International Journal of Computational Vision and Biomechanics

Vol.1 No. 2 (July-December, 2015)

§ MUK PUBLICATIONS
Open Access Publisher
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The efficiency of defect detection for filters and waveletsis a fundamental problemin image processing. It hasrecently been
shown that natural symmetries such as rotational invariance is of primary importance to solve this problem [1, 2]. We
herewith investigate the detection of tunable singularities in natural textures from the Brodatz database and in parts of
mammographies. We compare several filters and show that the efficiency of pointwise defect detection is intimately related

to their rotational invariance property.
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1. INTRODUCTION

Image analyssisavery activefidd of research in computer
science. Particularly, defect detection is the subject of
numerous studies such as in the case of medical images for
ingtance. Itiswell known that wavelet analysisisavery useful
tool for extracting the singular part of asignal [3, 4]. There
are however numerous types of images and equivalently
numerous types of filterswhich can beused to analyse them.
If we are interested by the optimization, either in timeor in
quality, of thedefect detection, anatural question arises: how
can we choosethe appropriatefilter?In practice, specifictypes
of images (glasses, tiles, etc) can bewell analysed by dedicated
algorithms. Here we are more interested by a theoretical
approach based on general properties of images or more
precisdy itssymmetries. A local defect hasto remain a defect
even if werotate theimagefor instance.

The regularity of wavelets has, from along time, been
one of the main criteria for building wavelet families,
motivated for exampl e by the above experiments. However,
in [5], while studying the texture segmentation using
wavelets, M. Unser found that the number of null moments
(characterizing one aspect of the regularity) alone was not
sufficient for choosing awavelet. Themost regular wavel et
was not necessarily the best at distinguishing textures.

Another possibility to characterize the regularity of
wave etsis through their Sobolev exponent [6]. In [7] and
[8], it wasshown that, among the Matzinger wavel ets, which
are good with respect to Sobolev regularity, the detection
was improved with more regular wavelets. In [9],
orthonormal wavelets of various lengths were optimized
numerically for the Sobolev regularity.

Most of the wavelets families have mathematical
properties which take their roots in some modeling of the
signal. Either the signal is assumed locally polynomial
(number of null moments) or liein asmooth space (Sobolev
space). Inredlity, very few sgnalsfollow some mathematical

model. This is why, in our opinion, a more intuitive
understanding of the 2D signal may provide better results.

The choiceof the best separablewavelet basis function
for the extraction of image information has been addressed
previously [10, 11] and particularly for singularity detection
based on local sphericity [1, 2, 3, 4]. This new criterion
proved useful for creating new wavel et filters: the nearly
isotropic wavel ets.

These new wavel ets were compared to the Gabor filters
and the Mexican hat filtersin theaim to correlatetheir level
of sphericity and their efficiency of detection for a rather
large class of artificial defects represented by cones in
syntheticimages, likein Fig. 1. The conclusion of thisstudy
isthat amore spherical filter detectsthe singularity defects
with more efficiency, particularly in the case of the synthetic
images with a high roughness background. Animagewith a
larger roughness background seems more textured than
another with alower roughness background. The reason for
using synthetic imagesfor detection testsisthe easy control
of the roughness of the background of the images, which
can be modified with asingle parameter.

The practical interest of this study is the detection of
small defectsin medical images, like mam mographies, for
example. Indeed, a synthetic image with a high roughness
background appears|ike amammaography, and theinserted
conic defects appear likemicrocal cifications. From amedical
point of view, it isvery important to detect precocioudy these
anomalies in order to treat the disease in its early phase.
Thisiswhy we apply our detection methodol ogy on a set of
mammography parts.

An other application of this study can be the detection
of small defectsin textured images, asthose captured from
cameras along aproduction linein industry. Thisleadsusto
test our method of defect detection on natural textured
images of reference. The Brodatz images' have been selected
for our test.
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Figure 1: Example of synthetic image with controlled defects

The first experiment developed in this work concerns
the detection of controlled singularities in the Brodatz
textures and in parts of mammographies. To further
investigate the problem of defect detection, it can be
interesting to evaluate the importance of the singularity at
thetop of the cone. To thisend, we change the defect model
and use a cone with its top truncated. Thisis the object of
the second experiment.

This paper is organized as follows. For compl eteness
we will first sketch the wavelets and filters used in our
experiments. Next we will brifly explain the two kinds of
defects and the method used to determine the efficiency of
filter detection. Finally, we will present the experimentsand
the obtained results.

2. INVESTIGATED WAVELETSAND LTERS

The choice of awavelet basisfor defect detection isnot an
easy task. To work with 2D images, one usually takes
wavel ets designed for one dimensional processing and just
uses the tensor product. This enables to take advantage of
all theknowledge of the properties of wavelets accumul ated
in one dimension. Such properties are for example the
number of vanishing moments, good frequency localization,
short impul se response.

In the present paper, we compare the ability to detect
narrow singularities in images on the basis of general
symmetries of the defects such astheir rotation invariance.
This problem leads naturally to the study of Mexican hat
and Gabor filters. We add to this piece of work a separable
“nearly” spherical wavelet defined as follows.

A filter f(x, y) isisotropic if it verifies the following
equation:

VX%, Ve Yo €RY Y] =G+ Y = F (%, %) = 0%, ¥s)

Wedeal herewith discretefilters. We can therefore not
verify this equation as it is because only few points of the
planewill satisfy thisrelation. Since mogt, if not all, of the
filters we will examinewill not be truly isotropic, we must
find another criteriato classify thefilters.

Thewavel ets bases general ly used in image processing
are extension in two dimensions of wavelet defined in one
dimension. The equation below depicts a filter F as an
extension in 2 dimensions of thefilter G in onedimension:

F(x, y) = GX)G(y)
F isthen called a separablefilter.

We can use this property to search for a better strategy
to classify wavelet as more or less rotation invariant. We
want F to be rotation invariant. That trand atesto:

VX% Y Y2 €RE O+ YT =G +Y; = G(4)G(Y,) = G(%,)G(Y,)
It follows that the only possible G is of the form a®?.

The Gaussian o/ isapossible solution for G but thisis

not an orthonormal wavelet. Note that k is a constant used
to normalize the function. To assess the sphericity of a
function, we can thus convolve it with a Gaussian. The
maximum absolute value of this convolution will be an
indication of the best match between the function and the
Gaussian. The o of the Gaussian will be tuned to give the
highest possiblematch. To give comparabl eresults, we must
normalize both thefunction to be evaluated and the Gaussian.
The highest score we can then reach is 1. The measure of
the sphericity of thefilterswill thusbe based on the similarity
thesefilters have with a Gaussian, the only separabl efil ter
which isisotropic.

To be complete, our method to construct new separable
spherical waveletsisdescribed in appendix A.

2.1 Gabor filters

Thefirgt examined family of filtersisthe Gabor filters. These
filters are chosen in this work because they are often
investigated in the texture analysis domain. Several
researches have dealt with using the Gabor filtersto improve
thetextureclassication [10, 11], segmentation [12], features
extraction [13], defect detection [14], etc. The main
advantage of the Gabor filtersisthat they are easily tunable
in scaleand orientation.

The bank of filters can be obtained by dilation and
rotation of a mother function which hasthefollowing form:
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where Wisthe modulation frequency of thefilter and o, o,
definethe Gaussian envelopesize.

2.2 Mexican Hat Filters

The second examined family of filtersis the Mexican hat
filters. Several applications are based on methods using
Mexican hat filtersliketexture classication [15] or pattern
recognition [16, 17]. The Mexican hat function is defined
as follows:

2672 (2)

We must note that these filters have the disadvantage that
they are not separable. The computational timerequired to
construct these filters is thus more important than for
separable filters. This factor is not taken into account for
our experiments, becauseit is not the aim of the study.
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2.3 Nearly I sotropic Wavelets

The nearly isotropic wavel etshave been specially devel oped
to detect singularities [3, 4]. The construction of these
wavelets is based on the optimisation of the sphericity of
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the wavel et or the scaling function. The parametrization of
the wavelets is achieved using the algorithm devel oped by
Sherlock and Monro [18]. This can generate any kind of
orthonormal wavelets. (N/2-1) parameters are free if the
support width of thewavelet isN. Thewavel et filter related
toan isotropic wavd et function isdenoted by ¢ and thefilter
related to an isotropic scaling function is denoted by ¢. These
wave ets have a support width of 8 so asto obtain the best
trade-off between the sphericity and the length of thefilter.
The details of their construction can be found in [4]. The
scaling functionsof these two wavel et filters arerepresented
inFig. 2.
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Figure 2: Scaling function of the wavelet Iters

One of the possible applications of such awavelet filter
concerns medical image analysis, particul arly the detection
of clustered microcalcificationsin mammograms|[3, 8].

3. SINGULARITY AND TRUNCATED DEFECTS
DETECTION

Our aim of using wavelet istodetect pointwise singularities.
Since we do not assume some mathematical properties of
thewavd et, wewill choose the most S mple defect: the signal
is continuous whileitsfirst derivativeisnot.

In one dimension, we could choosethetop of atriangle.
Two possibilities can be used to generalize this to two
dimensions: the tensor product of two 1D functions or the
rotation of thetriangle around an axis passing through the
singularity. The second approach was considered, since the
first one introduces two ridges along the axis, so that the
pointwise singularity is at the crossing of two 1D
singularities.

Rotating the triangle around its summit, we get acone
(weview theimages asaprofile, theintensity being mapped
to the height of the landscape).

In thissection we explain thesingularity and truncated
defect detection procedure. First we will describe the kind
of defects we want to detect. Next we will show examples
of images we want to process. Finaly we will determine a
measure of efficiency for the detection. We can notethat the
method of defect detection used in thiswork is the same as
used in previousstudies[1, 2]. Werecapitul ate thismethod
in the following sections.

3.1 Defect Creation

Thefirst step isto detect singularity defects. To do this we
create synthetic defectsin theimages. Theform of the defects
isacone, which isformul ated asfollows:

R} 3)

)

where Risthe radius of the base of the coneand (c,, cy) the
position of its center.

Theradiusand the height of the defects can be changed.
We can thus study the influence of the size of the defects on
the efficiency of the detection by modifying theradius. The
limit of the detection can then be determined by varying the
height. As the second step, the cones are truncated at a
percentage of their maximal height and theprinciple of the
detection is similar to the detection of the cones. Examples
of these two kinds of defects are shown in Fig. 3. Indeed,
thefirst image (a) correspondsto asingularity defect with a
radius of 100 pixels, the second one (b) to the first defect
with the singularity truncated at 70% of the height, and the
last one (c) to thefirst defect with the singularity truncated
at 40% of the height. The corresponding 3-d views of these
defects are shown respectively in (d), () and (f).

D(x,y) = max{o,l—

3.2 Measure of Efficiency

L et ussupposethat we have aclear imagel which isatexture
from the Brodatz database or a part of mammography. A
sample texture images can be found in Fig. 4 from the
Brodatz database and in Fig. 5 for mammaography parts. Let
us a so supposethat we have an image containing singul arity
defects denoted D.

Thetool we will use throughout this paper to evaluate
theefficiency to detect singul aritiesisthel essintense defect,
i.e. smallest intensity of the defect, we can segment from
the background with a given probability of failure. To do
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(a) Defect with a radius
of 100 pixels

(b) Truncated defect at
70% of the height

(c) Truncated defect at
40% of the height

(d) 3-d view of (a)

(d) 3-d view of (b)

Figure 3: Example of singularity and small sized defects, and their 3-d representation

that, wefirst transform the original texture on several scales
of the wavel et transform. We use aredundant transform to
achieve better results. We can then fix athreshold given the
acceptancerate of false positive. Let usnote t thisthreshold.
T depends on the texture, the wavelet base and the level of
decompoasition.

We then randomly add some defects. Of course, we
record the position of these defects so as to be able to
determineif the defect is detected or not. We say adefect is
detected if the coefficient of the wavel et transform near the
position of the defect is higher than t. We define“near” as
being at most at one pixel from the position of the defect.
Thisisto ensure we do not underestimate the wavel et for a
small error in thelocalisation of the defect. We then adjust
the heights of the defects so that the given error rate is
achieved, in introducing a parameter Q which multipliesthe
image D. In summary, the procedure to compute Q for a
given background is

*  F=Dbackgroundimage,

e D = set of 10 randomly positionned defects,

* Compute Q such that the wavelet can detect 9

defectson F + QD with afalse positive rate of .

A value of Q) close to 1 corresponds to a final image
| + QD where the defects can be easily distinguished. An
exampleof I, D and | + QD can befound in Fig. 6 with the
texture D1 from the Brodatz database, 10 conic defectswith
aradius equal to 5 pixels and Q equal to 0.3. An other
example with amammaography part isshownin Fig. 7.

The problem is to detect signicant singularities. The
wavelet transform gives maximum response near the
singularity at finescales. Though, the noiseisusually much
more present at the finest scales. Therefore, our algorithm
proceeds as follows. First, the wavelet transform is

Figure 5: Sample parts of mammographies

performed through several scales (here 4). To avoid the
translation variance of the wavelet transform, the
overcomplete transformation is used, i.e. no decimation is
performed between scales. Then, given athreshold, theimage
is segmented. So, on the segmented image, we count agood
detection if, near thelocation of theinserted defect (known,
sinceartificially added), the wavel et transformis above the
threshald.
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Of course, therate of good detection will greatly depend
on the chosen threshold. Working with controlled images, it
is possible to transform the defect free image and set the
threshold such that only a few parasites appear, i.e. only a
few points arefalsely detected as singul arities.

J
|

AT

LA A
NREIEEE P SRR

BRI
B
JELISEL WL LS

T BRI

Defects Dwitharadiuso of 5 pixels = 0.3
Figure 6: Example of Brodatz image to be Itered

@1 (b) (c) I + QD with
Defects Dwitharadiuso of 3 pixels = 0.2
Figure 7. Example of mammogr aphy part to be Itered

The best scale isthen chosen, that isthe scaleat which
thenumber of good detectionsisthehighest whilemaintaining
the number of parasites bd ow some chosen value.

To summarize, wefirst processaclean imagel soasto
compute the threshold. The accepted parasite fraction is
0.1%. Then, 10 articial defects are produced, giving the
imageD. Thetransform of | + QD gives T. Wethen compute
therate of good detection and adjust Q such that 9 out of 10
defects are correctly segmented. This gives usthe measure
of the smallest defect the wavel et can detect. Thetransform
can be done at different scales so we take the best scale for
the eval uated wavel et.

This method to determine the val ue of efficiency of the
detection is the same for both the cones and the truncated
cones.

4. EXPERIMENTSAND RESULTS

In this section wefirst review the different filtersand their
associated parameters. We also determine the size of the
defects to be detected and the method of truncation. We
finally compareall the examined filters.

4.1 Valuesof the ParametersDefined in the Experiments

The first set of test images is composed of 110 textured
images of size 256 x 256 pixels collected from the Brodatz
database. 30 parts of mammographies constitute the second
set of test images. Theinserted singularitiesin theseimages
havearadiusvarying from 1to 10 pixels. For the truncated
defects, the truncation is performed between 10 and 100%

of the maximal height of the cone. The truncation at 100%
correspondsto thewhole cone. We insert 10 defectsfor each
experiment. The random position of these 10 defectsis the
samefor all of the 110 Brodatz images, and the other random
position of the defectsis also the same for all images of the
second set. The use of 10 defects can be justied since tests
wereperformed for 5 other positionsand Smilar resultswere
found for the efficiency of detection of the filters. We are
thus confident that our method at evaluating the efficiency
of detection can be used to compare thefilters.

Concerning the Gabor filters, the parameters of Eq. 1
are chosen as follows: the frequency centers W are 0.061,
0.1, 0.163 and 0.265; 5, and o are adapted to obtain afilter
sizewith anull DC by multiplying them by a scaling factor.

The only parameter to fix for theMexican hat filtersis
o in Eq. 2. The values used for ¢ vary from 1 to 5 and are
chosen according to a geometric progression. 10 intervals
arethen created.

The decomposition with the nearly isotropic wavel ets
¢ and ¢ containsfour levels, asit wasthe casein the previous
studies[1, 2, 3].

4.2 Detection of Pointwise Defects

In this section we compare the efficiency of the set of the
examined filtersfor the detection of singularitiesin Brodatz
images and in mammography parts. Let uskeegpin mindthe
order of the families of filters according to their sphericity
level. The Mexican hat filtersare the most spherical. Then
the nearly isotropic wavelets are dlightly less spherical than
the Mexican hat filters. Finally the Gabor filtersaretheleast
spherical. For defects with aradius greater than 2 pixels,
the order of the filters according to their efficiency at
detecting singularities in synthetic images corresponds to
the order of their sphericity measure. We here extend this
study for the Brodatz textures and the mammaography parts.

To increase the significance of the results, the
experiment of detection is repeated for five positions of
defects, randomly chosen. To satisfy ourselves that the
comparison of theresults can be generalized, a paired Student
test isperformed on theresults: afirst test between the Gabor
and the ¢ results, an other between the ¢ and the ¢ results,
and alast test between the ) and the Mexican hat results.
The values of these tests are summarized in table 1(a) for
the set of Brodatz images, for which the critical value is
2.32635 since the confidence level is chosen as 0.01 and
the degree of freedom is equal to 109 (which effectively
corresponds to an infinite degree of freedom). That means
that if avaluein the tableis lower than —2.32635, thefirst
filter is better than the second one, and if avaluein thetable
is greater than 2.32635, the second filter is better than the
first onewith great confidence.

Concerning the set of mammography parts, the values
of the paired Student tests are summarized in table 1(b). For
the same confidencelevel asthe Brodatz imagesand adegree
of freedom equal to 29, the critical valueis 2.46202.
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Table 1
Detection of Pointwise Defects: Paired Sudent Test on
Each Set of Images

(a) Brodatz textures

Defect Gabor @ Y
radius 1) 0 Mexican hat
1 83.4745 —12.6093 —88.0110
2 62.0286 14.5575 —20.7625
3 38.4730 24.8232 10.9751
4 28.7785 224011 7.9366
5 18.4598 22.2813 13.8957
6 14.7884 19.1214 14.9255
7 15.0824 17.0509 12.1155
8 14.2150 19.1356 11.2312
9 11.0677 20.3889 14.5130
10 7.4408 22.6956 18.9155
(b) Parts of mammographies
Defect Gabor 10) 0
radius 10) 0 Mexican hat
1 38.2556 16.5524 —35.8688
2 45.7838 13.4464 -3.0051
3 41.9435 15.3969 —1.5875
4 30.4252 20.2203 —6.0870
5 22.0005 18.4412 -3.4675
6 24.3087 11.4936 —4.5371
7 30.5992 8.5238 —7.6913
8 21.5144 8.9753 -9.3811
9 20.1947 12.8953 -8.8334
10 16.3609 14.0923 -5.7940

From table 1(a), we can observe the calculated values
of the paired Student tests for the Brodatz images. All the
values are signicant and a clear tendency is shown for the
defects which have a radius greater than 2 pixels: the
Mexican hat filters seem to bethe most efficient at detecting
singularities. The ¢ wavelet is more efficient than the ¢
wavelet, which provides us better results than the Gabor
filters. For defects with aradius lower than 2 pixels, the ¢
and v wavelets are more efficient than the Mexican hat
filters. All of these observations were a so concluded in the
case of the synthetic images with a high roughness
background[1, 2].

We can explain the poor results of the Gabor filters by
the level of sphericity of these filters. Since they are less
spherical than the nearly i sotropic wavel ets, it isunsurprising
that their results of detection are worsethan those of the ¢
and v wavdets. The same argument can be used to justify
the best detection results of the Mexican hat filters, which
arethe most spherical sincethey areisotropic.

All thisisvalid for the defects with aradiuslarger than
2 pixels. For smaller defects, the form of the ¢ and ) wavel ets

enables them to adapt to the background better than the
Mexican hat filters, and then to detect smaller defectsthan
them.

From table 1(b), we can observe that the Gabor filters
are clearly the least efficient to detect singularitiesin parts
of mammographies. The reason is probably the same as for
the Brodatz images. In the same way, the nearly isotropic
waveets ¢ and v are still more efficient than the Gabor
filters. However, in the case of the mammography parts, the
Mexican hat filters are not as much performant as for the
Brodatz textures. Their efficiency isthen comparabletothose
of ¢ and the ) wavelets. A reason of thistendency isthat the
form of these wavelets can adapt better to this kind of
background than the Mexican hat wavelets. Indeed, the
mammography parts seem to be smoother than the Brodatz
images. The structure of their textureis morefine.
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Figure 8: Detection of pointwise defects in Brodatz textures:
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Thecomparison isthen carried out starting from themean
and the sandard deviation of thefivedifferences between the
resultsof afilter and thoseof thereferencefilter. Thereference
filter is chosen as the ¢ wavelet. The obtained results are
presented in Fig. 8 for the Brodatz images and in Fig. 9 for
the parts of mammographies. A negative valuemeansthat the
filter ismore efficient than thefilter of reference.

An exampleof singularity detection ispresented in Fig.
10. The first image (@) is the Brodatz image D16 which
contains 10 conic defectswith aradius of 5 pixelsattenuated
by afactor Q equal to 0.15. The position of the defects is
shown in the second image (b). First the image (a) is
processed by the four filters. Four new images are then
obtained, and the following steps of the methodol ogy will
be performed on them. A threshold isthen performed on the
processed images in order to extract the interesting points.
Thisthreshold can be different for the four filtered images.
It iscomputed to obtain amaximum number of right detected
singularities, which are bordered with a square, and a
minimum number of wrong detected points (fal se-positive),
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rectly detected and 1
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Figure 10: Example of singularity detection on a Brodatz image

the defectsaretruncated at a given height. Thisnew height
corresponds to a percentage of the maximal height of the
starting cone, i.e. the height between the base and the point
of thetop. The examined percentagesvary from 10 to 100%,
apercentage of 100% corresponding to thewhole cone. With
these tests, the influence of the truncation height on the
efficiency of detection is studied.

The other parameter to be examined istheradius of the
defects. Two Sizes of radius are considered: 20 and 10 pixels.
For each size, a paired Student test between the results of
the detection for each percentage of truncation, and a
summarized graph are presented.

bordered with a circle. The image (c) corresponds to the
image (a) filtered by the Mexican hat filters after the
threshold. The 10 inserted conic defects and no other point
aredetected. Thesefiltersarethe most efficient for this case.
Theimages (d) and (€) correspond to the detection with the
nearly isotropic wavelets ¢ and ¢, which are a little less
efficient than the preceding filters. Indeed, the 10 defects
are ill detected, but respectively 1 and 2 false-positives
arealso observed. Finally, asexpected, the Gabor filtersgive
us the lowest number of right detected singul aritiesand the
largest number of false-positives, namey 9 right and 9 wrong
detected.

4.3 Detection of Truncated Singularities

It would beinteresting to know if the effi ciency of detection
of the pointwise singularitiesisinfluenced by the top of the
cones. In thissecond part of the experiments, the defectswe
want to detect are cones without the point at the top. Thus,

(b) Position of the in-
serted defects

e o =
x| o = & s
o} [

[¢]

x|
q

= t I
o =

(¢) ¢ wavelet: 10 cor-
rectly detected and 2
false-positives

(f) Gabor filters: 9 cor-
rectly detected and 9
false-positives

4.3.1 Defectswith aradius of 20 pixels

Only one position of defects is sufficient to generalize the
results obtained for the detection of truncated defectswith a
radius of 20 pixels. Indeed, all the values of the paired
Student test presented in tables 2(a) and 2(b) are signicantly
larger than thecritical value, which isequal to 2.32635. In
table 2(a), corresponding to the Brodatz textures, we can
observe that the order of comparison between thefiltersis
not the sameasfor the pointwise singularities. In this section,
the Gabor filtersare compared with ¢ thewavelet, which is
compared with the ¢ wavelet, which is compared with the
Mexican hat filters. The reason of this modication is that
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the ¢ wavelet ismoreefficient than the ) wavel et at detecting
truncated singularities. We observe the same order of
efficiency between the filters whatever isthe percentage of
truncation. In addition, the Mexican hat filters are always
the best at detecting the defects.

Table 2
Detection of Truncated Singularities with a Radius of 20 Pixels:
Paired Sudent test on Each Set of Images

(a) Brodatz textures

Percentage  Gabor ) 10)
of height ) 10) Mexican hat
10 13.7549 16.9722 15.1237
20 11.9383 16.8529 14.1157
30 11.8093 16.1139 13.6570
40 11.8561 14.9354 12.6761
50 11.7590 17.7456 12.2797
60 11.3830 15.9574 14.9629
70 12.0089 17.5400 12.8471
80 12.1476 17.5700 14.7675
90 12.0349 16.8586 14.6632
100 11.9913 17.3288 14.8424
(b) Parts of mammographies
Percentage = Gabor 1) )
of height 10) ) Mexican hat
10 7.0089 20.9673 3.8713
20 8.9656 22.5404 3.9322
30 8.6222 19.2651 3.4912
40 7.7957 15.5099 3.6902
50 6.4486 19.1439 3.5331
60 9.1575 18.3983 2.7780
70 7.1718 19.5424 4.2496
80 9.2170 20.3739 3.5230
90 8.3597 23.1228 3.1398
100 6.4319 21.4967 3.9543
Defects with a radius of 20 pixels
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Figure 11: Detection of truncated singularities in Brodatz
textures: comparison of the Gabor filters, the
wavelet and the M exican hat filter swith the ¢ wavelet:
(A) Mexican Hat; (¢) ; (H) Gabor A =1

All these observationsarefound again in Fig. 11, which
presents aglobal comparison between thefiltersand thefilter
of reference .. The values of the graph correspond to the mean
and the standard deviation of the difference between the
results of afilter and those of thefilter of reference. We see
that all the values related to the Mexican hat filters are
negative, and the others are pogitive, in the same order. That
meansthat thetruncation height of the defectshas no effect
on the efficiency of detection of the filters, and that the
Mexican hat filters are the most efficient, probably because
the defectsarerather largeand thetop of thosehasa spherica
aspect, which isalso theform of the Mexican hat filters.
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Figure 12: Detection of truncated singularities in parts of
mammogr aphies: comparison of the Gabor filters, the
wavelet and the ¢ Mexican hat filters with the ¢
wavelet: (A) Mexican Hat; () ¢; () Gabor X =1

In table 2(b), corresponding to the mammaography parts,
the paired Student tests were performed between the Gabor
filters and the ¢ wavelet, the ¢ and ¢» wavelets, and finally
between the ) wavel et and the Mexican hat filters. The order
of detection efficiency between the filtersisthe sameasfor
the Brodatz images: the Gabor filtersaretheleast efficient,
the Mexican hat filtersare the most efficient and the nearly
isotropic wavelets li e between these two families of filters.
Only onedifferenceis observed: in this case, thewavelet is
more performant than the ¢ wavelet. The reason of these
observations are certainly similar to those for the Brodatz
images. The comparison graph ispresentedin Fig. 12.

4.3.2 Defectswith a Radius of 10 Pixels

It would be also interesting to study the influence of the
radius of thetruncated defects on the detection efficiency of
the filters. A second radius is then chosen to be 10 pixels.
The same experiment is performed by all thefilters, and the
analysis of theresultsis shownin table 3(a) and Fig. 13 for
the Brodatz textures and in table 3(b) and Fig. 14 for the
parts of mammographies. Let usrecall that the critical value
is 2.32635 for the set of Brodatz images and 2.46202 for
the set of mammography parts.
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Table 3
Detection of Truncated Singularities with a Radius of 10 Pixels:
Paired Sudent Test on Each Set of Images

(a) Brodatz textures

Percentage  Gabor ) 10)

of height ) 10) Mexican hat
10 4.8459 9.7024 8.6921
20 3.8954 10.6485 8.0611
30 3.3484 9.9598 8.5197
40 3.0231 9.2542 7.6164
50 2.4633 9.8093 8.3562
60 3.9131 9.8578 8.7133
70 3.3169 11.0489 8.2710
80 3.9945 10.3268 7.9023
90 3.9081 11.5180 9.0674
100 3.8329 10.6451 8.3864

(b) Parts of mammographies

Percentage = Gabor 10) 10)

of height 10) 0 Mexican hat
10 7.1417 5.4193 —2.1343
20 9.6817 7.8824 —2.6625
30 7.9257 7.6689 -3.0760
40 7.3414 6.3515 —2.8617
50 8.1466 7.2700 —2.4630
60 9.5615 9.7695 —2.2154
70 5.3057 4.8837 -2.0151
80 9.2192 4.9050 —2.4681
90 10.6547 7.3002 —2.9881
100 8.8315 7.8406 —2.1268

Concerning the Brodatz images, once again we observe
the same order of efficiency of detection between thefilters:
the Mexican hat filters are the most efficient, these are
followed by the ¢ and ) wavelets, and finally the Gabor
filtersare theleast efficient. The reason of this observation
iscertainly the same asfor defectswith aradiusof 20 pixds:
thelarge sizeand the spherica form of thetop of the defects
seem to be best fitted by the Mexican hat filters. Fig. 13 is
used to visualize the comparisons between the examined
filters, with thewavel et asreference.

However, concerning the parts of mammographies, the
tendency between the nearly isotropic wavelets and the
Mexican hat filtersisreversed in relation to those observed
for thetruncated defectswith alarger radius. In the present
case, the Mexican hat filters seem to be slightly less or as
much efficient to detect this kind of defects as the nearly
isotropic wavelets. Thisis probably dueto the smaller size
of the defects and the regularity of the background, which
are more adapted for a detection with the ¢ and ) wavelets
than theMexican hat filters.

5. CONCLUSION

In this paper, we compare different families of waveletsand
filters for the detection of pointwise defects and truncated
singularities in Brodatz textures and in parts of
mammographies. These families are the Gabor filters, the
Mexican hat filtersand the nearly isotropic wavel ets ) and
¢. The effect of the size of the singularities (as in the
preceding work [1, 2]) and the height of the truncation of
the truncated defects on the detection are studied. The same
procedure of detection is used for the experiments of this
work. The aim of this work was to prove that, in terms of
detection efficiency, we have the same order between the
families of filters on real textured images of reference and
on medical images. This assumption is verified by the
experiments. Thuswe concludethat the Mexican hat filters
and the nearly isotropic wavelets are the most efficient for
the detection of singularities and other small sized defects
for any kind of textured images.

Defects with a radius of 10 pixels

0,10 - Ll 1 Ll Ll 1 1 1 1 1 1

vvvvv

o
[=]
0 O J
PRl T P L
| I O T T R e

Mean and standard deviation of AQ

(=]
4
L

>

»

»

|

»

»-

======

T T
10 20 30 40 50 60 70 80 90 100

Percentage of the maximal height of the defect

Figure 13: Detection of truncated singularities in Brodatz
textures: comparison of the Gabor filters, the wavelet
and the Mexican hat filters with the ¢ wavelet: (A)
Mexican Hat; (*) ¢; (l) Gabor A =1
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A New separ able spherical wavelets

Wewill, in this section, describe amethod to construct new
more spherical wavelets. We will proceed with anumerical
optimization. Thefirst step isto isolatethe parameters. We
will then explain the setup of the optimization procedure
we used. Wewill finally present our resultsas a Pareto-front.
In this paper, we will use both extremes of the used high-
pass filter which isisotropic such asexplained in [1].
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A.1 Parametrization

To achieve the parametrization of the set of orthonormal
wavel ets, we usetheal gorithm proposed by Sherlock-Monro
in [18] which can generate any kind of orthonormal wavelet.
For a wavelet with a support width of N, we have ’\yz,l

free parameters. We will use waveletswith a support width
of 8 since a quick one-objective optimization of the
sphericity of the scaling function with varying support width
revealsthat essentially noimprovement can be obtained with
longer wavel ets.

A.2 Optimization

As said above, the compromize between the sphericity of
the filters is not known a priori. We are thus looking for a
set of solutions representing different trade-os between the
objectives. So, a multiobjective algorithm will be used to
optimize the sphericity of both the lowpass and highpass
filters. Thiswill allow usto make the compromize between
noiseremova and high responseto defectsasdescribed later
on. The algorithm we use to perform this multiobjective
optimization isagenetic algorithm. Thiskind of algorithm
workswith aset of candidate solutions and evolves them to
reach the optimum of some fitness function. They can be
rather slow, but arerobust and can provide good solutions.
The evolution is guided through a scalar value attached to
each solution, its fitness. The mapping of the two-
dimensional objective space to a one-dimensional fitness
function needs care. Thegoal isto reward potentially good
individual s but also to maintain diversty. Moreover, we want
awell spread set of solutions covering all the Pareto front.
The fitness is here computed according to the “ Strength
Pareto Evolutionary Algorithm (SPEA)” developed by
Zitzler and Thide, see[19]. Wedid not usedlitismto avoid
atoo fast convergence, even with a population size of 200

but collected the non-dominated individuals of the 100
generations. We then sel ected 10 wavel ets from this optimal
set so as to cover the whole Pareto-front. These wave ets
will be used throughout this paper.

A.3 Results

We present in Fig. 15 the Pareto-front, i.e. a set of solutions
such that no solution is better in both objectivesthan another,
we obtai ned from the optimization. Also, two arrows point
to two well known wavelets with a support width of 8: the
Daubechies and the nearly symmetric wavelets (also called
“least asymmetric”), see [20] for a complete description of
these wavelets, that we hererepresent by their sphericity.
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Figure 15: Pareto front generated with GA
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