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Abstract. This paper deals with the asymptotic investigation of the exact and
the numerical solution of a linear differential equation with a power delay. We pay
a special attention to the application of the trapezoidal rule and derive the upper
bound for the solutions of this discretization. Moreover, comparing the estimates
for the exact and the numerical solutions we can observe the correspondence in the
asymptotic behaviour of both types of solutions.
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1. Introduction

This paper discusses the qualitative behaviour of the exact and the numerical
solution of the delay differential equation

y′(t) = a y(t) + b y(tγ), t ≥ 1 , (1.1)

where a, b 6= 0 and 0 < γ < 1 are real scalars (some additional assumptions on
a, b will be imposed later). Because of the property lim sup(t − tγ) = ∞ as t → ∞
this equation belongs to the class of differential equations with an infinite time lag.
A typical representative of this class is the pantograph equation

y′(t) = a y(t) + b y(λt), t ≥ 0 (1.2)
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serving as a mathematical model of various problems ([14], [18]). Since its origin, the
pantograph equation (1.2) has become the subject of many qualitative and numerical
investigations (see, e.g. [9], [11], [12], [13] [15], [17] and the references cited therein).
The important question connected with these investigations is the discussion on pos-
sible similarities or discrepancies in the behaviour of the exact and numerical solution
of (1.2) ([2], [10], [16]). Our aim is to extend this discussion also to the equation (1.1)
and present the correspondence between the asymptotic behaviour of the equation
(1.1) and its trapezoidal rule discretization.

The paper is structured as follows: Section 2 presents an overview of the asymp-
totic behaviour of the equation (1.1). In Section 3, we mention some preliminaries
on the discretization of the equation (1.1) with an emphasize to the application of
the Euler method and the trapezoidal rule. Section 4 discusses the description of the
asymptotics of the trapezoidal rule discretization of (1.1). Finally, some comparisons
of the asymptotic bounds derived for the exact and the numerical solution of (1.1)
are the subject of Section 5.

2. Asymptotic bounds for the exact solution of (1.1)

In this section, we recall some qualitative properties of the differential equation (1.1).
As it might be expected, the asymptotics of its solution depends on the sign of a.
The following asymptotic result, which is relevant with respect to our further inves-
tigations, was first proved in [8].

Theorem 2.1. Let y be a solution of (1.1), where a, b, γ are real constants with
a < 0, b 6= 0 and 0 < γ < 1. Then there exists a continuous periodic function g of
period log γ−1 such that

y(t) = (log t)ωg(log log t) + O((log t)Re ω−1) as t → ∞ , (2.1)

where ω is a root of a + bγω = 0.

It follows immediately from (2.1) that under the assumptions a < 0, b 6= 0 and
0 < γ < 1 the upper bound

y(t) = O
(

(log t)− log
γ
|b/a|

)

as t → ∞ (2.2)

holds for any solution y of (1.1).
If a > 0, then the solutions of the equation (1.1) admit quite a different type of

asymptotics which can be described in terms of the function exp{at} (see [3]). The
case where a = 0 is ”something between”. In particular, the equation

y′(t) = b y(tγ), t ≥ 1 , (2.3)

where b 6= 0 and 0 < γ < 1 are real scalars, can be via the substitution

s = log t, z(s) = t
1

γ−1 y(t)

12



26 J. Čermák

converted into the equation of the type (1.2) whose qualitative behaviour is fully
described in [11], and [12]. Using these results (and the corresponding backward
transformation) we can find that the upper bound

y(t) = O
(

t
1

1−γ (log t)− log
γ
|b(1−γ)|

)

as t → ∞

holds for any solution y of (2.3). Moreover, this estimate is non-improvable in the
sense that if

y(t) = o
(

t
1

1−γ (log t)− log
γ
|b(1−γ)|

)

as t → ∞ ,

then y must be the zero solution of (2.3).
For the sake of completeness we recall that the above stated types of asymptotics

describe the behaviour of the solutions of (1.1) also in the advanced case γ > 1 (see
[7]) as well as in some generalizations of (1.1) (see [17] and [3]). The extensions for
complex coefficients a, b are possible, too.

3. Some numerical preliminaries

The basic numerical methods for delay differential equations extend the standard
ODE methods by use of the interpolation. We recall here the Euler method combined
with the piecewise constant approximation of the delayed term and the trapezoidal
rule discretization approximating the delayed term by the piecewise linear interpo-
lation. This type of the discretization is the most important particular case of the
so called θ-method which is frequently employed in the numerical analysis of delay
differential equations. We apply the above stated methods directly to the differential
equation (1.1).

Let tn = 1 + nh, n = 0, . . . be the set of grid points with the constant stepsize
h > 0 and let yn denote the approximation of the exact solution y of (1.1) at tn. Then
the application of the forward Euler method and the trapezoidal rule to the equation
(1.1) yields the recurrence relations

yn+1 = (1 + ah)yn + bhyrn
, n = 0, 1, . . . (3.1)

and
yn+1 = Ryn + S (βnyrn

+ αnyrn+1) , n = 0, 1, . . . , (3.2)
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respectively, with

rn =
⌊ (tn)γ − 1

h

⌋

, (⌊ ⌋ means the floor function) ,

R =
2 + ha

2 − ha
, S =

2hb

2 − ha
,

αn =
1

2hγ

(

(tn+1)
γ − (tn)γ

)

(3.3)

×

{

(tn)1−γ
( (tn)γ − 1

h
−
⌊ (tn)γ − 1

h

⌋)

+(tn+1)
1−γ
( (tn+1)

γ − 1

h
−
⌊(tn)γ − 1

h

⌋)}

,

βn =
1

2hγ

(

(tn+1)
γ − (tn)γ

)(

(tn)1−γ + (tn+1)
1−γ
)

− αn .

Both formulae (3.1) and (3.2) are linear delay difference equations of a variable
order. While the method (3.1) can be derived quite straightforwardly, the introduction
of the formula (3.2) requires some additional calculations connected especially with
the approximation of the numerical solution at non-grid points. This procedure is
described in detail in [2], where the equation (1.1) with a general (increasing and
differentiable) delay has been considered. Some general properties of the formulae
(3.1) and (3.2), such as the convergence, various types of stability, etc., can be found in
the book [1]. We note that the qualitative investigation of delay difference equations
is, in general, much less developed than in the continuous counterpart. For some
relevant results we refer to [5], [6] and [19].

4. Asymptotic bounds for the numerical solution of (1.1)

This section presents the upper bound for numerical solutions of (1.1) by the trape-
zoidal rule (3.2). The corresponding asymptotic result for the forward Euler method
(3.1) has been obtained only recently ([4]) and we recall it in the following assertion.

Theorem 4.1. Let yn be a solution of (3.1), where a, b, γ are real constants such
that a < 0, 1 + ha > 0, b 6= 0, a + |b| ≥ 0 and 0 < γ < 1. Then

yn = O
(

(log n)− log
γ
|b/a|

)

as n → ∞ . (4.1)

We aim at the obtaining of the analogical result for (3.2). Since this type of
discretization is more difficult to analyze, we have to start with some auxiliary results.

We consider the inequality

|S| (|βn|̺rn
+ |αn|̺rn+1) ≤ (1 − |R|) ̺n, n = 0, 1, . . . , (4.2)

where rn, αn, βn, R and S are given by (3.3). We are searching for a positive solution
sequence ̺n of (4.2) and on this account we first state the following estimate.
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Proposition 4.1. Let αn and βn be given by (3.3). Then

αn + |βn| ≤ 1 +
1 + h

(tn)1−γ
, n = 0, 1, . . . . (4.3)

Proof. We distinguish two cases with respect to the sign of βn. First let βn ≥ 0.
Then

αn + |βn| =
1

2hγ

(

(tn+1)
γ − (tn)γ

)(

(tn)1−γ + (tn+1)
1−γ
)

=
1

2hγ
(tn)γ

(

(1 +
h

tn
)γ − 1

)(

(tn)1−γ + (tn+1)
1−γ
)

≤
1

2
(tn)γ−1

(

(tn)1−γ + (tn+1)
1−γ
)

=
1

2
+

1

2

(

1 +
h

tn

)1−γ

≤
1

2
+

1

2

(

1 +
(1 − γ)h

tn

)

= 1 +
(1 − γ)h

2tn

by use of the binomial formula. Now consider the case βn < 0. Then

αn + |βn| =
1

hγ

(

(tn+1)
γ − (tn)γ

)

×

{

(tn)1−γ
((tn)γ − 1

h
−
⌊ (tn)γ − 1

h

⌋)

+(tn+1)
1−γ
((tn+1)

γ − 1

h
−
⌊ (tn)γ − 1

h

⌋)

}

−
1

2hγ

(

(tn+1)
γ − (tn)γ

)(

(tn)1−γ + (tn+1)
1−γ
)

≤ (tn)γ−1

{

(tn)1−γ 1

2
+ (tn+1)

1−γ
(

γ(tn)γ−1 + 1 −
1

2

)

}

=
1

2
+
(

1 +
h

tn

)1−γ(

γ(tn)γ−1 +
1

2

)

≤
1

2
+

1

2

(

1 +
(1 − γ)h

tn

)

+ γ(tn)γ−1
(

1 +
(1 − γ)h

tn

)

≤ 1 +
(1 − γ)h

2(tn)1−γ
+

γ

(tn)1−γ
+

γ(1 − γ)h

(tn)1−γ
≤ 1 +

1 + h

(tn)1−γ
.

�

Now let t∗ ≥ 1 be a (unique) real root of the equation t − tγ = h and further let
k∗ = ⌊(t∗ − 1)/h⌋+ 1. Then using this notation we can present the following explicit
form of a solution of (4.2).

Proposition 4.2. Let 0 < 1 − |R| ≤ |S| and 0 < γ < 1. Then the sequence

̺n =
(

1 − 2(1 + h)(tn−1)
γ−1

γ

)(

log(tn − k∗h)
)− log

γ
(|S|/(1−|R|))

(4.4)

defines a positive solution sequence of (4.2) for all n large enough.
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Proof. Using (4.3) and the eventual monotonicity of ̺n we can estimate the left-hand
side of the inequality (4.2) as

|S| (|βn|̺rn
+ |αn|̺rn+1) ≤ |S| (|βn| + |αn|) ̺rn+1

≤ |S|

(

1 +
1 + h

(tn)1−γ

)

̺rn+1 .

After the substitution of ̺n from (4.4) we can continue in our calculations:

|S|

(

1 +
1 + h

(tn)1−γ

)

(

1 −
2(1 + h)

(1 + rnh)
1−γ

γ

)

(

log(1 + (rn + 1 − k∗)h)
)− log

γ
(|S|/(1−|R|))

≤ |S|

(

1 −
1 + h

(tn)1−γ

)

(

log((tn)γ + h − k∗h)
)− log

γ
(|S|/(1−|R|))

≤ |S|

(

1 −
2(1 + h)

(tn−1)
1−γ

γ

)

(

log(tn − k∗h)γ)
)− log

γ
(|S|/(1−|R|))

= |S|

(

1 −
2(1 + h)

(tn−1)
1−γ

γ

)

1 − |R|

|S|

(

log(tn − k∗h)
)− log

γ
(|S|/(1−|R|))

= (1 − |R|)̺n

by use of the definition of k∗. �

Now we are ready to formulate the main result of this section.

Theorem 4.2. Let yn be a solution sequence of (3.2), where

0 < 1 − |R| ≤ |S| and 0 < γ < 1 .

Then
yn = O

(

(log n)− log
γ
(|S|/(1−|R|))

)

as n → ∞ . (4.5)

Proof. First we introduce the substitution zn = yn/̺n, where ̺n is given by (4.4).
Then (3.2) becomes

̺n+1zn+1 = R̺nzn + S (̺rn
zrn

βn + ̺rn+1zrn+1αn) . (4.6)

Now let σ0 ∈ Z
+ be the sufficiently large starting point of our asymptotic estimation.

Further, let σm+1 :=
⌊

(1+(σm−1)h)
1

γ −1
h

⌋

, m = 0, 1, . . ., I0 := [rσ0
, σ0] ∩ Z

+, Im+1 :=

[σm, σm+1] ∩ Z
+ and Bm := sup(|zk|, k ∈ ∪m

j=0Ij), m = 0, 1, . . ..
We choose arbitrary n∗ ∈ Im+1, n∗ > σm and first assume that R = 0, i.e.

2 + ha = 0. Then (4.6) can be simplified as

zn⋆ =
1

̺n⋆

S(̺rn∗−1
zrn∗−1

βn⋆−1 + ̺rn∗−1+1zrn∗−1+1αn⋆−1) ,
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30 J. Čermák

i.e.,

|zn⋆ | ≤ Bm
1

̺n⋆

|S|(̺rn∗−1
|βn⋆−1| + ̺rn∗−1+1|αn⋆−1|).

Now we can employ (4.2) to obtain

|zn⋆ | ≤
̺n⋆−1

̺n⋆

Bm, i.e. Bm+1 ≤ Bm

by use of the eventual monotonicity of ρ and arbitrariness of n∗ ∈ Im+1.
If R 6= 0, then multiplication of (4.6) by R−n−1 yields

∆
(

̺nznR−n
)

= S (̺rn
zrn

βn + ̺rn+1zrn+1αn)R−n−1 .

To express explicitly the value zn∗ we sum the previous relation from σm to n∗−1
and obtain

̺n⋆zn⋆R−n∗

− ̺σm
zσm

R−σm = S
n⋆−1
∑

p=σm

(̺rp
zrp

βp + ̺rp+1zrp+1αp)R
−p−1 ,

consequently

zn⋆ =
̺σm

̺n⋆

zσm
Rn⋆−σm +

S

̺n⋆

n⋆−1
∑

p=σm

(̺rp
zrp

βp + ̺rp+1zrp+1αp)R
n∗−p−1 .

Considering (4.2) we arrive at

|zn⋆ | ≤ Bm

(

̺σm

̺n⋆

|R|n
⋆−σm +

1 − |R|

̺n⋆

n⋆−1
∑

p=σm

̺p|R|n
∗−p−1

)

≤ Bm

(

̺σm

̺n⋆

|R|n
⋆−σm +

1

̺n⋆

n⋆−1
∑

p=σm

̺p∆|R|n
∗−p

)

.

Now using the discrete formula of the integration by parts we can continue in our
estimation:

|zn⋆ | ≤ Bm

(

̺σm

̺n⋆

|R|n
∗−σm + 1 − |R|n

∗−σm
̺σm

̺n⋆

−

n⋆−1
∑

p=σm

|R|n
∗−p−1 ∆̺p

̺n⋆

)

= Bm

(

1 −
1

̺n⋆

n⋆−1
∑

p=σm

∆̺p|R|n
∗−p−1

)

≤ Bm

by use of the property ∆̺p ≥ 0. Hence the sequence Bm is bounded as m → ∞

and ̺n is the upper bound sequence for yn. Since ̺n and (log n)− log
γ
(|S|/(1−|R|)) are

asymptotically equivalent as n → ∞, the property (4.5) is proved. �
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5. Some comparisons and remarks

The important theoretical question in the numerical analysis of differential equations
is the problem whether the numerical solution can retain the main qualitative prop-
erties of the exact solution. This question is investigated especially in the frame of
the stability analysis and, in a more general sense, in the asymptotic investigation
of the exact and discretized equation. Among papers closely related to this problem
we refer to [2] and [16] discussing the asymptotics of the numerical solutions of the
pantograph equation (1.2). While the paper [2] formulates the upper bound of the
trapeziodal rule discretization which does not quite coincide with the upper bound of
the exact solution, the paper [16] reports that the numerical solution of (1.2) by the
backward Euler method has asymptotically the same decay rate as the exact solution.

Our intention is to perform these comparisons for the equation (1.1) and its nu-
merical solutions. We emphasize that, by (2.2) and (4.1), the Euler method (3.1) has
under some restrictions on a, b and h the same upper bound of the solutions as the
exact solution of (1.1) admits. We show that the similar correspondence is guaranteed
by Theorem 4.2 also for the trapezoidal rule (3.2).

First we rewrite the assumption 0 < 1 − |R| ≤ |S| of Theorem 4.2 in terms of
the coefficients a, b of the exact equation. Using (3.3) we can easily verify that the
inequality 0 < 1 − |R| occurs if and only if a < 0. Similarly,

1 − |R| ≤ |S| ⇔
|b| ≥ |a| for h|a| ≤ 2,
|b| ≥ 2/h for h|a| > 2 .

Now we can reformulate Theorem 4.2 and compare the estimates (4.5) and (2.2).
If a < 0, 2 + ah ≥ 0 and a + |b| ≥ 0, then (4.5) becomes (4.1). In other words, under
a modest restriction on the stepsize h we can observe the same upper bound for the
exact solution of (1.1) as well as for its numerical solution (3.2) by the trapezoidal
rule.

The natural question is the necessity of the assumptions 2+ah ≥ 0 and a+ |b| ≥ 0
(the assumption a < 0 is consistent with the continuous case). While the legitimacy
of the restriction on the stepsize h is quite open, we can put a conjecture that the
assumption a + |b| ≥ 0 is superfluous. However, the rigorous justification of this
conjecture seems to be complicated and exceeding the range of the paper.
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[6] I. Győri and M. Pituk, Asymptotic formulae for the solutions of a linear delay difference
equations, J. Math. Anal. Appl. 195 (1995) 376–392.

[7] M. L. Heard, Asymptotic behavior of solutions of the functional differential equation
x′(t) = ax(t) + bx(tα), α > 1, J. Math. Anal. Appl. 44 (1973) 745–757.

[8] M. L. Heard, A change of variables for functional differential equations, J. Differential
Equations 18 (1975) 1–10.

[9] A. Iserles, On the generalized pantograph functional-differential equation, European J.
Appl. Math. 4 (1993) 1–38.

[10] A. Iserles, Numerical analysis of delay differential equations with variable delays, Ann.
Numer. Math. 1 (1994) 133–152.

[11] T. Kato and J. B. McLeod, The functional-differential equation y′(x) = ay(λx)+by(x),
Bull. Amer. Math. Soc. 77 (1971) 891–937.

[12] T. Kato, Asymptotic behaviour of solutions of the functional-differential equations
y′(t) = ay(λt)+by(t), in: K. Schmitt, Ed., Delay and Functional Differential Equations
and Their Applications, Academic Press, New York, 1972, 197–218.

[13] T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,
Numer. Math. 84 (1999) 870–884.

[14] H. Lehninger and Y. Liu, The functional-differential equation y′(t) = Ay(t)+By(λt)+
Cy′(qt) + f(t), European J. Appl. Math. 9 (1998) 81–91.

[15] M. Z. Liu, Z. W. Yang and Y. Xu, The stability of the modified Runge-Kutta methods
for the pantograph equation, Math. Comp. 75 (2006) 1201–1215.

[16] Y. Liu, On the θ-method for delay differential equations with infinite lag, J. Comput.
Appl. Math. 71 (1996) 177–190.
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