24) to T1 = Tk and T2 = T with T > Tk, we obtain

0 ≤ y(T ) ≤ y(Tk) + ak where lim
k→∞

ak = 0

and so lim∞ y = 0.
Finally, from (3.16), (3.21), (3.24) we obtain (for T1 > a) as T2 → ∞

−y(T1) + c⋆
∫ ∞

T1

‖ u(t) − u∞ ‖p
V dt+ c2

∫ ∞

T1

ydt−

c3

[
∫ ∞

T1−a

ydt

]1/2 [
∫ ∞

T1

ydt

]1/2

≤ const

∫ ∞

T1

Φ(t)qdt.

Hence, by using the notation Y (T ) =
∫ ∞

T y(t)dt,

Y ′(T1) + (c2 − c3/2)Y (T1) − (c3/2)Y (T1 − a) ≤ (3.25)

Y ′(T1) + c2Y (T1) − c3Y (T1 − a)1/2Y (T1)
1/2 ≤ const

∫ ∞

T1

Φqdt.

Since the real part of the roots of the characteristic equation

λ+ (c2 − c3/2) − (c3/2)e−λ = 0

is negative, we obtain for the solution of (3.25) the inequality (3.22).
Examples In [4] examples of the following type were considered:

ai(t, x, ζ0, ζ;u) = b(t, x, [H(u)](t, x))ζi|ζ|
p−2, i = 1, ..., n,

a0(t, x, ζ0, ζ;u) = b0(t, x, [H0(u)](t, x))ζ0|ζ0|
p−2+

b̂0(t, x, [F0(u)](t, x))α̂0(t, x, ζ0, ζ)
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where b, b0, b̂0, α̂0 are Carathéodory functions satisfying

b(t, x, θ) ≥
c2

1 + |θ|σ⋆ , b0(t, x, θ) ≥
c2

1 + |θ|σ⋆

with some positive constants c2, σ
⋆ < p− 1,

|b̂0(t, x, θ)| ≤ 1 + |θ|p−1−ρ⋆

with ρ⋆ < p− 1

and
|α̂0(t, x, ζ0, ζ)| ≤ c1(|ζ0|

ρ̂ + |ζ|ρ̂), σ⋆ + ρ̂ < ρ⋆, ρ̂ ≥ 0.

Finally,
H,H0 : Lp(0, T ;V ) → C(QT ), F0 : Lp(0, T ;V ) → Lp(QT )

are linear continuous operators of Volterra type.
One can show that the examples of the above type satisfy the conditions of the

above existence theorems in the case when

H,H0 : Lp(QT ) → Lp(QT )

are continuous linear operators (for a fixed T > 0 or arbitrary finite T > 0, respec-
tively) and b, b0 are bounded. Thus, H and H0 may have more general forms: also the
forms, formulated in [4] for F0. It is not difficult to formulate conditions on H,H0, F0

and b̂0, α̂0 which imply the conditions of theorems on boundedness and stabilization
of solutions.

4. Periodic solutions

Now consider equation (1.1) in the following modified form:

Dtu−

n
∑

i=1

Di[ai(t, x, u,Du;ut)] + a0(t, x, u,Du;ut) = f with u0 = ψ (4.1)

where ut(s) = u(t + s), s ∈ (−a, 0) and ai : QT × R
n+1 × Lp(−a, 0;V ) → R, ψ ∈

Lp(−a, 0;V ) are given functions and we want to find u ∈ Lp
loc(−a,∞;V ) satisfying

(4.1) in weak sense. We shall show that for some ψ there exists a T -periodic solution.

Theorem 4.1. Assume that functions ai satisfy (A1) - (A5) in the following mod-
ified form: the last term in ai is ut ∈ Lp(−a, 0;V ) instead of u ∈ Lp(0, T ;V )
and in (A5) instead of weak convergence in Lp(0, T ;V ) and strong convergence in
Lp(0, T ;W 1−δ,p(Ω)) we write weak convergence in Lp(−a, 0;V ) and strong conver-
gence in Lp(−a, 0;W 1−δ,p(Ω)), respectively.

Then there exists u ∈ Lp(−a, T ;V ) such that Dtu ∈ Lq(−a, T ;V ⋆),

Dtu+A(u) = f for t ∈ (0, T ), u(t) = u(t+ T ) for t ∈ [−a, 0] (4.2)
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where operator A : Lp(0, T ;V ) → Lq(0, T ;V ⋆) is defined by (2.3) such that the terms
u after ”;” are substituted by ut, i.e.

[A(u), v] =

∫

QT

[

n
∑

i=1

ai(t, x, u,Du;ut)Div + a0(t, x, u,Du;ut)v]dtdx.

Proof Define operator Ã for u, v ∈ Lp(0, T ;V ) by

[Ã(u), v] =

∫

QT

[

n
∑

i=1

ai(t, x, u,Du; (Pu)t)Div + a0(t, x, u,Du; (Pu)t)v]dtdx

where
(Pu)(t) = u(t+ kT ) if t+ kT ∈ (0, T ) for some k = 0, 1, ...

Then Ã is bounded, demicontinuous, pseudomonotone with respect to

D(L) = {u ∈ Lp(0, T ;V ) : Dtu ∈ Lq(0, T ;V ⋆), u(T ) = u(0)}

where D(L) is the domain of the maximal monotone closed densely defined operator
L = Dt. Consequently, for any f ∈ Lq(0, T ;V ⋆) there exists u ∈ D(L) satisfying
Dtu + Ã(u) = f for t ∈ (0, T ). (See [2], [6].). Then, clearly, Pu ∈ Lp(−a, T ;V )
satisfies Dtu ∈ Lq(−a, T ;V ⋆) and (4.2).

From Theorem 4.1 immediately follows

Theorem 4.2. Assume that

ai : Q∞ × R
n+1 × Lp(−a, 0;V ) → R

satisfy the conditions of Theorem 2.2 and ai, f are T -periodic in t:

ai(t+ T, x, ζ0, ζ;w) = ai(t, x, ζ0, ζ;w), f(t+ T ) = f(t)

for a.e. (t, x) ∈ Q∞, all (ζ0, ζ) ∈ R
n+1, w ∈ Lp(−a, 0;V ).

Then there exists u ∈ Lp
loc(−a,∞;V ) such that Dtu ∈ Lq

loc(−a,∞;V ⋆),

Dtu+A(u) = f, u(t) = u(t+ T ) for t ∈ (0,∞).
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