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THE BARENBLATT—ZHELTOV—KOCHINA MODEL WITH
THE SHOWALTER—SIDOROV CONDITION AND ADDITIVE
“WHITE NOISE” IN SPACES OF DIFFERENTIAL FORMS ON

RIEMANNIAN MANIFOLDS WITHOUT BOUNDARY
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ABSTRACT. The paper is devoted to the study of the Showalter—Sidorov
problem for the stochastic Barenblatt—Zheltov—Kochina equation defined
in spaces of smooth differential forms on a Riemannian smooth manifold
without boundary and considered as a concrete interpretation of Sobolev
type equation (with an uninvertible operator under the derivative). Together
with this, we consider a more particular Cauchy problem for a homogeneous
Barenblatt—Zheltov—Kochina equation. To solve the problem in the indi-
cated spaces, we reduce the corresponding operators and spaces, in particular,
instead of the Laplace operator, its generalization is used on the form of the
Laplace—Beltrami operator. There is no differentiability in the usual sense in
the considerate spaces and we use derivative in the sense of Nelson—Gliklikh.

Introduction

Consider the linear Barenblatt—Zheltov—Kochina equation
A= A)yu = aAu+ f, (0.1)

describing the dynamics of the pressure of the fluid filtered in a fractured porous
medium [1]. The coefficient A corresponds to the ratio of cracks and pores in rock,
and the coefficient o corresponds for the visco-elastic properties of the liquid.
Later it was found out, that equation (0.1) also simulates the process of moisture
transfer in soil [2] and the process of heat conduction with ”two temperatures”
(3].

The beginning of the investigation of equation (0.1) should be related to [5],
where this equation was considered for the first time as a linear inhomogeneous
Sobolev type equation

Li = Mu+ f. (0.2)
Here the operators L and M are the operators A — A and a4, given in some
functional spaces L, M : 3l — §, defined in the spaces of differential forms defined
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on smooth Riemannian manifolds without boundary. Equation (0.2) is usually
equipped with the initial Showalter—Sidorov condition [6]

P(u(0) — up) = 0, (0.3)

where the projector P is constructed with the use of operators L and M. Note
that in the case of existence operator L1 € L(F; ), condition (0.3) becomes the
Cauchy condition

u(0) = up. (0.4)

We also note [7], where the system of equations (0.1) is reduced to the form (0.2)
(or system of linear Oskolkov equations) given on a geometric graph, and the
Barenblatt—Zheltov—Kochina equation given on Riemannian manifolds [4].

We will be interested in the stochastic interpretation of the deterministic equa-
tion (0.2), namely:

L= Mn+ NO. (0.5)

Here the operators L and M are the same as in (2), the operator N € L(i;F),
n = n(t) is required, and © = O(t) is a given stochastic process with values in

the Hilbert space Y. Through 77 we denote the Nelson— Gliklikh derivative (8] of
the stochastic process n = n(t) (for details see [9]). This approach differs from the
classical Tto—Stratonovich—Skorokhod approach (see, for example, [10]), however
their method can be used in the study of certain Sobolev type equations [11]. Tt is
necessary to mention the Melnikova—Filinkov—Alshansky approach [14], where
the stochastic equations in Frechet spaces are studied.

So, in the focus of our attention there will be the stochastic Barenblatt—
Zheltov—Kochina equation, given in the space of stochastic K-processes with
coefficients in the form of differential forms defined on a Riemannian smooth man-
ifold without boundary and presented in form (0.5). In addition to the introduction
and the bibliography, the article also contains four parts. The first part describes
the structure of the "noise” space. In the second part we describe a stochastic
analogue of the Sobolev equation type in the spaces of stochastic K-processes. In
the third part the properties of the spectrum of the Laplace—Beltrami operator
on a manifold, taken from [14], are described, and the form of these eigenfunc-
tions of the operator Laplace—Beltrami equations in the space of k-forms on a
two-dimensional sphere, as a particular case of a manifold without boundary is
given. In the fourth part the stochastic Barenblatt—Zheltov—Kochina equation
is reduced to a stochastic Sobolev type equation and then the solvability of the
Cauchy problem (0.4) for the homogeneous equation and the Showalter—Sidorov
problem (0.3) for inhomogeneous equation, in spaces of stochastic K-processes
with additive ”white noise” is studied. Solutions are presented in the form of a
Fourier series with the Laplace—Beltrami operator eigenfunctions in the space
of k-forms defined on a smooth compact oriented Riemannian manifolds without
boundary. At the end of the fourth part the remark on possible directions for
further research based on other publications of the Chelyabinsk scientific school
is formulated. Then follows the list of literature, which does not claim to be
complete, but answers only to authors’ preferences.
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1. The space of differential ”noises” on smooth Riemannian
manifolds without boundary

Let Q = (22, A, P) be a complete probability space, R be a set of real numbers
endowed with a Borel g-algebra. Measurable mapping £ : £ — R is called a ran-
dom variable. A set of random variables with a zero mathematical expectation (E)
and finite variance (D) forms a Hilbert space with scalar product (1, &) = E&&s.
The resulting Hilbert space is denoted by symbol La. Next, we will be interested
in the random variables £ € L, which have a normal (Gaussian) distribution; they
will be called Gaussian variables.

Let us denote by Ag the o-subalgebra of the o-algebra A and construct the
space L9 of random variables measurable with respect to Ag. Obviously, L9 is
the subspace of La; we denote by IT : Ly — L9 an orthoprojector. Let £ € Ly
then II¢ is called the conditional mathematical expectation of a random variable &
and denoted by the symbol E(£|Ag). Note that E(¢|Ag) = EE, for Ay = {0,Q};
and E(¢]Ag) =&, if Ag = A. Recall also that the minimal o-subalgebra Ay C A,
with respect to which the random variable £ is measurable, is called the o-algebra
generated by &.

Let 3 C R be a certain interval. Consider two mappings: f : J — Lg, which
puts to each t € J a random variable £ € Lg, and g : Ly x @ — R, which puts
to each pair (§,w) the point {(w) € R. The map 7 : J x Q@ — R, having the form
n = n(f(t),w), is called a stochastic process. The stochastic process n is called
continuous, if a.s. (almost surely) all its trajectories are continuous (for almost
all w € Q the trajectories n(-,w) are continuous). By the symbol CLy we denote
the set of the continuous stochastic processes. Let’s call Gaussian continuous
stochastic process the process, if its (independent) random variables are Gaussian.

A (one-dimensional) Wiener process 8 = ((t), which simulates Brownian mo-
tion on a line in the Einstein-Smoluchowski theory, is an example of a continuous
Gaussian stochastic process. It has the following properties:

(W1) a.s. B(0) = 0, a.s. all its trajectories 5(¢) are continuous, and for all
t € Ry (= {0} UR,) the random variable 3(t) is Gaussian;

(W2) the mathematical expectation E(/5(t)) = 0 and the autocorrelation func-
tion E ((B(t) — B(s))?) = |t — s| for all s, € Ry;

(W3) trajectories 3(t) are non-differentiable at any point + € R, and on any
arbitrarily small interval has unbounded variation.

Theorem 1.1. There exists a unique stochastic process [3, satisfying the properties
(W1) - (W2) with probability 1, and it can be presented in the form

B(t) =" &sin g(Qk: + 1)t (1.1)
k=0

where & are independent Gaussian variables, B, = 0, D&, = [5(2k + 1)]72.

Further, the stochastic process 3, satisfying the properties (W1) — (W3), we
call the Brownian motion.

Fixn € CLg and ¢t € J(= (¢,7) C R) and denote by N’ the o-algebra generated
by the random variable 7(t). Let us rename again, for brevity sake, E = E(-, N}).
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Definition 1.2. Let n € CL2. The random variable

Dn(t,") = lim E! (”(”Atv')—n(t,')),

At—0+ At

(Dm(t, )= lim Ef ( s Z(f - )>> ’

is called the mean derivative on the right Dn(t,-) (on the left D.n(t,-)) of the
stochastic process n at the point t € (§,7), if the limit exists in the sense of a
uniform metric on R. A stochastic process 7 is said to be mean differentiable the
right (on the left) on (e, 1), if at each point ¢ € (e, 7) there exists a mean derivative
on the right (on the left).

Suppose that the stochastic process n € CLg is mean differentiable on the
right (on the left) on (e,7). Its mean derivative on the right (left) is a stochas-
tic process, which we denote by Dn(D,n). If the stochastic process n € CLg
is mean differentiable by both on the right and on the left and on (e,7), then
we can define a symmetric (antisymmetric) mean derivative Dgn = 3(D + D,)n
(DA77 = %(D* — D)n). Since mean derivatives was develops by E. Nelson, and
the theory of such derivatives was developed by Yu.E. Gliklikh, then further, for
brevity, the symmetric mean derivative Dg of a stochastlc process n will be called

the Nelson—Gliklikh derivative and denote by 77 i.e. Dgn 77

1
We denote by 73( ) the [-th Nelson—Gliklikh derivative of the stochastic process
n, | € N. Note, that if the trajectories of the stochastic process n are a.s.
continuously differentiable in the ”ordinary sense” on (g, 7), then their Nelson—
Gliklikh derivative coincides with the ”ordinary” derivative. For example, this is
the case with the stochastic process 7 = a cos(ft), where « is a Gaussian random
variable, 8 € R, is some fixed constant, and ¢ € R has a physical sense of time.

Theorem 1.3. (Yu. E. Gliklikh) B (t) = (26)"18(t) for all t € R,.

We introduce the space C'La, [ € N, of stochastic processes from CLg, which
trajectories are a.s. differentiable with respect to Nelson—Gliklikh on J up to
order [ inclusive. If J € Ry, then from theorem 1.3 follows the existence of the

derivative ée C'Ly, which we call (one-dimensional) ”white noise”. The spaces
C'L, will be called the spaces of differentiable ” noises”.

Further, let $1 = (4L, (-, -)) be a real separable Hilbert space; we consider the op-
erator K € L(4), which spectrum o(K) is nonnegative, discrete, finitely multiple,
and condense only to point zero. We denote by {);} the sequence of eigenvalues
of the operator K, numbered by nonincreasing with allowance for multiplicity.
Notice, that the linear span of the set {¢;} of the corresponding orthonormal
eigenvectors of the operator K is dense in 4. We also require that the operator K

OO
be nuclear (that is, its trace Tr K = > A\; < 400).
j=1
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Consider a sequence of independent stochastic processes {1, } and define a sto-
chastic K-process

Ok (t) = Z VA ()@ (1.2)

under the condition that the series (1.2) converges uniformly on any compact set
in 3. We point out that if {n;} C CLy, then from the existence of a stochastic
K-process Ok follows the a.s. continuity of its trajectories. We introduce the
Nelson-Gliklikh derivatives of a stochastic K-process

o (D) o(l)

6 (=2 VA H; (e, (13)

provided that the derivatives on the right-hand side of (1.3) up to order [ exist
inclusively, and all the series converge uniformly on any compact set from J. Anal-
ogously to the finite-dimensional case, we consider the space CgLs of stochastic
K-processes, which trajectories are a.s. continuous, and the spaces Ch Ly of sto-
chastic K-processes, which trajectories are a.s. continuously differentiable with
respect to Nelson—Gliklikh up to order [ € N.

As an example, we consider a Wiener K-process

Wi(t) = Z VB () es, (1.4)

which obviously exists on R, . In addition, the following assertion is fair.

Corollary 1.4. I/IO/K (t) = (2t)""Wk(t) for all t € Ry and for any nuclear
operator K € L(81).

In addition, the Wiener K-process (1.4) satisfies the conditions (W1) — (W3),
if the symbol 3 in them is replaced by the symbol Wi . And if such a substitution
done, it’s fair the theorem.

Theorem 1.5. For any nuclear operator K € L() with probability equal to 1,
there exists a unique Wiener K-process satisfying the conditions (W1) — (W3),
and it can be represented in the form (1.4).

2. Stochastic Sobolev type equations with relatively p-bounded
operators

Let 4 and § be Banach spaces, the operators L, M € L(i;F) (i.e. are lin-
ear and continuous). Following [13], chapter 4 we introduce the L-resolvent set
pE (M) = {peC:(uL—-M)"teL(F)} and the L-spectrum
ol(M) = C\ p*(M) of the operator M. If the L-spectrum ol (M) of the op-
erator M is bounded, then the operator M is said to be (L,o)-bounded. If the
operator M is (L, o)-bounded, then there exist projectors

— o [ REODdu e L), Q= o [ i € )

271
¥
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Let RY(M) = (uL — M)~'L is the right, and LL(M) = L(uL — M)~" is the
left L-resolvent of the operator M, and the closed contour v C C bounds a domain
containing o (M). We set U°(8(1) = ker P(imP), F°(F!) = ker Q(imQ) and denote
by Ly (M) the restriction of the operator L(M) on U¥, k =0, 1.

Theorem 2.1. (Sviridyuk’s theorem [5] on splitting) Let the operator M be (L,o)-
bounded, then

(i) the operators Li(My) € L(UF;F*), k =0,1;

(ii) there exist operators Myt € L(F%;U°) and LT' € L(F;U).

We construct the operators H = My 'Ly € L(U°), S = LT M; € L(UY).

Corollary 2.2. Suppose that the operator M is (L,o)-bounded, then for
all p € p(M)

(WL — M) ==Y pFHE M 1= Q)+ ) p " SFLTQ.
k=0 k=1

The operator M is called (L,p)-bounded, p € {0} U N,
if oo is a removable singular point (that is, H = O,p = 0) or a pole of order
p € N (that is H? # Q, HP™! = Q) of the L-resolvent (uL — M)~ of the operator
M.

Let the operator M be (L,p)-bounded, p € {0} UN, and consider { be a real
separable Hilbert space. Consider a linear stochastic equation of Sobolev type

L = Mn + N6, (2.1)

where the free term will be determined later. We supplement equation (2.1) with
the initial Showalter-Sidorov condition

+1
[RE(M)]" (1(0) = o) =0, (22)
on the advantages of which in comparison with the Cauchy condition
1(0) = 10 (2.3)

we spoke above. Here
=V \bker, (24)
k=1

where {pp} s an orthonormal basis of the space &, and pairwise independent
random Gaussian variables £, € Lo are such that D&, < Cp, and {)\;} is the
spectrum of some nuclear operator K € L(41).

We further assume that J = [0,7). Let 4 be a real separable Hilbert space,
K € L(4) is a nuclear operator which eigenvalues {\;} C Ry. We call a stochastic
K-process n = 1(t) a classical solution of equation (2.1), if a.s. all its trajectories
satisfy equation (2.1) for some stochastic K-process © = O(t) of the form

0= Z mak¢k7 (25)7
k=1

where oy (t) are one-dimensional continuous Gaussian stochastic processes such
that the series (2.5) converges uniformly on J and the operator N € L(4;F), for
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all t € (0,7). The solution n = 7(t) of equation (2.1) is called a (classical) solution
of problem (2.1), (2.2), if in addition condition (2.2) is satisfied. The classical
solution of problem (2.1), (2.3) is defined similarly. Note, that the fulfillment of
(2.2) follows from the fulfillment of (2.3).

We consider the problem (2.3) for the homogeneous equation

In this (and only in this) case we assume J = R.
Definition 2.3. A set BB C 4 is called a phase space of equation (2.5), if

(i) a.s. any trajectory of the solution 7 = n(¢) lies in 3 pointwise, i.e. 7(t) € P
for all t € R;

(ii) for any random variable 7y € 9B of the form (2.4) there exists a unique
classical solution 1 = 7(t) of problem (2.6), (2.3).

Theorem 2.4. Let the operator M be (L, p)-bounded, p € {0} UN. Then the phase
space of equation (2.5) is the subspace U,

Indeed, by virtue of theorem 2.1, equation (2.5) is reduced to an equivalent
system

H n9=mng, 1M1= Sn1, (2.7)
where n° = (I—P)n, n* = Pn. Differentiating by Nelson-Gliklikh the first equation
in (2.7) and multiplying it from the left by H, we obtain successively

00(p+1) 00(2) 00
0= Hrttn =.=HN =.=H1=2n"

Condition (i) of Definition 2.3 thus is satisfied. For execution condition (ii) we
note that if 7y € U and has the form (2.4), then the unique solution of problem

(2.7), (2.3) exists and has the form ' = nt(t) = ey, where e = tkké;k
k=0

Then the unique solution of problem (2.6), (2.3) for 7y € 4! will have the form
n(t) = (O = P) + "> P)no.

Corollary 2.5. Under the conditions of Theorem 2.4, the solution of problem
(2.6), (2.3) is a Gaussian stochastic K -process if the random variable ng has form

(2.4).

Definition 2.6. The map U® € C*°(R;L(Y)) is called the group of resolving
operators if

U*U" = U™ for all s,t € R. (%)
A group {U! : t € R} is said to be holomorphic, if it is analytically extended

to the whole complex plane retaining its property (*); and degenerate if its unit
U° € L() is a projection.

For example, a holomorphic degenerate group is the resolving group
Ut = O( — P) + e*P of the equation (2.6). If {U' : t € R} is a holomor-
phic degenerate group, then its image im U® = im U° and kernel ker U® = ker U°.
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We call the group the resolving group of equation (2.6), if its image coincides with
the phase space of the given equation

=5 /RL Yeltdu, teR.

Let us return to equation (2.1) and take the interval J = [0, 7). Let the stochastic
K-process © = O(t),t € [0,7) has the form (2.5) and is such that

(i) almost surely all trajectories of the stochastic process N©

are continuous on J;

(ii) almost surely all trajectories of the stochastic process (I — Q)NO© (2.8)
are continuously differentiable with respect to Nelson—Gliklikh

up to order (p + 1) inclusive on the interval (0, 7)

We note that the K-process, satisfying conditions (2.8) is the Wiener
K-process (1.4).

Theorem 2.7. Let the operator M is (L,p)-bounded, p € {0} UN. Then for
any N € L(F), any stochastic K-process © = O(t) of the form (2.5) and for
any random variable ng of the form (2.4), there exists a unique classical solution
n =mn(t) of the problem (2.1), (2.2), which also has the form

L p
n(t) = Ulng + / U'™Li'QNO(s)ds — Y  HIM; '(I- Q)N é(q) ). (2.9
0 a=0

If, in addition, the random variable ng is such that
P—Tn = ZH‘?M Q)N e (0),

then the solution (2.9) is also the unique solution of problem (2.1), (2.2).

The proof of Theorem 2.7 consists in substituting solution (2.9) into equation
(2.1). The uniqueness of this solution follows from Theorem 2.4. A complete proof
can be found in [9].

3. The Laplace—Beltrami operator spectrum

We consider a n-dimensional smooth compact oriented connected Riemannian
manifold without boundary €2 and the space of differential ¢-forms on ) we denote
by E4 = E1(Q),0 < ¢ < n. In particular E°(R") is the space of functions of
n variables. Note that there exists a linear Hodge operator x : EF1 — E™9,
which associates the g-form with Q (n — ¢)-form. In the double application of
the Hodge operator, the equality s* = (—1)%"~9 holds. In addition, there is
an operator for taking the external differential d : E¢ — E971. We define the
operator § : B4 — E971 setting § = (—1)*4TD+1 x @ % . On O-forms the operator
0 is simply a zero linear functional.
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Definition 3.1. The Laplace-Beltrami operator A : E? — E9 is defined by the
equality A = §d + dd, and it is a linear operator on space EF?,0 < g < n.

We introduce the space of harmonic ¢-form H? = {w € E7 : Aw = 0}. We
denote by H(«) the projection onto the space of harmonic forms.

Theorem 3.2. (Hodge-Kodaira decomposition theorem) For any integer q,0 <
q < n, space H? is finite-dimensional and there is the following decomposition of
the space of smooth q-forms on ) into an orthogonal direct sum

EY = A(EY) @ HY = d§(E") @ 6d(E") & H. (3.1)

Consequently, the equation Aw = « has solution w € EY precisely then, when
g-form « is orthogonal to the space of harmonic forms H?.
By the formula

(€ m)o = / €N, €€ B (3.2)
Qy,

where x is the Hodge operator, we define a scalar product in the space E9,
g =0,1,...,n, and denote the corresponding norm by || - [|op. We continue the

scalar product (3.2) by a direct sum é E9, requiring that different spaces EY
q=0

were orthogonal. Completion of space E4 in the norm || - ||y we denote by $. We
denote by P,a the orthoprojector on $H%.
By the formulas

(&m1 = (A& n)o + (§a,na)o, (3.3)
(57 77)2 = (A£? AT/)O + (€a 77)1; (34)
we introduce the scalar product on E? , where wa = Pyaw. Completion of the
lineal E7 according to the corresponding norms || - [|; and || - ||2 we denote by $f

and 92 respectively. Actually upper index means how many times differentiable
in the generalized sense of the k-form in the corresponding spaces.

The spaces $},l = 1,2 are Banach spaces (further their Hilbert structure does
not interest us), and we have continuous and dense embeddings $3 C H{ C HE.
The following assertion is true.

Corollary 3.3. For any q =0,1,...,n there are splitting spaces
Hi = Hix @ H1,
where Hix = (I — Pa)[$7], 1 =0,1,2.

We define the Green’s operator G : EY — (HY)*, setting G(a) equal to the
unique solution of the equation Aw = o — H(«).

A real number A, for which there exists non-zero g-form w, such that Au = Au,
is called the eigenvalue of operator A. If X\ is an eigenvalue, then any g-form
u, such that Au = Au, is called an eigenfunction corresponding to eigenvalue
A.The eigenfunctions corresponding to a fixed A, form a subspace of E?, called the
eigenspace corresponding to the eigenvalue.

Proposition 3.4. The eigenvalues of the Laplace— Beltrami operator are nonneg-
ative and do not have a finite limit point.
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Consider the restriction of operator A on (E9)*. Then A : (E9)+ — (BE9)+
and we have the Green’s operator G : (E9)* — (E9)* and AGa = a, GAa = «
for all & € (E?)L. In view of this, the eigenvalues of the operator G|(EY)* are
inverse to eigenvalues A|(E9)>L.

Let

n= sup IGel-
PE(EN®, [lol=1
Then n > 0 and A = 1/7 is the eigenvalue of Laplace—Beltrami operator A.

Suppose that operator A|(H9)* contains eigenvalues
A1 < Ay < .0 < )\, and eigenfunctions uq,ug, ..., u,. Subspace R, spanned by
{u1,ug,...,un}. Let’s find

M1 = sup G-
PE(EIDRL)T, [lell=1
Acting as above, we obtain that \,+1 = 1/9,11 the following proper value of the
Laplace—Beltrami operator, while \,11 > \,,.

Proposition 3.5. Eigenfunctions corresponding to different eigenvalues of the
Laplace-Beltrami operator are orthogonal and form a complete system in Lo.

Let {\;} be a sequence of eigenvalues of A on E? with multiplicity taken into
account, and {u;} is the corresponding orthonormal sequence of eigenfunctions.
Let a € E4. Then

n
nli)n;o |l — ;(0‘7 u;yui]| = 0.

Now we show a concrete form of eigenvalues and functions in the space of ¢-form
on a two-dimensional sphere, which is a particular case of a smooth compact ori-
ented Riemannian manifold without boundary. We note that for a two-dimensional
manifold, only g-forms with ¢ = 0, 1,2. We consider a two-dimensional unit sphere
given in spherical coordinates

{z =sinfcosp,y =sinfsinp, z = cos 0} (3.5)
with the conditions for the periodicity of the coefficients of the ¢-form
a(0,¢) = a(f, o+ 2m);a(0, ) "and” a(w, @) "do not depend on” . (3.6)

It is evidently, the cases with ¢ = 0, 1,2 are possible.

Let us show the view of eigenfunctions ¢;. Firstly, let’s look at the eigen-
values and eigenfunctions of the Laplace-Beltrami operator on sphere for 0-form.
The eigenvalues of the Laplace-Beltrami operator in the space of O-forms on a
two-dimensional sphere have the form v, = [(I + 1). Functions ¢; = Y] are the
eigenfunctions for the eigenvalue v; . They can be representees as the Fourier
series

“+o00 “+o0o
Yi(,0)= Y Yim(09)= > Y(0)™? (3.7)

with respect to the functions Y;™, which are the solutions of equation

Lod (A mE o o
sin@d@{sme do }_sineyl =nn (3:8)
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The solutions (5.4) are the Legendre polynomials of the cosines Pllm‘ (cosd). The
functions Y ,, for 1 =0,1,2,... and m = -, -1+ 1,...,0,..., — 1,1 take the form

2041 (I—=|m|)! . . m im
Ylﬁm(ﬂ,go)—\/ pp oEH_m;!sm |9Pl| l(cos@)e 2. (3.9)

By commuting the Hodge operator and the Laplace—Beltrami operator
A xu = xAu

the eigenvalues of O-forms and 2-forms coincide, and the eigenfunctions differ by
the presence of both differentials for each term for 2-forms.

If we consider 1-form on a two-dimensional sphere, then one of the ways of
finding eigenvalues and eigenfunctions is to take the differential from the O-form
being an eigenfunction itself.

Let the 0-form w; be an eigenfunction corresponding to eigenvalue A;, i.e.

(dd + dd)u; = dduy = Nuy.
Then 1-form v; = du; is an eigenfunction of the corresponding eigenvalue \;, since
(dd + 6d)v; = ddduy + ddduy; = dodu; + 0 = d\juy = Nduy = Ny
Let 2-form u; be an eigenfunction corresponding to eigenvalue )\, i.e.
(dd + dd)u; = dou; = Nuy.
Then 1-form w; = Ju; is an eigenfunction of corresponding eigenvalue )\;, since

(d5 + 5d)wl = dddu; + 0dou; = 0 + dddu; = dAu; = A\jdu; = \jwy.

4. ”Stochastic” Barenblatt—Zheltov—Kochina equation

Let ©,, be a n-dimensional oriented compact connected Riemannian manifold
without boundary. We define, using the theory of smooth differential g-forms
presented in points 1 and 3 with coeflicients that are stochastic K-processes lying
in CkH4

w(t, 1, Tay ey ) = Z X ine.osiq (b T1, T2, ooy T )dsy Adziy Ao Aday,,

|i1774.2’~~a7;q|:q

where |i1, 12, ..., 44| is a multi-index, and the coefficients have the form

o0
Xir iensiq (b T15 T2y oy Tp) = Z V ABri in,.siy ()P
=1

We assume that the phenomenon that we investigate occurs with velocities much
lower than the speed of light and there is no time dependence and coordinates. We
share time and local coordinates. Here at all points of the manifold the coefficients
of differential forms depend only on the unified time ¢.

In our investigations we use stochastic K-processes that are continuous, but
nondifferentiable at every point in the usual sense. We use differentiability in the
sense of Nelson—Gliklikh. For fixed a € R, A € R we introduce operators

L=(\+A), M=aA, (4.1)
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where A is the Laplace-Beltrami operator. Consider a ”stochastic” equation with
differential forms

L= Mn. (4.2)
Remark 4.1. For ¢ = 0 equation (4.2) coincides with (2.6).

The initial Cauchy condition will have the form

n(0) = no. (4.3)

Operator L is Fredholm operator by the Atiyah—Singer theorem and the following
assertion is valid.

Lemma 4.2. For any o € R\ {0}, A € R\ {0} the operator M is (L,0)-bounded.

Let {v;} be a sequence of eigenvalues of the Laplace-Beltrami numbered by
nonincreasing with allowance for their multiplicity, {y;} are the corresponding
orthonormal (in the sense of il) eigenfunctions. We construct the projector P €
L),

» { I, A\ £y forall | € N;

I— Z <'a<)0j> (plalf)‘ = V.
A=y

We consider differential g-forms with coefficients that are U-valued stochastic K-
processes.
By Theorem 2.7, in the homogeneous case, for © = 0 we have an assertion.

Theorem 4.3. For any A € R\ {0}, « € R\ {0}, N € L(F) and ny € Lo, which
does not depend on © there exists a unique solution n = n(t) of problem (4.3),
(4.4), which has the form

nty=7y ' [eﬂfp (Aa_ylyl t) (1; VAkEk(Prs <Pl)o<ﬂl>] (4.5)

=1

Now let us consider inhomogeneous equation
L= Mn+ N®. (4.6)
with initial Showalter—Sidorov condition
[READ)™ (n(0) = m) =0, (4.7)

where 79 decomposes into a series (2.4). By Theorem 2.7, the following theorem
is true.

Theorem 4.4. For any A\ € R\ {0}, a« € R\ {0} and any operator
N € L(F) and no € La, that does not depend on © there exists a unique clas-
sical solution n = n(t) of problem (4.6), (4.7), which also has the form

n(t) = Z ' [69317 <)\a_1/lyl f) (Z V k€ (ks 901)0901)
=1 k=1

+/56Ut75L1_1QNZ V Ak (s)prds—
k=1

+
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S HM - QN SV & (e (48)
q=0

j=1

If in addition ng is such that

oo P (oo}
(P=1) [ > VMbilor @)opr | =) HMHI- QN [ > /A &EQ) t)p; |
k=1 q=0 j=1

(4.9)

then the solution (4.8) is also the unique solution of problem (4.6), (4.7).

Remark 4.5. In the future, we plan to continue these researches to study the
so-called "white noise” (in inverted commas) work on which (differs from that
considered in this article) have GA. Sviridyuk, A. Favini, A.A. Zamyshshlyaeva

15

], M.A. Sagadeeva [16]. The other way to generalize these results lies in the

study of the generalizations of Showalter-Sidorov problem considered for example
by S.A. Zagrebina and A.V. Keller ([17]).

[\
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