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This paper describes a numerical method for the parallel solution of the differential measure inclusion problem posed by
mechanical multibody systems containing bilateral and unilateral frictional constraints. The method proposed has been
implemented as a set of parallel algorithms leveraging NVIDIA’s Compute Unified Device Architecture (CUDA) library
support for multi-core stream computing. This allows the proposed solution to run on a wide variety of GeForce and TESLA
NVIDIA graphics cards for high performance computing. Although the methodology relies on the solution of cone
complementarity problems known to be fine-grained in terms of data dependency, a suitable approach has been developed
to exploit parallelism with low overhead in terms of memory access and threads synchronization. Since stream multipocessors
are becoming ubiquitous as embedded components of next-generation graphic boards, the solution proposed represents a
cost-efficient way to simulate the time evolution of complex mechanical problems with millions of parts and constraints, a
task that used to require powerful supercomputers. The proposed methodology facilitates the analysis of extremely complex
systems such as granular material flows and off-road vehicle dynamics.
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INTRODUCTION

The development of parallel algorithms for simulation-
based science and engineering has represented one of
the most complex challenges in the field of numerical
computing. Until recently the massive computational
power of parallel supercomputers has been available to
a relatively small number of research groups in a select
number of research facilities, thus limiting the number
of applications approached and the impact of high
performance computing.

This scenario is rapidly changing due to a trend set
by general-purpose computing on the graphics processing
unit (GPU). The libraries CUDA from NVIDIA and CTM
from ATI allow one to use the streaming microprocessors
mounted in high-end graphics cards as general-purpose
computing hardware1. In the last two years these
microprocessors evolved from basic arrays of graphics
units capable of executing simple 3D shading programs
on each pixel of the frame buffer to full-featured
multiprocessors used for scientific computing. Presently,
the raw computational power of these multiprocessors
(such as the GT200 from NVIDIA) can reach one
Teraflop, that is hundreds of times the throughput of a
modern scalar CPU. This is achieved thanks to the large
array of scalar units working in parallel and each
following a Single Instruction Multiple Data (SIMD)
paradigm.

GP-GPU computing has been very vigorously
promoted by NVIDIA since the release of the CUDA

development platform in early 2007. CUDA [1] is an
application interface for software development targeted
to run on the G80 family of GPUs. A large number of
scientific applications has been developed using CUDA,
most of them dealing with problems that are quite easily
parallelizable such as molecular dynamics or signal
processing. Very few GP-GPU projects are concerned
though with the dynamics of multibody systems and the
two most significant are the Havok and the Ageia physics
engines. Both are commercial and proprietary libraries
used in the video-game industry and their algorithmic
details are not public. Typically, these physics engines
trade precision for efficiency as the priority is in speed
rather than accuracy. In this context, the goal of this work
was to implement a general-purpose multibody solver on
GP-GPU multiprocessors backed by convergence results
that guarantee the accuracy of the solution. Specifically,
a parallel version was implemented of a numerical scheme
presented in [2, 3], which can robustly and efficiently
approximate the bilaterally constrained dynamics of rigid
bodies undergoing frictional contacts.

The field of numerical methods for the simulation
of multibody system in the presence of friction and
contact/impact phenomena is an area of active research.
Results reported in [4] indicate that the most widely used
commercial software package for multibody dynamics
simulation runs into significant difficulties when handling
simple problems involving hundreds of contact events,
whereas cases with thousands of contacts become
intractable. The method embraced in this work can solve
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efficiently problems with millions of contacts on a simple
scalar CPU of the Pentium family, and improved
performance can be obtained with the GP-GPU version
proposed herein.

Unlike the so-called penalty or regularization
methods, where the frictional interaction can be
represented by a collection of stiff springs combined with
damping elements that act at the interface of the two
bodies [5, 6, 7, 8], the approach embraced herein relies
on a different mathematical framework. Specifically, the
algorithms rely on time-stepping procedures producing
weak solutions of the differential variational inequality
(DVI) problem that describes the time evolution of rigid
bodies with impact, contact, friction, and bilateral
constraints. When compared to penalty methods, the DVI
approach has a greater algorithmic complexity, but avoids
the small time steps that plague the former approach.

Early numerical methods based on DVI formulations
can be traced back to [9, 10, 11], while the DVI
formulation has been recently classified by differential
index in [12]. Recent approaches based on time-stepping
schemes have included both acceleration-force linear
complementarity problem (LCP) approaches [13, 14, 15]
and velocity-impulse LCP-based time-stepping methods
[16, 17, 18, 19]. The LCPs, obtained as a result of the
introduction of inequalities in time-stepping schemes for
DVI, coupled with a polyhedral approximation of the
friction cone must be solved at each time step in order to
determine the system state configuration as well as the
Lagrange multipliers representing the reaction forces [10,
16]. If the simulation entails a large number of contacts
and rigid bodies, as is the case of part feeders, packaging
machines, and granular flows, the computational burden
of classical LCP solvers can become significant. Indeed,
a well-known class of numerical methods for LCPs based
on simplex methods, also known as direct or pivoting
methods [20], may exhibit exponential worst-case
complexity [21]. They may be impractical even for
problems involving as little as a few hundred bodies when
friction is present [22, 23]. Moreover, the three
dimensional Coulomb friction case leads to a nonlinear
complementarity problem (NCP): the use of a polyhedral
approximation to transform the NCP into an LCP
introduces artificial anisotropy in friction cones [16, 15,
17]. This discrete and finite approximation of friction
cones is one of the reasons for the large dimension of the
problem that needs to be solved in multibody dynamics
with frictional contact.

In order to circumvent the limitations imposed by
the use of classical LCP solvers and the limited accuracy
associated with polyhedral approximations of the friction
cone, a parallel fixed-point iteration method with
projection on a convex set has been proposed, developed,
and tested in [3]. The method is based on a time-stepping

formulation that solves at every step a cone constrained
optimization problem [24]. The time-stepping scheme has
been proved to converge in a measure differential
inclusion sense to the solution of the original continuous-
time DVI. This paper illustrates how this problem can be
solved in parallel by exploiting the parallel computational
resources available on NVIDIA’s GPU cards.

FORMULATION OF MULTIBODY DYNAMICS

The formulation of the equations of motion, that is the
equations that govern the time evolution of a multibody
system, is based on the so-called absolute, or Cartesian,
representation of the attitude of each rigid body in the
system.

The state of the system is denoted by the generalized

positions 7
1 1[ , ,..., , ] b

b b

nT T T T T
n nr r� �q �� � and their time

derivatives 7
1 1[ , ,..., , ] ,b

b b

nT T T T T
n n� �q r r� � � �� � where n

b
 is the

number of bodies, r
j
 is the absolute position of the center

of mass of the j-th body and the quaternion �
j
 is used to

represent rotation, to avoid singularities. However,

instead of using quaternion derivatives in q� , it is more

advantageous to work with angular velocities: the method
described will use the vector of generalized velocities

1 1[ , ,..., , ]
b b

T T T T T
n n� � �v r r� � 6 .bn�� Note that the generalized

velocity can be easily obtained as ( )�q L q v� , where L

is a linear mapping that transforms each i�  into the

corresponding quaternion derivative i��  by means of the

linear algebra formula
1

( ) ,
2

T
i i� �G q��  with 3x4 matrix

G(q) as defined in [25].

Given the velocities considered, for a system of rigid
bodies the generalized mass matrix M remains constant
and diagonal. Denoting by fA (t, q, v) the set of applied,
or external, generalized forces, the second order
differential equations that govern the time evolution of
the multibody system expressed in matrix notation assume
the form ( , , ).A t�Mv f q v�

BILATERAL CONSTRAINTS

Bilateral constraints represent kinematic pairs, for
example spherical, prismatic or revolute joints, and can
be expressed as holonomic algebraic equations
constraining the relative position of two bodies. Assuming
a set �

�
 of constraints is present in the system, they lead

to a collection of scalar equations:

�
i
(q, t) = 0, i ��

�
. (1)

For instance, a ball joint requires three of these scalar
equations. Assuming smoothness of constraint manifold,
�

i
(q, t) can be differentiated to obtain the Jacobian �

q
�

i

= [��
i 
/ �q]T.
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All bilateral constraints must also be satisfied at the
velocity level. This requirement stems from the full
timederivative of the i-th constraint equation:

( , )
0 ( ) 0T Ti i i i i

q i q i

d t

dt q t t t

� �� �� �� ��
� � � � � � � � � � � �

� � � �
q

q q L q v� �

Defining

( ).T T
i q i�� � � � L q (2)

the constraints are consistent at velocity-level provided
the following equation is satisfied:

0T i
i t

��
�� � �

�
v (3)

Note that the i

t

��
�

 is nonzero only for rheonomic

constraints (motors, actuators, imposed trajectories).

UNILATERAL CONSTRAINTS

Given a large number of rigid bodies with different
shapes, modern collision detection algorithms are able
to find efficiently a set of contact points, that is points
where a gap function �(q) can be defined for each pair
of near-enough shape features. Where defined, such a
gap function must satisfy the non-penetration condition
�(q) � 0 for all contact points.

Note that a signed distance function, differentiable
at least up to some value of the interpenetration [26],
can be easily defined if bodies are smooth and convex
[27]. However, this is not always possible, for instance
when dealing with concave or faceted shapes often used
to represent parts of mechanical devices. In this case the
gap function �(q) can be non-smooth or not well defined.
Without loss of generality, for sufficiently small
penetration, the following assumption can be made on
the geometrical constraints: any contact is described by
a gap function � (q) that is twice continuously
differentiable. Most often, when one deals with convex
geometries and small numerical integration step-sizes,
this assumption is easily verified. The proposed
implementation uses the robust and efficient Gilbert-
Johnson-Keerthi (GJK) algorithm [28] to find the contact
points between convex shapes2.

FRICTION

Friction is introduced for each unilateral contact
constraint present in the multibody system. When a
contact i is active, that is �

i
(q) = 0, a normal force and a

tangential force act on each of the two bodies at the
contact point. We use the classical Coulomb friction
model to define these forces [17]. If the contact is not
active, that is �

i
(q) > 0, no friction forces exist. This

implies that the mathematical description of the model

leads to a complementarity problem [16]. Given
two bodies in contact A and B, let n

i
 be the normal at

the contact pointing toward the exterior of the body of
lower index, which by convention is considered to
be body A. Let u

i
 and w

i
 be two vectors in the contact

plane such that n
i
, u

i
, w

i
 � �3 are mutually orthonormal

vectors.

The frictional contact force is impressed on the

system by means of multipliers , ,
ˆ ˆ0, ,i n i u� � � and ,

ˆ ,i w�
which lead to the normal component of the force F

i,N
 =

,
ˆ

i n� n
i
 and the tangential component of the force F

i,T
 =

, ,
ˆ ˆ .i u i i w i� � �u w

The Coulomb model imposes the following nonlinear
constraints:

, ,
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� �2 2 2 2
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i,T
��= – ||F

i,T
|| ||v
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where v
i,T

 is the relative tangential velocity at contact i.
Defining by � , � the inner product of two vectors, the
constraint �F

i ,T
, v

i ,T
� = –||F

i ,T
|| ||v

i ,T
|| requires that the

tangential force be opposite to the tangential velocity.
Note that the friction force depends on the friction
coefficient µ

i
 ��+. The original Coulomb model

distinguishes between static µ
s
 and kinetic µ

k
 friction

coefficients. For simplicity, in this paper an assumption
is made that these coefficients are the same. If needed, it
is possible to extend the method to make this distinction
or also consider more complex constitutive equations
such as the Stribeck friction model [29].

The first part of the constraint can be restated as

, , , , ,
ˆ ˆ ˆ ,i i N i T i n i i u i i w i� � � � � � � � ��F F F n u w (4)

where � is a cone in three dimensions, whose slope is
tan–1 µ

i
. This results in the friction force being dissipative.

An equivalent convenient way of expressing this
constraint is by using the maximum dissipation principle:

2 2
, , ,

, , , , ,
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( , ) arg min ( ).
i u i w i i n

T
i u i w i T i u i i w i

� �� �� �

� � � � � �v u w
(5)

In fact, the the first-order necessary Karush-Kuhn-
Tucker conditions [30] for the minimization problem (5)
correspond to the Coulomb model above [31, 11].

THE OVERALL MODEL

We assume that at time t several bodies are touching,
interpenetrating or separated by a distance smaller than
a threshold � > 0, so that a set � of relevant contact
constraints can be assembled:
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�(q, �) = {i | i �{1, 2, . . . , p} , �
i
(q) � �},

Shapes which are separated by larger distances than
the � threshold are not considered for frictional contact
analysis to avoid a wasting of computational resources.

It is also assumed that there is a set of active bilateral
constraints �, acting on the rigid bodies. Each constraint
i � � transmits reactions to the connected bodies by

means of a multiplier ,
ˆ .i b�

Considering the effects of both �(q, �) frictional
contacts and � bilateral constraints, the time evolution
of the dynamical system is governed by the following
differential problem with set-valued functions and
complementarity constraints, which is equivalent to a
diferential variational inequality [32]:
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Mv� = , , , , , , ,
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where we use A
i,p

 = [n
i
, u

i
, w

i
] as the �3×3 matrix of the

local coordinates of the ith contact, and introduce the

Figure 1: Contact i between two bodies A, B  {1, 2,..., n
b
}

vectors ,i As  and ,i Bs for representing the contact point

positions in body-relative coordinates, as illustrated in
Figure (1).

The Coulomb model used in this work is the
predominant model used in the engineering literature to
describe dry friction. Unfortunately, the model may be
inconsistent: there exist configurations for which the
resulting problem does not have a solution [13, 19]. This
situation has led to the need to explore weaker
formulations where the forces are measures and Newton’s
law is satisfied in a measure differential inclusion sense
[19]. It has been shown that solutions in that sense do
exist and can be found by time-stepping schemes [33].

TIME-STEPPING SCHEME

We formulate the dynamical problem in terms of measure
differential inclusions [19], whose numerical solution can
be obtained using the following time-stepping scheme
based on the solution of a complementarity problem at
each time step.

Given a position q(l) and velocity v(l) at the time-step
t(l), the numerical solution is found at the new time-step
t(l+1) = t(l) + h by solving the following optimization
problem with equilibrium constraints [2]:

M(v(l+1) – v(l)) = hf (t(l), q(l), v(l)) + ( )
, ,
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(
l

i n i n
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q(l+1) = q(l) + hL(q(l)) v(l+1). (12)

Here, �
s
 represents the constraint impulse of a contact

constraint, that is, ˆ ,s sh� � �  for s = n, u, w. The ( )1 ( )l
ih � q

term achieves constraint stabilization, and its effect is

discussed in [34]. Similarly, the term ( )1 ( )l
ih � q  achieves

stabilization for bilateral constraints. The scheme
converges to the solution of a measure differential
inclusion [24] when the step size h � 0.

Several approaches can be used to solve (8)-(11).
Some authors suggested to approximate friction cones
as faceted pyramids, so that the system of equations
above, originally a Nonlinear Complementarity Problem
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(NCP), turns into a Linear Complementarity Problems
(LCP) [17]. The resulting LCPs are solved using
algorithms based on the so-called pivoting methods or
simplex methods. These numerical approaches that
belong to the class of direct methods are computationally
expensive, and their complexity class is in the worst case
exponential [22].

Alternatively, the problem is cast as a monotone
optimization problem by introducing a relaxation over
the complementarity constraints. Specifically, the time-
stepping scheme is modified by replacing Eq. (10) with

( ) ( ) ( 1)
,

2 2
, ,

1
( , ) : 0 ( )

( ) ( ) 0.

l l T l
i i n

T T i
i i u i w n

i q
h

�� � � � �

�� � � � �

q D v

v D v D

�

(13)

Nonetheless, as h � 0 the solution of the modified
time-stepping scheme will approach the solution of the
same measure differential inclusion as the original scheme
[24].

It has been shown [3] that the modified scheme is a
Cone Complementarity Problem (CCP), which can be
solved efficiently by a family of iterative numerical
methods that rely on projected contractive maps. One
such algorithm is discussed below; it fits well into a
parallel computing paradigm since it requires little data
interdependency, similarly to a projected-Jacobi fixed-
point method. Omitting for brevity some of the details
discussed in [3], the algorithm makes use of the following
vectors:
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�
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The solution, in terms of primal variables of the CCP
(the multipliers), is obtained by iterating the following
steps until convergence:

�i � �(q(l), �) :
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The iterative process uses the projection operator

( )
i�� � [2], which is a non-expansive map 3 3:

i�� �� �

acting on the triplet of multipliers associated with the
i-th contact. Thus, if the multipliers fall into the friction
cone, they are not modified; if they are in the polar cone,
they are set to zero; in the remaining cases they are
projected orthogonally onto the surface of the friction
cone.

The overrelaxation factor � and the � and �
parameters are adjusted to control the convergence. Good

default values for � are �
i
 = 3/Trace 1( )T

i iD D�M

for ( )( , ),li q� ��  and 11/( )T
i i i

�� � �� ��M  for i � �.

When dealing exclusively with bilateral constraints these
choices lead to the classical Jacobi fixed-point method.
In regards to � and �, extensive numerical experiments
suggest that choosing � = 0.3 and � = 1 typically leads
to good convergence speed. The interested reader is
referred to [3] for a proof of the convergence of this
method.

Note that using Eqs. (8) and (14), one can rewrite
the iteration in a more compact form:

( ) 1( , ) : [ ( )] (1 )
i

l r r T r r
i i i i i ii q D�
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1: [ ( )] (1 )r r T r r
i i i i i ii b�� � � � � � � �� �� � � � � �v� (22)

In this case, at each iteration, before repeating (21)
and (22), velocities v(l+1) are updated as

( )

1 1 1 1

( , )l

r r r
z z z z

zz q

v D� � � �

�� �

� �
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� �
� �M k�

��
(23)

Note that the superscript (l + 1) was omitted for
brevity.

Good accuracy in the CCP solution is typically
obtained after less than one hundred iterations. Note that
iterating through (21), (22) and (23), also yields the dual
variables (the velocities) at the end of the procedure with
no additional effort.

The following pseudocode of Algorithm 1 shows
how the iteration is implemented on a serial computing
architecture:

Algorithm 1: Inner Iteration Loop

1. For i � �(q, �), evaluate �
i
 = 3/Trace(DT

i
 M–1 D

i
).

2. For i � �, evaluate �
i
 = 1/ 1( )T

i iM ��� ��

3. Warm start: if some initial guess �* is available for multipliers,
then set �0 = �*, otherwise �0 = 0.
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4. Initialize velocities: 
0 1 0 1 0 1

, .i i i i bi i

� � �

� �
� � � �� � �� �v M D M M k�

� �

5. For ( )( , )li � �q� , compute changes in multipliers for contact

constraints:

1 ( ( )) (1 ) ;
i

r r T r r
i i i i i i
�
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1 1 ;r r r
i i i
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1 1.r
i i i

� �� � ��v M D

6. For i � �, compute changes in multipliers for bilateral constraints:

1 ( ( )) (1 ) ;r r T r r
i i i i i ib�� � � � ��� �� � � � � �v

1 1 ;r r r
i i i
� ��� � � � �

1 1.r
i i i

� �� � �� ��v M

7. Apply updates to the velocity vector:

1r r
i ii i

v �

� �
� � � � �� �v v v

� �

8. r := r + 1. Repeat from 5 until convergence, or until r > r
max

.

The stopping criterion is based on the value of the
velocity update. The overall algorithm that provides an
approximation to the solution of Eqs. (8) through (12)
relies on Algorithm 1 and requires the following steps:

Algorithm 2: Outer, Time-Stepping, Loop

1. Set t = 0, step counter l = 0, provide initial values for q(l) and v(l).

2. Perform collision detection between bodies, obtaining n
�
 possible

contact points within a distance �. For each contact i, compute
D

i,n
, D

i,u
, D

i,w
; for each bilateral constraint compute the residual

�
i
(q), which also provides b

i
.

3. For each body, compute forces f (t(l), q(l), v(l)) and then Q.

4. Use Algorithm 1 to solve the cone complementarity problem and
obtain unknown impulse � and velocity v(l+1).

5. Update positions using q(l+1) = q(l) + hL(q(l))v(l+1).

6. Increment t := t + h, l := l + 1, and repeat from step 2 until
t > t

end

These two algorithms have been implemented on
serial computing architectures and proved to be reliable
and efficient. In the following the time-consuming part
of the methodology, that is the CCP iteration of
Algorithm 1, will be reformulated to take advantage of
the parallel computing resources available on
commodity GPUs.

PARALLEL COMPUTATION ON THE GPU

Currently, high-end GPUs offer floating-point parallel
computing power close to one Teraflop, thus exceeding
those of multi-core CPUs. This computational resource,
usually devoted to the execution of pixel shading
fragments for the rendering of OpenGL or DirectX three
dimensional visualization, can be also exploited for
scientific computation.

Earlier experiments with scientific computing on the
GPU required an intricate programming technique
because GPU hardware and software was meant for real-
time graphical visualization only. The developer had to
use OpenGL calls to reformulate small scientific
computation programs in the GLSL shading language
native to the graphics board. These programs were
executed with data organized in rectangular textures, with
RGBA color representing some scientific data. In this
way, the output was rendered in parallel, pixel by pixel,
by the pixel-shading processors3 into a frame buffer which
was never visualized on the screen; the RGBA colors of
that frame buffer would in fact represent the output of
the parallel scientific computation.

To alleviate the difficulty of this programming model
NVIDIA recently proposed a development environment,
called CUDA [1], which allows general-purpose
programming on the GPU. Basically, the programmer can
write algorithms using a subset of the C++ language,
which can be compiled into machine code and executed
on the GPU device. The GPU executes the same kernel
on each parallel thread which in turn operates over data
structures called streams, hence the name streaming
processor. This computational architecture is called
SIMT, Single Instruction Multiple Thread, and it can be
considered an advanced form of SIMD Single Instruction
Multiple Data architecture according to the Flynn
taxonomy [35]. To efficiently execute hundreds of threads
in parallel, GPU multiprocessors are hardware
multithreaded: they can manage thousands of concurrent
threads with almost zero scheduling overhead, so that
hardware switching between threads is used effectively
to hide the latency to memory access operations.

We implemented our code on graphics board of the
9800 GX2 family, from NVIDIA. Each board features two
GPU processors, for a total of 256 streaming processors
and capable of running 24,576 live threads. The processed
data resides in the 2GB of DDR3 device memory. The
basic idea is that, at each simulation step, the CPU uploads
data into the GPU memory, launches a kernel to be
performed simultaneously on many parallel GPU threads,
and gathers the results of the computations by downloading
select portions of the GPU memory back into the host
RAM. Out of the entire computational time, the time slice
spent on the CPU should be as small as possible to exploit
the scalable nature of the GPU parallelism.

For the problem at hand, not all of the multibody
simulation has been ported on the GPU. In particular,
this is the case of the collision detection engine, which is
still executed on the CPU and becomes the bottleneck of
the entire simulation. Nonetheless, the proposed
algorithm fits well into the GPU multithreaded model
because the computation can be split in multiple threads
each acting on a single contact or kinematic constraint.
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BUFFERS FOR DATA STRUCTURES

In the proposed approach, the data structures on the GPU
are implemented as large arrays (buffers) to match the
execution model associated with NVIDIA’s CUDA.
Specifically, threads are grouped in rectangular thread
blocks, and thread blocks are arranged in rectangular
grids. Four main buffers are used: the contacts buffer,
the constraints buffer, the reduction buffer, and the bodies
buffer.

When designing the data structures of these buffers,
special care should be paid to minimize the memory
overhead caused by repeated transfers of large data
structures. Moreover, data structures should be organized
to exploit fast GPU coalesced memory access to fetch
data for all parallel threads in a warp, which is a set of
32 threads all running simultaneously in parallel.
Provided that bytes are contiguous and that the kth thread
accesses the kth element in the data structure, up to 512
bytes can be fetched in one operation by a warp of threads.
Failing to perform coalesced memory access may slow
the kernel significantly.

Numerical experiments show that for high memory
throughput, it is better to pad the data into a four-float
width structure even at the cost of wasting memory space
when several entries end up not being used. Also, the
variables in the data structures are organized in a way
that minimizes the number of fetch and store operations.
This approach maximizes the arithmetic intensity of the
kernel code, as recommended by the CUDA development
guidelines.

In the actual implementation of the method, the data
structure for the contacts has been mapped into columns
of four floats as shown in Fig. 2. Each contact will
reference its two touching bodies through the two pointers
B

A
 and B

B
, in the fourth and seventh rows of the contact

data structure.

There is no need to store the entire D
i
 matrix for the

ith contact because it has zero entries for most of its part,
except for the two 12x3 blocks corresponding to the
coordinates of the two bodies in contact. In fact, once

the velocities of the two bodies , , ,A A B�r r� �  and �Bi
 have

been fetched, the product T r
iD v in step 5 of Algorithm 1

can be performed as

, , , , ,
A i i B i B

T r T T T T
i i v A i A A i v B i Bv r � �� � � � � �D D D D r D�� (24)

with the adoption of the following 3x3 matrices

, ,A

T T
i v i pA� �D (25a)

, , ,A

T T
i i p A i A� �D A A s� (25b)

, ,B

T T
i v i p�D A (25c)

, , ,B

T T
i i p B i BA� � �D A s� (25d)

Since , , ,
A B

T T
i v i v� �D D there is no need to store both

matrices, so in each contact data structure only a matrix

, AB

T
i vD is stored, which is then used with opposite signs

for each of the two bodies.

Also the velocity update vector �v
i
, needed for the

sum in step 7 of Algorithm 1, is sparse: it can be
decomposed in small subvectors. Specifically, given the
masses and the inertia tensors of the two

bodies , , ,
i i iA B Am m J  and 

iBJ , the term �v
i
 will be

computed and stored in four parts as follows:

1 1
,,

i A

r
A A i v im� �� � ��r D� (26a)

1 1
,i i A

r
A A i i

� �
��� � ��J D (26b)

1 1
,i i B

r
B B i v im� �� � ��r D� (26c)

1 1
,i i B

r
B B i i

� �
��� � ��J D (26d)

Note that those four parts of the �v
i
 terms are not

stored in the i-th contact data structure or in the data
structure of the two referenced bodies (because multiple
contacts may refer the same body, hence they would
overwrite the same memory position). These velocity
updates are instead stored in a reduction buffer, which
will be used to efficiently perform the summation in step
7 of Algorithm 1. This will be discussed shortly.

The constraints buffer, shown in Fig. 3, is based on
a similar concept. Jacobians ��

i
 of all scalar constraints

are stored in a sparse format, each corresponding to four

rows , , , ,, , , .
A A B Bi v i i v i� ��� �� �� ��  Therefore the

product T r
i�� v in step 6 of Algorithm 1 can be performed

as the scalar value

Figure 2: Grid of data structures for frictional contacts, in GPU
memory
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, , , ,A i A i B i B i

T r T T T T
i i v A i A i v B i B� ��� � �� � �� � � �� � �� �v r r� �

(27)

Also, the four parts of the sparse vector �v
i
 can be

computed and stored as

1 1
,i i A

r
A A i v im� �� � �� ��r� (28a)

1 1
,i i A

r
A A i i

� �
��� � �� ��J (28b)

1 1
,i i B

r
B B i v ir m� �� � �� ��� (28c)

1 1
,i i B

r
B B i i

� �
��� � �� ��J (28d)

About the bodies buffer, Fig. 4 shows that each body
is represented by a data structure containing the state
(velocity and position), the mass moments of inertia and
mass values, and the external applied force F

j
 and torque

C
j
. Forces and torques, if any, are used to compute the

third step of Algorithm 1. Note that to speed the iteration,
it is advantageous to store the inverse of the mass and
inertias rather than their original values, because
the operation M–1 D

i 
��

i
r+1 must be performed multiple

times.

A software design decision that improved the
overall performance regarded the delegation of contact
preprocessing step to the GPU. Specifically, instead of
computing the data structures of the contacts on the host,
only the contact normals and contact points were copied
into the GPU memory. Then, a GPU kernel computed

, , ,, , ,
A A B

T T T
i v i i� �D D D �

i
, b

i,n
, as shown in Figure 5. This

strategy leads to faster code not only because the
preprocessing kernel runs in parallel on the GPU, but
also because it avoids the memory overhead incurred
when copying the full contact structures from host to
the GPU. Finally, it should be pointed out that b

i,v
 and

b
i,w

 are always zero, and that the data structures for both
bodies and contacts on the GPU are processed in thread
blocks and the thread blocks are organized in block
grids.

Figure 3: Grid of data structures for scalar constraints, in GPU
memory

Figure 4: Grid of data structures for rigid bodies, in GPU
memory

Figure 5: Contact data structures, before (left) and after (right)
the preprocessing kernel

Figure 6: The reduction buffer avoids race conditions in parallel
updates of the same body state. In this example, the
first constraint refer to bodies 0 and 1, the second to
bodies 0 and 2. Multiple updates to body 0 are then
buffered and accumulated with a reduction kernel
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THE PARALLEL ALGORITHM

A parallel version of an algorithm must respect the
Lamport consistency model, that is the parallel execution
must produce the same results as the sequential program,
regardless of the number of threads [36].
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Figure 7: The concept which inspires the reduction algorithm.
Sums are performed with a binary tree, to exploit the
parallel nature of the stream processors
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Figure 8: Example of our RMVLA reduction algorithm applied
to the reduction buffer. After multiple passes, reduction
happens in-place, on multiple -sequences of variable
length
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Data dependency poses a constraint on the possibility
of a straightforward parallelizations of algorithms. In fact,
denoting �

i
 and �

i
 the sets of input and output variables

of the i-th program fragment, Bernstein’s conditions state
that two fragments i, j can be executed in parallel only if
the following three conditions are satisfied: �

i
 � �

j
 = Ø,

�
i
 � �

j
 = Ø and �

i
 � �

j
 = Ø. If all these conditions are

satisfied, the program requires no synchronization of
memory and it belongs to the so called embarassingly-
parallel class, the type of parallel execution most suitable
for GPU computing.

One can see that a parallelization of this class can be
easily implemented for computations in steps 5 and 6 of
Algorithm 1, by simply assigning one contact per thread

(and, similarly, one constraint per thread). In fact the
results of these computations would not overlap in
memory, and it will never happen that two parallel threads
need to write in the same memory location at the same
time. These are the two most numerically-intensive steps
of the CCP solver, called the CCP contact iteration
kernel and the CCP constraint iteration kernel.

However, the sums in step 7 of Algorithm 1 cannot
be performed with embarrassingly-parallel
implementations: for example, it may happen that two or
more contacts need to add their velocity updates to the
same rigid body. A possible approach to overcome this
problem is presented in [37], for a similar problem. We
developed an alternative method, which we call parallel
Reduction of Multiple Variable-Length Arrays
(RMVLA). It uses a reduction buffer as illustrated in
Fig. 6.

Summation of array values into a single memory
destination, called data reduction, is a problem which can
be performed in parallel only at the cost of some fine-
grained data synchronization [38]. Recent research on
GPU parallel architectures proposed hierarchical
algorithms as a way to perform data reduction [39, 40].
The basic idea is depicted in Fig.7: the summation is
performed as a sequence of in-place parallel binary sums
with exponentially-increasing strides. In this way, at least
for large data, a large number of threads are kept busy.

We extended the parallel reduction concept to cope
with the problem of step 7 of Algorithm 1. Specifically,
we assume that all contact threads store their results (the
�v

i
 and ��

i
 vectors) into non-overlapping slots of an

auxiliary array, called reduction buffer. To this end,
contact data will contain pointers R

i,A
 and R

i,B
 which refer

to the destination slots in the reduction buffer. Also, slots
referring to velocity updates of the same body must be
contiguous, so that the reduction buffer contains sub-
sequences of velocity updates (we call them �-sequences)
as if they were sorted on the basis of the body they were
applied to. It must be pointed out that no actual sorting is
performed on GPU: it is sufficient that the R

i,A
 and R

i,B

indexes of the constraints are previously prepared by the
CPU with a simple bookkeeping algorithm to achieve
this sorted ordering.

Since the reduction buffer contains sequences of
updates and each �-sequence must be summed to
accumulate the effects into single �v and �� for the
referenced body, a hierarchical binary-tree reduction has
been used on each �-sequence as illustrated in Fig. 8.
While some �-sequences may be long, other may be
short4, and it would be undesirable to start a single binary
reduction for each �-sequence. Instead, they are
processed at once by distributing threads to all the
reduction buffer slots. If some binary summation finishes
earlier than others, the hardware thread scheduler will
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automatically keep the streaming processors busy by
applying them to uncomplete threads. In this way, except
for occasional divergence in thread warps, multiprocessor
occupancy is maximized. The RMVLA algorithm
requires for each slot to contain an auxiliary index that
increases in each �-sequence. It starts from 0 in all first
slots of the �-sequence and it is used to compute the stride
for the in-place summation. These indexes can be
precomputed easily by the CPU. Note that, given its
hierarchical nature, the RMVLA algorithm must be
iterated at least n

R
 = log

2
(n

m
) times before completing

the reduction, where n
m
 is the length of the largest �-

sequence (in most simulation we performed, n
R
 rarely

exceeds 3).

The pseudocode in Algorithm 3 outlines how
Algorithm 1 and Algorithm 2 can be combined and turned
into a sequence of computational phases, for the most
part executed as parallel kernels on the GPU. In terms of
resource allocation, the computation kernels followed a
one-thread-per-body, one-thread-per-contact, or one-
thread-per-constraint approach, depending on the phase
of the algorithm.

Algorithm 3: Complete Time Stepping, when GPU is Available.

1. (Host, serial ) Perform collision detection between bodies,
obtaining n

�
 possible contact points within a distance �, as contact

positions s
i
,
A
, s

i,B
 on the two touching surfaces, and normals n

i
. If

warm start is used, then fetch last reactions in contact point �*
i

(obtained in previous frame, if the contact is persistent) and set �
i

= �
i
* otherwise set �

i
 = 0.

2. (Host, serial ) Copy contact and body data structures from host
memory to GPU buffers. Copy also constraint data (residuals b

i

and jacobians) into the constraint buffer. Note: also compute and
store R

i,A
, R

i,B
, n

i,A
 and n

i,B
 in contact and constraint structures.

3. (GPU, body-parallel ) Force kernel. For each body, compute
forces f (t(l), q(l), v(l)), if any. Store these forces and torques into F

j

and C
j
. For example, apply the gravitational and gyroscopic forces.

4. (GPU, contact-parallel ) Contact preprocessing kernel. For each
contact, given contact normal and position, compute in-place the

matrices , ,,
A A

T T
i v i �D D  and , ,

B

T
i �D  then compute �

i
 and the contact

residual b
i
 = 1{ ( ), 0,0} .T

ih � q

5. (GPU, body-parallel) CCP force kernel. For each body j,

initialize body velocities: ( 1) 1l
j j jh m� ��r F� and ( 1) 1 .l

j j jh� �� � J C

6. (If warm starting is needed, simply skip the computations of the
1r

i
��� in the following two steps and use 1 *r

i i
��� � �  instead).

7. (GPU, contact-parallel ) CCP contact iteration kernel. For each

contact i, do 1 ( ( )) (1 ) .
i

r r T r r
i i i i i i
�

�� � � � � ��� � � � � �D v b  Note

that T r
iD v is evaluated with sparse data, using Eq.  (24).

Store 1 1r r r
i i i
� ��� � � � �  in contact buffer. Compute sparse updates

to the velocities of the two connected bodies A and B, that is the
four vectors of Eq. (26), and store them in the R

i,A
 and R

i,B
 slots of

the reduction buffer. Also copy n
i,A

 and n
i,B

 in the same slots.

8. (GPU, constraint-parallel) CCP constraint iteration kernel. For
each constraint i, do

1 ( ( )) (1 ) .r r T r r
i i i i i ib�� � � � � �� �� � � � � �v  Note that T r

i�� v is

evaluated with sparse data, using Eq. (27). Store 1 1r r r
i i i
� ��� � � � �

in contact buffer. Compute sparse updates to the velocities of the
two connected bodies A and B, that is the four vectors of Eq.
(28), and store them in the R

i,A
 and R

i,B
 slots of the reduction buffer.

Also copy n
i,A

 and n
i,B

 in the same slots.

9. (GPU, reduction-slot-parallel) RMVLA binary reduction
kernel. Do an inner loop with this kernel, starting with k = n

R

and ending with k = 1. At the k-th inner iteration, for each slot of
the reduction kernel, if the slot repetition counter n � 2k–1, add
slot values to the slot whose index is arretrated 2k–1 positions,
and set counter to 0.

Table 1
Average Simulation Times (in s) for a Single Time

Step of the 3D Wall Benchmark

N. of bricks Serial GPU parallel
Version Version

Core Duo 2.33GHz GeForce 8800 GTX

1000 0.43 0.06

2000 0.87 0.10

8000 3.19 0.42

10. (GPU, body-parallel ) Body velocity updates kernel. For each j
body, add the cumulative velocity updates which can be fetched
from the reduction buffer, using the index R

j
.

11. Repeat from step 7 until convergence or until number of CCP
steps reached r > r

max
.

12. (GPU, body-parallel ) Time integration kernel. For each j body,

perform time integration as � �( 1) ( ) ( ) ( 1)l l l l
j j j jh� �� �q q L q v

13. (Host, serial ) Copy body data structures from GPU memory to
host memory. Copy contact multipliers from GPU memory to host
memory.

NUMERICAL RESULTS

We tested the GPU-based parallel method with a
benchmark problem and compared it, in terms of
computing velocities, with the serial method. The
benchmark problem consists of a 3D wall which gets an
initial hit and falls into pieces. Depending on the level of
complexity of the simulated scenario, there are 1000,
2000 or 8000 bricks, simulated as rigid bodies. The
number of contacts is not constant during the simulation;
the amount of contacts can reach very high values during
the simulation of the case of 8000 bricks, where the peak
number of contacts is in the order of tens of thousands.
The friction coefficient between bricks, and between
bricks and ground, was set to 0.6. The time step for the
entire simulation is h = 0.01s.

The simulation time increases linearly with the
number of bodies in the model. Moreover, the GPU



A Parallel Algorithm for Solving Complex Multibody Problems with Stream Processors 141

algorithm is, on average, one order of magnitude faster
than the serial algorithm (see Table 1).

The speedup shown in the table could be even more
dramatic if one takes into account that those results
include also the time spent in performing collision
detection and other CPU-intensive computations which
are not yet parallelized [41]. In fact, once the CCP solver
is implemented in the GPU, the collision detection
becomes the bottleneck of the entire process. This
motivates future research about the parallelization of
collision detection algorithms.

In a second example we simulated a bicycle running
on uneven pavement, as a case of system with both
contacts and bilateral constraints. The vehicle is modeled
with 5 rigid bodies, while the driver is built with 13 rigid
bodies. All parts can collide with frictional contacts. The

Figure 9: Example: simulation of a dummy on a bycicle

total number of scalar bilateral constraints, caused by
joints and links, is about one hundred. The contact
between the tires and the ground is represented by a
custommodel which we developed and validated with
experimental tests in our labs [42]; this contact model
takes into account the elastic deformation of the tyres
and can be used for simulating uneven pavements.
Figure 9 shows two frames of the simulation, where the
effect of misplaced stone slabs can be studied.

We noticed that, for simple systems like this one,
the speedup coming from GPU parallel processing is not
substantial, and the CPU timings would be acceptable
anyway. A more appreciable speedup would happen if
simulating, for example, many bicycles at once: this is
the case, for instance, of genetic optimization or
sensitivity analysis.

CONCLUSIONS

A parallel numerical method has been proposed for the
simulation of multibody mechanical systems with
frictional contacts and bilateral constraints. The method
draws on NVIDIA’s CUDA library and compile-time
support to take advantage of the high-performance
parallel computation resources available on the GPU. The
parallel method is based on an iterative approach that
falls within the mathematical framework of measure
differential inclusions [24] and is backed by a rigorous
convergence analysis [3].

The parallelization of the method required the
development of a data reduction algorithm, called
RMVLA, which maximizes the occupancy of the
streaming processors in a critical part of the execution code
that requires fine-grained data synchronization. Preliminary
results obtained with the proposed method demonstrate
that for large frictional contact problems the time required

to solve the cone complementarity problem, which is the
computational bottleneck associated with the sequential
algorithm, has been drastically reduced. The iterative solver
has been implemented in the C++ language in the open
source simulation software Chrono::Engine. Future efforts
will address the possibility of using clusters of multiple
GPU boards on the same host, as well as porting part of
the collision detection engine code to the GPU.
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NOTES

1. Hence the name GP-GPU (General Purpose Graphical
Processing Unit) which  is often used to denote this
computational paradigm.
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2. An efficient way to deal with concave geometries is to represent
them as clusters of smaller convex shapes, performing a
concave decomposition before the simulation starts. In this way,
the GJK algorithm can be used on the convex subparts, for
most geometries without significant impact on the robustness
of the method.

3. Earlier models of GPU implemented two kinds of parallel
execution units, the pixel processors and the vertex processors;
the former were more easily adapted to scientific computing.
Modern GPUs, instead, implement a single type of execution
units (called streaming processors or thread processors) which
can be used for pixel shading, vertex processing, as well as for
generic scientific computation.

4. As an example of an odd configuration, which can be still
solved efficiently with our implementation, think about
simulating a large block placed on one thousand of spheres:
this will create a single �-sequence of 1000 updates to the same
body, and one thousand of small �-sequences of single updates,
for the 1000 spheres.
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