Special Issue: 25th International Conference of Forum for Interdisciplinary Mathematics

MAJORIZATION PROPERTIES FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH THE GENERALIZED DERIVATIVE OPERATOR

GARIMA AGARWAL

Abstract: Invoking generalize derivative operator $D^{n,\,m}_{\lambda_1,\,\lambda_2,\,b}$, we investigate the Majorization properties for analytic functions.

1. Introduction

Let f and g be Holomorphic in the open unit disc

$$\Delta = \{z : z \in \mathbb{C}, |z| < 1\} \tag{1.1}$$

We say that f is majorized by g in Δ (see[7]) and write

$$f(z) \ll g(z) \quad (z \in \Delta), \tag{1.2}$$

If there exist a function ϕ , analytic in Δ s.t.

$$|\varphi(z)| \le 1$$
 and $f(z) = \varphi(z)g(z)$ $(z \in \Delta)$, (1.3)

It may be noted that (1.2) is closely related to the concept of quasi-subordination between holomorphic functions

Let A denote the class of holomorphic function of the form

$$f(z) = \sum_{k=2}^{\infty} a_k z^k,$$
 (1.4)

where, a_k is the complex number, which is holomorphic in the open unit disc $\Delta = \{Z = \mathbb{C} : |Z| < 1\}$. An holomorphic function f(z) is subordinate to the holomorphic function g(z), written $f(z) \prec g(z)$, if there exist an holomorphic function w in Δ , such that w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)). In particular, if g(z) is univalent in Δ , then $f(z) \prec g(z)$ is equivalent to f(0) = g(0) and $f(\Delta) \subset g(\Delta)$.

Now E.El.Yagubi and M.Darus [1] define the generalized derivative operator $\mathcal{D}_{\lambda_1,\lambda_2,b}^{n,\,m}$ is defined as follows:

Definitation 1. For $f(z) \in A$, the operator $\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m}$ is defined by $\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} : A \to A$

$$\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} f(z) = \mathcal{F}_{\lambda_1, \lambda_2, b}^{m} f(z) \times \mathcal{R}^n f(z), z \in \mathcal{U}$$

$$\tag{1.5}$$

where, $n, m, b \in \mathcal{N}_0 = \{0, 1, 2, 3, ...\}, \lambda_2 \ge \lambda_1 \ge 0$ and $\mathcal{R}^n f(z)$ denotes the Ruscheweyh derivative operator, given by

$$\mathcal{R}^{n} f(z) = z + \sum_{k=2}^{\infty} c(n, k) a_{k} z^{k}$$
(1.6)

where,
$$c(n, k) = \frac{(n+1)_{k-1}}{(1)_{k-1}}$$
 (1.7)

Keyword. Holomorphic functions, generalize derivative operator, Majorization properties, Subordination.

and

$$\mathcal{F}_{\lambda_{1},\lambda_{2},b}^{m}f(z) = z + \sum_{k=1}^{\infty} \left[\frac{1 + (\lambda_{1} + \lambda_{2})(k-1) + b}{1 + (\lambda_{2})(k-1) + b} \right]^{m} z^{k}$$
(1.8)

where, $m, b \in \mathcal{N}_0 = \{0, 1, 2, 3, ...\}$ and $\lambda_2 \ge \lambda_1 \ge 0$.

If f(z) is given by (1.4), then by (1.6) we can write

$$\mathcal{D}_{\lambda_{1}, \lambda_{2}, b}^{n, m} f(z) = z + \sum_{k=2}^{\infty} \left[\frac{1 + (\lambda_{1} + \lambda_{2})(k-1) + b}{1 + (\lambda_{2})(k-1) + b} \right]^{m} c(n, k) a_{k} z^{k}$$
(1.9)

where, c(n, k) is given by (1.8).

In view of (1.9), it is clear that $\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, 0}$ is the Ruscheweyh Derivative operator (see [6]) and $\mathcal{D}_{\lambda_1, 0, 0}^{n, 1} = \mathcal{D}_n^{\lambda_1}$ the generalized Ruscheweyh derivative operator (see [4]). $\mathcal{D}_{1, 0, 0}^{0, m} = s^n$ the Salageon derivative operator (see [2]). $\mathcal{D}_{1, 0, b}^{0, m} = \mathcal{D}_b^m$ the Cho and Srivastava derivative operator (see [5]).

Definitation 2. A function f(z) is said to be in the class $\mathcal{S}_{\lambda_1,\lambda_2,b}^{n,m}$ if and only if

$$\frac{z[\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m}f(z)]'}{\mathcal{D}_{\lambda_{\lambda_{1},b}}^{n,m}f(z)} \prec \frac{1+\mathrm{Az}}{1+\mathrm{Bz}}$$

$$(1.10)$$

where, $1 \ge A > B \ge -1$

For detail one can see [1].

Lemma 1. $\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} f(z)$ Satisfies the following:

$$z[\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m}f(z)]' = \frac{(1+b)}{(\lambda_{1}+\lambda_{2})} \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m+1}f(z) - \frac{\{1-(\lambda_{1}+\lambda_{2})(k-1)+b\}}{(\lambda_{1}+\lambda_{2})} \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m}f(z)$$
 (1.11)

it is three term recurrence relation.

2. Majorization Problem for the Class $S_{\lambda_1, \lambda_2, b}^{n, m}$

Theorem (1). Let the function $f(z) \in A$ and suppose that $g(z) \in \mathcal{S}_{\lambda_1,\lambda_2,b}^{n,m}(A, B)$. If

$$\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} f(z) \ll \mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} g(z) \tag{2.1}$$

Then,
$$\left| \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m+1} f(z) \right| \leq \left| \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m+1} g(z) \right| \text{ for } |z| \leq r_{o}$$

$$r^{3} \left(\frac{1+b}{\lambda_{1}+\lambda_{2}} \right) \left[\left\{ (\lambda_{1}+\lambda_{2})(A-B) + B(1+b) \right\} \right] - r^{2} \left[\left(\frac{1+b}{\lambda_{1}+\lambda_{2}} \right) \left\{ \left(1+b \right) + 2B(1+b) \right\} \right]$$

$$- r \left[2\left(1+b \right) + \left(\frac{1+b}{\lambda_{1}+\lambda_{2}} \right) \left\{ \left(\lambda_{1}+\lambda_{2} \right) \left(A-B \right) + B\left(1+b \right) \right\} \right] + \left(\frac{1+b}{\lambda_{1}+\lambda_{2}} \right) \left(1+b \right) = 0$$

$$k, \, \eta \in \mathbb{C}, \, p(0) = 1, \, \lambda_{2} \geq \lambda_{1} \geq 0, \, n, \, m, \, b \in \mathcal{N}_{0} = \left\{ 0, \, 1, \, 2, \, 3, \, \dots \right\}$$

$$|1+b| \geq |(\lambda_{1}+\lambda_{2})(A-B) + B(1+b)|, \, 1 \geq A > B \geq -1$$

Proof. Since $f(z) \in \mathcal{S}_{\lambda_1, \lambda_2, b}^{n, m}$, we find from (1.11) that

$$\frac{z\left(\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m}f(z)\right)}{\mathcal{D}_{\lambda_{1},\lambda_{n},b}^{n,m}f(z)} = \frac{1+A|z|}{1+B|z|}$$
(2.3)

where, $\omega(z) = c_1 z + c_2 z^2 + \cdots$, $\omega \in \mathcal{P}$, \mathcal{P} denotes the well known class of the bounded analytic functions in \mathbb{U} and satisfies the condition $\omega(0) = 0$, and $|\omega(z)| \le |z|$ $(z \in \mathbb{U})$

$$\left| \frac{z(\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} f(z))'}{\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} f(z)} \right| \le |p(z)| + \frac{|z||p'(z)|}{k|p(z)| + \eta}$$

$$(2.4)$$

By using (1.11) in (2.4)

$$\left| \mathcal{D}_{\lambda_{1}, \lambda_{2}, b}^{n, m} f(z) \right| \leq \frac{\left(1 + b\right)\left(1 + B \mid z \mid\right)}{\left(1 + b\right) - \left|z\right| \left\{ \left|\left(\lambda_{1} + \lambda_{2}\right)\left(A - B\right) + B\left(1 + b\right)\right| \right\}} \left| \mathcal{D}_{\lambda_{1}, \lambda_{2}, b}^{n, m + 1} f(z) \right| \tag{2.5}$$

Since $\mathcal{D}_{\lambda_1,\lambda_2,b}^{n,m}f(z)$ is majorized by $\mathcal{D}_{\lambda_1,\lambda_2,b}^{n,m}g(z)$ in the unit disk \mathbb{U} , from (1.3) we have

$$\mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} f(z) = \varphi(z) \mathcal{D}_{\lambda_1, \lambda_2, b}^{n, m} g(z)$$

$$\tag{2.6}$$

where, $\varphi(z) \leq 1$. Differentiating (2.6) w.r. to z and multiplying by z, we get

$$z\left(\mathcal{D}_{\lambda_{1},\,\lambda_{2},\,b}^{n,\,m}f(z)\right)'=z\varphi(z)'\left(\mathcal{D}_{\lambda_{1},\,\lambda_{2},\,b}^{n,\,m}g(z)\right)+z\varphi(z)\left(\mathcal{D}_{\lambda_{1},\,\lambda_{2},\,b}^{n,\,m}g(z)\right)' \tag{2.7}$$

Which on using (1.11), gives

$$\left(\frac{1+b}{\lambda_{1}+\lambda_{2}}\right)\left|\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m+1}f(z)\right| = \left|z\right|\left|\varphi(z)'\right|\left|\left(\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m}g(z)\right)\right| + \left|\varphi(z)\right|\left|\left(\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m+1}g(z)\right)\right|\left(\frac{1+b}{\lambda_{1}+\lambda_{2}}\right)$$
(2.8)

Noting that $\varphi(z) \in \mathcal{P}$ satisfying the inequality (see[8])

$$|\varphi(z)'| \le \frac{1 - |\varphi(z)|^2}{1 - |z|^2}$$
 (2.9)

Now making use of (2.5) and (2.9) in (2.8)

$$\left(\frac{1+b}{\lambda_{1}+\lambda_{2}}\right) \left| \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m+1}f(z) \right| \leq \left[\left| \varphi(z) \left| \left(\frac{1+b}{\lambda_{1}+\lambda_{2}}\right) + \left(\frac{1-\left| \varphi(z) \right|^{2}}{1-\left| z \right|^{2}} \right) \right| z \right| \\
\left\{ \frac{(1+b)(1+B|z|)}{(1+b)-\left| z \right| \left\{ \left| (\lambda_{1}+\lambda_{2})(A-B) + B(1+b) \right| \right\}} \right\} \right| \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,\,m+1}g(z) \right] (2.11)$$

Which upon setting |z| = r, $|\varphi(z)| = \rho$ $(0 \le \rho \le 1)$

Leads us to the inequality

$$\left| \mathcal{D}_{\lambda_{1}, \lambda_{2}, b}^{n, m+1} f(z) \right| \leq \frac{\vartheta(\rho) \left| \mathcal{D}_{\lambda_{1}, \lambda_{2}, b}^{n, m+1} g(z) \right|}{\left(1 - r^{2}\right) \left[\left(1 + b\right) + r\left\{ \left| \left(\lambda_{1} + \lambda_{2}\right) \left(\mathbf{A} - \mathbf{B}\right) + \mathbf{B}\left(1 + b\right) \right| \right\} \right] \left(\frac{1 + b}{\lambda_{1} + \lambda_{2}}\right)}$$
(2.12)

where,
$$\vartheta(\rho) = \rho \left(\frac{1+b}{\lambda_1 + \lambda_2} \right) (1-r^2)[(1+b) - r\{|(\lambda_1 + \lambda_2)(A-B) + B(1+b)|\}] + r(1+b)(1+|B| r)(1-\rho^2)$$

Takes the maximum value at $\rho = 1$, with $r_0 = r_0(n, m, \lambda_1, \lambda_2, b)$. Where r_0 is the smallest positive root of equation (2.2). Furthermore if $0 \le \sigma \le r_0$, then the function $\phi(\rho)$ defined by

$$\phi(\rho) = \rho \left(\frac{1+b}{\lambda_1 + \lambda_2} \right) (1 - \sigma^2) [(1+b) - \sigma \{ |(\lambda_1 + \lambda_2)(A - B) + B(1+b)| \}]$$

$$+ \sigma (1+b)(1+|B|\sigma)(1-\rho^2)$$

Is an increasing function on the interval $0 \le \rho \le 1$, so that

$$\phi(\rho) = \phi(1) = \left(\frac{1+b}{\lambda_1 + \lambda_2}\right) (1 - \sigma^2)[(1+b) - \sigma\{|(\lambda_1 + \lambda_2)(A - B) + B(1+b)|\}]$$

$$(0 \le \rho \le 1, \ 0 \le \sigma \le r_0)$$
(2.11)

Hence upon setting $\rho = 1$, in (2.14), we conclude that (2.1) of Theorem (1) holds true for $|z| \le r_0$.

Where, $r_0 = r_0$ (A, B, n, m, λ_1 , λ_2 , b) is the smallest positive root of equation (2.2). This completes the proof of Theorem 1.

Setting A = 1, B = -1 in Theorem (1), we have

Corollary (1): Let the function $f(z) \in A$ and suppose that $g(z) \in \mathcal{S}_{\lambda_1,\lambda_2,b}^{n,m}$. If

$$\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m}f(z) \ll \mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m}g(z)$$
Then, $\left|\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m+1}f(z)\right| \leq \left|\mathcal{D}_{\lambda_{1},\lambda_{2},b}^{n,m+1}g(z)\right|$ for $|z| \leq r_{1}$
where, $r_{1}\left(n,m,\lambda_{1},\lambda_{2},b\right) = \frac{\delta \pm \sqrt{\delta^{2} - 4\left(1 + b\right)\left(\frac{1+b}{\lambda_{1} + \lambda_{2}}\right)^{2}\left|2\left(\lambda_{1} + \lambda_{2}\right) - \left(1 + b\right)\right|}}{2\left(\frac{1+b}{\lambda_{1} + \lambda_{2}}\right)\left|2\left(\lambda_{1} + \lambda_{2}\right) - \left(1 + b\right)\right|}$

where,
$$\delta = \left(\frac{1+b}{\lambda_1 + \lambda_2}\right) \{ |2(\lambda_1 + \lambda_2) - (1+b)| + (1+b) \} + 2(1+b)$$

Setting
$$\xi = \left(\frac{1+b}{\lambda_1 + \lambda_2}\right)$$
 in Corollary (1), we have

Corollary (2): Let the function $f(z) \in A$ and suppose that $g(z) \in \mathcal{S}_{\lambda_1, \lambda_2, b}^{n, m}$. If

$$\left(\mathcal{S}_{0,\,z}^{\lambda,\,\mu,\,\eta} f(z) \right)^{j} \ll \left(\mathcal{S}_{0,\,z}^{\lambda,\,\mu,\,\eta} g(z) \right)^{j}$$
 Then,
$$\left| \left(\mathcal{S}_{0,\,z}^{\lambda\,+\,1,\,\mu,\,\eta} f(z) \right)^{j} \right| \leq \left| \left(\mathcal{S}_{0,\,z}^{\lambda\,+\,1,\,\mu,\,\eta} g(z) \right)^{j} \right| \text{ for } \left| \, z \, \right| \leq r_{2} \left(n,\,m,\,\lambda_{1},\,\lambda_{2},\,b \right)$$
 where,
$$r_{2} \left(j,\,\lambda,\,\mu,\,\eta \right) = \frac{ \left[\left| \, 2 - \xi \, \right| + \left(2 + \xi \right) \right] \pm \sqrt{ \left[\left| \, 2 - \xi \, \right| + \left(2 + \xi \right) \right]^{2} - 4 \left| \, 2 - \xi \, \right| \xi } }{ 2 \left| \, 2 - \xi \, \right| }$$

For detail one can see [3].

References

- E. El-Yagubi and M. Darus, Subclasses of analytic functions defined by new generalized derivative operator, J. of Quality Measurement and Analysis, 9(1), 47-56(2013).
- G.S. Salegean, Subclasses of univalent functions, Proceedings of the complex analysis 5th Romanian-Finnish seminar part-I, 1013, 362-372(1983).
- J.K. Prajapat, M.K. Aouf, Majorization properties for certain class of p-valently analytic function defined by generalized fractional differintegral operator, J. Computers and Mathematics with Applications, 63, 42-47(2012).
- K. Al-Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivative operators, J. of Analysis and Applications 7(1), 53-61(2009).
- 5. N.E. Cho and H.M. Srivastava, Argument estimate of certain analytic functions defined by a class of multiplier transformations, Mathematical and Computer Modelling 37(1-2), 39-49(2003).
- S. Ruschweyh, New criteria for univalent functions, Proceedings of the American Mathematical Society 49(1975) 109-115.
- 7. T.H. MacGreogor, Majorization by Univalent function, Duke Math. J. 34(1967) 95-102.
- 8. Z. Nehari, Conformal Mapping, McGraw-Hill, New York, Toronto, London, 1952.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MANIPAL UNIVERSITY, JAIPUR