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1. Definitions of Maximum Principles

The theory of the delay differential equations had been started with the equation

x′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0, ω], (1.1)

where
x(s) = ϕ(s) for s < 0, (1.2)

and ϕ is a corresponding continuous function which is called an initial function. Note
that we have to add the equality (1.2) to equation (1.1) in order to define what must
be set instead of x(t− τ(t)) when t− τ(t) < 0. The problem to define a homogeneous
object is the crucial one. If equation (1.1) is studied for all possible continuous initial
functions ϕ, then the space of solutions of this equation becomes infinite-dimensional
and there is no a direct connection between maximum principles and problems of
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existence and uniqueness of solutions to boundary value problems. The notion of
Green’s function does not appear in this case.

In the paper [2] a fully formed tradition to consider a solution of delay equation
(1.1) as a continuously prolonged initial function ϕ(t) was avoided and a homogeneous
object was defined as equation (1.1) with the initial functions

x(ξ) = 0 for ξ < 0. (1.3)

Precisely equation (1.1), (1.3) acts as a homogeneous equation in the theory of ordi-
nary differential equations: the space of its solutions becomes one-dimensional and
the formula for representation of the general solution of the nonhomogeneous equation

x′(t) + p(t)x(t − τ(t)) = f(t), t ∈ [0, ω], (1.4)

with the initial function (1.3) is the following

x(t) =

∫ t

0

C(t, s)f(s)ds + C(t, 0)x(0), (1.5)

where C(t, s) is called the Cauchy function of equation (1.4). Note that C(t, s) as the
function of the argument t for each fixed s is a solution of the equation

x′(t) + p(t)x(t − τ(t)) = 0, t ∈ [s, ω], (1.6)

x(ξ) = 0 for ξ < s, (1.7)

satisfying the condition C(s, s) = 1.

In the mathematical literature there are several definitions of the maximum prin-
ciples. Talking about them, we mean assertions of the following three types.

1) Maximum inequalities principle can be formulated as follows: solutions
of inequalities are greater or less than the solution of the equation.

First results about comparison of solutions for delay differential equations can be
found in the well known book of A. D. Myshkis [10]. The integral representations
of solutions to boundary value problems for delay differential equations (1.4), (1.3),
(1.8),

lx = c, (1.8)

where l : D[0,ω] → R1 is a linear bounded functional defined on the space of absolutely
continuous functions D[0,ω] and c ∈ R1, were proposed by N. V. Azbelev [2]. The
problem (1.4), (1.3), (1.8) is uniquely solvable in the space D[0,ω] for each f ∈ L[0,ω]

and c ∈ R1 if and only if the homogeneous problem

(Mx)(t) ≡ x′(t) + p(t)x(t − τ(t)) = 0, t ∈ [0, ω], lx = 0, (1.9)

has only the trivial solution [1]. In this case the solution of problem (1.4), (1.3), (1.8)
can be written in the form

x(t) =

∫ ω

0

G(t, s)f(s)ds + X(t), (1.10)
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where X(t) is a solution of the homogeneous equation (Mx)(t) = 0, t ∈ [0, ω], satis-
fying the boundary condition lx = c. The kernel G(t, s) is called the Green’s function.
On the basis of this representation the comparison results were first formulated in the
form of positivity/negativity of corresponding Green’s functions in the paper [2].

For first order functional differential equations various assertions about positivity
of Green’s functions of the Cauchy and periodic problems were obtained in the papers
[3, 5, 7] and in the terminology of inequalities - in the book [9], where problems with
the generalized periodic condition νx(0)+µx(ω) = c has been also considered. Results
about positivity of Green’s functions for more general boundary conditions can be
found in the recent paper [6].

2) Maximum principle as a boundedness of solutions: there exists a positive
constant N such that |x| ≤ N(‖f‖ + |c|), where ‖f‖ is the norm in the spaces L∞

[0,ω]

or L[0,ω] respectively.

This is actually a problem of continuous dependence of solutions on the right hand
side f and the boundary condition c. The formula of the integral representation of
solution (1.10) reduces the maximum boundedness principle to the fact of the unique
solvability of boundary value problems.

3) Maximum boundaries principle usually means that maximal and minimal
values of the solution can be only at the points 0 or ω.

For the first order ordinary differential equation x′(t)+p(t)x(t) = 0 with oscillating
coefficient this situation is impossible. If the coefficient p(t) changes its sign at the
points tk (k = 1, 2, 3, ...), we can define the generalized maximum principle as follows:
solutions have their maximums and minimums only at these points tk.

2. Generalized Maximum Principle for Equations with

Oscillating Coefficient

Consider the delay equation

x′(t) + p(t)x(h(t)) = f(t), t ∈ [0, +∞), (2.1)

x(ξ) = 0, ξ < 0, (2.2)

with oscillating coefficient p(t) changing its sign at the points tk (k = 1, 2, 3, ...). We
set t0 = 0.

Theorem 2.1. Let one of two conditions a) or b) be satisfied:

a) the coefficient p(t) satisfies the inequalities: p(t) ≥ 0 for [t2k, t2k+1], p(t) ≤ 0
for [t2k+1, t2k+2] for k = 0, 1, 2, ..., and

∫ t2k+1

t2k

p(t)dt < 1, k = 0, 1, 2, ..., (2.3)
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and the deviating argument h(t) satisfies the inequalities: t2k−1 ≤ h(t) for
t ∈ [t2k, t2k+1].

b) the coefficient p(t) satisfies the inequalities: p(t) ≤ 0 for [t2k, t2k+1], p(t) ≥ 0
for [t2k+1, t2k+2] for k = 0, 1, 2, ..., and

∫ t2k+2

t2k+1

p(t)dt < 1, k = 0, 1, 2, ..., (2.4)

and the deviating argument h(t) satisfies the inequalities: t2k ≤ h(t) for t ∈
[t2k+1, t2k+2].

Then C(t, s) > 0 for 0 ≤ s ≤ t < +∞.

Proof. Let us prove that the condition a) implies C(t, s) > 0 for 0 ≤ s ≤ t < +∞.

Denote p(t) = p+(t) − p−(t), where p+(t) ≥ 0, p−(t) ≥ 0, and consider the equation

x′(t) + p+(t)x(h(t)) = 0, t ∈ [0, +∞), (2.5)

x(ξ) = 0, ξ < 0. (2.6)

Denote by C+(t, s) its Cauchy function. The function x(t) = C+(t, s) for each fixed
s as a function of the argument t is a solution of the equation

x′(t) + p+(t)x(h(t)) = 0, t ∈ [s, +∞), (2.7)

x(ξ) = 0, ξ < 0.

It is clear that the solution x(t) = C+(t, s) is equal to the constants on each of
the intervals [t2k+1, t2k+2], k = 0, 1, 2, ... . The inequality (2.3) implies, according to
Corollary 1.1 [7], positivity of x(t) = C+(t, s) for [t2k, t2k+1], k = 0, 1, 2, ... . The
positivity of the Cauchy function C+(t, s) of equation (2.5), (2.6) for 0 ≤ s ≤ t < +∞
implies, according to Theorem 2 of the paper [7], the positivity of the Cauchy function
C(t, s) of equation (2.1),(2.2) for 0 ≤ s ≤ t < +∞.

Analogously one can prove that the condition b) implies C(t, s) > 0 for 0 ≤ s ≤
t < +∞. �

Inequalities (2.3) and (2.4) cannot be improved as the following examples demon-
strate.

Example 2.1. Consider the equation

x′(t) + x([t]) = 0, t ∈ [0, +∞), (2.8)

where [t] is the integer part of t. The solution of this equation is the following

x(t) = C(t, 0) =







1 − t, 0 ≤ t < 1,

0, 1 ≤ t.

(2.9)
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Example 2.2. Consider the equation

x′(t) + p(t)x([t]) = 0, t ∈ [0, +∞), (2.10)

where

p(t) =







b(t), t2k ≤ t ≤ t2k+1,

−a(t), t2k+1 < t < t2k+2.

(2.11)

a(t) ≥ 0, b(t) > 1 + ε, ε > 0. The solution x(t) = C(t, 0) changes its sign in every
interval [t2k, t2k+1], k = 0, 1, 2, ... .

Theorem 2.2. Let the condition a) (b)) of Theorem 2.1 be fulfilled, then the modulus
of every solution x of the homogeneous equation

x′(t) + p(t)x(h(t)) = 0, t ∈ [0, +∞), (2.12)

where x(ξ) = 0 for ξ < 0, has its maximums only at the points t2k (t2k+1) and its
minimums only at the points t2k+1 (t2k), k = 0, 1, 2, ....

In order to prove it, let us note that according to Theorem 2.1, solutions of the
homogeneous equation (2.12) do not change their signs. This implies that |x(t)| does
not increase when p(t) ≤ 0 and does not decrease when p(t) ≤ 0.

3. Applications of Maximum Principle to Boundary Value

Problems

The maximum principle obtained in Theorem 2.2 implies various assertions about
unique solvability of boundary value problems for equation (1.4).

Theorem 3.1. Let the condition a) of Theorem 2.1 be satisfied. Then the following
assertions are true:

1) If l : C[0,ω] → R1 is a linear nonzero positive functional, then boundary value
problem (1.4), (1.3), (1.8) is uniquely solvable for each f ∈ L[0,ω], c ∈ R1;

2) the boundary value problem (1.4), (1.3), (3.1), where

lx ≡

n
∑

k=1

{x(t2k) − mkx} = c, (3.1)

and the norm of every linear functional mk : C[t2k−1,t2k] → R1 is less than one,
is uniquely solvable for each f ∈ L[0,ω], c ∈ R1;
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3) the boundary value problem (1.4),(1.3), (3.2)

n
∑

k=0

αkx(s2k) =

n
∑

k=0

βkx(s2k+1) + c, (3.2)

where the inequalities t2k ≤ s2k < s2k+1 ≤ t2k+1 and αk ≥ βk ≥ 0 are satisfied
for k = 0, 1, 2, ..., n, and there exists j such that αj > βj, is uniquely solvable
for each f ∈ L[0,ω], c ∈ R1;

4) the boundary value problem (1.4),(1.3),(3.3), where

n
∑

j=1











t2j
∫

t2j−1

α(t)x(t)dt











= c, 0 = t0 ≤ t1 < t2 < ... < t2n−1 < t2n ≤ ω, (3.3)

in the case when α(t) ≤ 0 for t ∈ [t2j−1, sj ], α(t) ≥ 0 for t ∈ [sj , t2j ], where

t1 < s1 < t2, ..., t2n−1 < sn < t2n,
t2j
∫

t2j−1

α(t)dt ≥ 0, j = 1, ..., k, and there exists

j such that
t2j
∫

t2j−1

α(t)dt > 0, is uniquely solvable for each f ∈ L[0,ω], c ∈ R1.

Example 3.1. The periodic problem for the equation

x′(t) = 0, t ∈ [0, ω],

has the nontrivial solution x(t) ≡ 1, t ∈ [0, ω]. This demonstrates that the condition
about existence of such j that αj > βj is essential.

The location of the points sk in assertion 3) is essential. If instead of the inequality
t2k ≤ s2k < s2k+1 ≤ t2k+1, we assume that t2k ≤ s2k < s2k+1 ≤ t2k+2, then the
assertion about unique solvability is not true as the following example demonstrates.

Example 3.2. Consider the generalized periodic problem

x′(t) + p(t)x(0) = 0, 2x

(

1

2

)

= x(1), t ∈ [0, 1],

where

p(t) =











1, 0 ≤ t < 1
2 ,

−1,
1

2
≤ t ≤ 1.

This generalized periodic problem has the nontrivial solution

x(t) =











1 − t, 0 ≤ t < 1
2 ,

t,
1

2
≤ t ≤ 1.
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4. Exponential Stability of Equation with Oscillating

Coefficient

Consider the equation

(Mx)(t) ≡ x′(t) + p(t)x(h(t)) = f(t), t ∈ [0, +∞), (4.1)

x(ξ) = 0, ξ < 0, (4.2)

with oscillating coefficient p(t) changing its sign at the points tk (k = 1, 2, 3, ...). Let
us assume that t0 = 0 and there exist positive numbers c1 and c2 such that c1 <

tk+1 − tk < c2 for every k.

Definition 4.1 [1]. We say that equation (4.1) is exponentially stable, if for each
solution x of the corresponding homogeneous equation

x′(t) + p(t)x(h(t)) = 0, t ∈ [0, +∞), (4.3)

x(ξ) = 0, ξ < 0,

there exist positive constants α and N such that |x(t)| ≤ Ne−αt for t ∈ [0, +∞).

Theorem 4.1. Let the following conditions be satisfied:

a) the coefficient p(t) satisfies the inequalities: p(t) ≥ 0 for (t2k, t2k+1), p(t) ≤ 0

for (t2k+1, t2k+2) and
∫ t2k+1

t2k
p(t)dt < 1 for k = 0, 1, 2, ...;

b) the deviating argument h(t) satisfies the inequalities: tk−1 ≤ h(t) for t ∈
[tk, tk+1], h(t) ≤ t2k−1 for t ∈ [t2k−1, t2k];

c) there exists a number γ such that

γk+1 ≡ exp

[

−

∫ t2k+1

t2k

p(t)χ(h(t), t2k)dt

]

+

∫ t2k+2

t2k+1

|p(t)| dt ≤ γ < 1, (4.4)

k = 0, 1, 2, ...., where

χ(t, s) =







1, t ≥ s,

0, t < s.

(4.5)

Then equation (4.1) is exponentially stable.

Proof. According to Theorem 2.1, the conditions a) and b) imply positivity of the
Cauchy function C(t, s) of equation (4.1),(4.2) for 0 ≤ s ≤ t < ∞. The function

u(t) =























γ0...γk−1 exp
[

−
∫ t

t2k
p(t)χ(h(s), t2k)ds

]

, t2k−2 ≤ t < t2k−1,

γ0...γk−1 exp
[

−
∫ t2k+1

t2k
p(s)χ(h(s), t2k)ds

]

+
∫ t

t2k+1
|p(s)| ds, t2k−1 ≤ t < t2k,

k = 1, 2, ...

(4.6)
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where γ0 = 1, satisfies the inequality (Mu)(t) ≥ 0. The positivity of C(t, s) implies
that u(t) ≥ x(t) for t ∈ [0, +∞), where the function x is a solution of the initial
problem (Mx)(t) = 0, t ∈ [0, +∞), x(0) = 1. �

Remark 4.1. The inequality

exp

[

−

∫ t2k+1

t2k

p(t)χ(h(t), t2k)dt

]

+

∫ t2k+2

t2k+1

|p(t)| dt < 1, k = 0, 1, 2, ...., (4.7)

cannot be set instead of the condition c) as the following example demonstrates.

Example 4.1. Consider equation (4.3), where h(t) ≡ t,

p(t) =







1
t2+1 , 2k ≤ t < 2k + 1,

0, 2k + 1 ≤ t < 2k + 2,

k = 0, 1, 2, ... (4.8)

Its nontrivial solutions tend to constants when t → +∞. Note that the condition c)

avoids the possibility that limk→∞

∫ t2k+1

t2k
p(t)χ(h(t), t2k) dt = 0.

Theorem 4.2. Let the conditions a) and b) of Theorem 4.1 be fulfilled, the deviating
argument h(t) satisfy the inequality t − h(t) ≤ τ for t ∈ [0,∞) and a number γ exist
such that

exp

[

−

∫ t2k+1

t2k

p(t)χ(h(t), t2k)dt

]

{

1 + exp

[

∫ t2k+1

t2k+1−τ

p(ξ)dξ

]

∫ t2k+2

t2k+1

|p(t)| dt

}

≤ γ < 1,

(4.9)
k = 0, 1, 2, .... Then equation (4.1) is exponentially stable.

Example 4.2. Assume that h(t) ≥ 0, t2k−1 ≤ h(t) for t ∈ [t2k, t2k+1], p(t + 2) =
p(t), where

p(t) =







ln(1 + t), 0 ≤ t ≤ 1,

−µ, 1 < t < 2.

If µ < 4−e
4 , then equation (4.1),(4.2) with this coefficient p(t) is exponentially stable.

5. Positivity of Green’s Function of Generalized Periodic

Problems

Consider the equation

(Mx)(t) ≡ x′(t) + p(t)x(h(t)) = f(t), t ∈ [0, ω], (5.1)

x(ξ) = 0, ξ < 0, (5.2)
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with oscillating coefficient p(t) changing its sign at the points tk (k = 1, 2, 3, ..., 2m−1)
of the interval [0, ω]. Denote t0 = 0 and t2m = ω. For this equation we consider the
generalized periodic condition

x(0) = βx(ω). (5.3)

Theorem 5.1. Let the following conditions be satisfied:

a) the coefficient p(t) satisfies the inequalities: p(t) ≥ 0 for (t2k, t2k+1), p(t) ≤ 0

for (t2k+1, t2k+2) and
∫ t2k+1

t2k
p(t)dt < 1, for k = 0, 1, 2, ..., m− 1;

b) the deviating argument h(t) satisfies the inequalities: tk−1 ≤ h(t) for t ∈
[tk, tk+1], h(t) ≤ t2k−1 for t ∈ [t2k−1, t2k];

c) the inequality γ1...γm < 1
β

is satisfied, where γk are defined by formulas (4.4).

Then the Green’s function G(t, s) of the generalized periodic problem (5.1), (5.2),
(5.3) is positive for t, s ∈ [0, ω].

Proof. According to Theorem 2.1, the conditions a) and b) implies the positivity of
the Cauchy function C(t, s) for 0 ≤ s ≤ t ≤ ω. Now it is clear that the function
u(t) defined by formula (4.6) satisfies the inequality u(t) ≥ C(t, 0) for t ∈ [0, ω].
The condition c) implies the inequality C(ω, 0) < 1

β
and consequently the unique

solvability of the problem (5.1), (5.2), (5.3). The Green’s function of problem (5.1),
(5.2), (5.3) has the representation

G(t, s) = C(t, s) +
βC(ω, s)

1 − βC(ω, 0)
C(t, 0), (5.4)

where C(t, s) = 0 for t < s. The inequalities C(t, s) > 0 for 0 ≤ s ≤ t ≤ ω and
C(ω, 0) < 1

β
imply that G(t, s) > 0 for t, s ∈ [0, ω]. �

References

[1] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina, Introduction to the
Theory of Functional Differential Equations, Advanced Series in Math. Science
and Engineering 3, Atlanta, GA, World Federation Publisher Company, 1995.

[2] N. V. Azbelev, About zeros of solutions of linear differential equations of the
second order with delayed argument, Differentsialnye Uravnenia, 7:7 (1971)
1147–1157.

[3] R. P. Agarwal and A. Domoshnitsky, Nonoscillation of the first order differential
equations with unbounded memory for stabilization by control signal, Applied
Mathematics and Computation, 173:1 (2006) 177–195.

[4] L. Berezansky and E. Braverman, On exponential stability of linear differential
equations with several delays, J. Math. Anal. Appl., 324 (2006) 1336–1355.

29



42 A. Domoshnitsky

[5] L. Berezansky, Yu. Domshlak and E. Braverman, On oscillation properties of
delay differential equations with positive and negative coefficients, J. Math. Anal.
Appl., 274 (2002) 81–101.

[6] A. Domoshnitsky, Maximum principles and nonoscillation intervals for first order
Volterra functional differential equations, Dynamics of Continuous, Discrete &
Impulsive Systems. A: Mathematical Analysis, 15 (2008) 769-814.

[7] S. Gusarenko and A. Domoshnitsky, Asymptotic and oscillation properties of the
first order scalar functional-differential equations, Differentsyal’nye Uravnenia,
25 (1989) 1480–1491.
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[9] R. Hakl, A. Lomtatidze and J. Ŝremr, Some boundary value problems for first
order scalar functional differential equations, FOLIA, Masaryk University, Brno,
Czech Republic, 2002.

[10] A. D. Myshkis, Linear differential equations with delayed argument, Moscow,
Nauka, 1972.

30


