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THE MULTIPOINT INITIAL-FINAL VALUE PROBLEMS FOR
LINEAR SOBOLEV-TYPE EQUATIONS WITH RELATIVELY
p-SECTORIAL OPERATOR AND ADDITIVE ?NOISE”

SOPHIYA ZAGREBINA, TAMARA SUKACHEVA AND GEORGY SVIRIDYUK*

ABSTRACT. The multipoint initial-final value problems for linear sobolev-
type equations with relatively p-sectorial operator and additive ”noise” are
investigated. Abstract results in the space of ”"noises” are used to study the
solvability of a boundary value problem for the linear system of the Navier
— Stokes equations with initial-final conditions and additive ”white noise”.
Researches are based on the notion of the Nelson — Gliklikh derivative of the
Wiener process. The main result is to prove the unique solvability of the
problem with multipoint initial-final conditions. The stochastic problem is
considered as a generalization of determinate case.

1. Introduction

A linear operator differential equation of the form
Li= Mu+ f, (1.1)

is called the degenerate differential equation [1] or the Sobolev type equation [2],
if ker L # {0}. One of the conditions of the equation (1.1) solvability is the
requirement that operator M is the strong (L, p)-sectorial , p € {0} UN (see [2],
Chapter 3). Sufficient conditions for operator M to be strongly (L, p)-sectorial can
be found, for example, in [3]. However, for our purposes the necessary conditions
for operator M to be strongly (L, p)-sectorial are more suitable (see for example
[4]). (Incidentally, these necessary and sufficient conditions are equivalent, see[2],
p. 3.5 ). The equation is equipped with the set of terminal conditions [5]

Jm Po(u(t) —uo) =0, Fj(u(ry) —u;) =0, j=1n, (1.2)

where relatively spectral projectors Pj, j = 0,n, are determined by L-spectrum
ol (M) of the operator M; 0 <7 <...< T, <7, 7€ R,4.
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In the context of our research, the consideration of determinate problem (1.1),
(1.2) is propaedeutic in nature. Main attention will be paid to the stochastic
problem

L= Mn+ Nw, (1.3)
tl_i>%1+ Po(n(t) - 50) = 07 Pj(ﬁ(Tj) - g]) = 07 ] = ].,TL, (14)

where w = w(t) is specified and 7 = 7(t) are the desired stochastic processes,
the operators L, M, P, j = 0,n, and the numbers 7; € Ry, j = 1,n, are the
same as in (1.1), (1.2), &;, j = 0,n, are pairwise independant (Gaussian) random
variables, and the operator N will be defined below. The main difference between
these results and the results of [3] is replacing the terms of the Showalter — Sidorov
problem for more general conditions (1.4). Because both here and in [3] there is
an approach to the study of stochastic processes, based on a new concept different
from the approach Ito — Stratonovich — Skorokhod, the results of this article should
be considered a continuation of studies [3], [4]. We will remind that the basis of
this concept is the notion of the derivative of Nelson — Gliklikh of the stochastic

process 1 = n(t), which is denoted by 7. The basis of this concept is established
in [6], some directions of its development are in [3], [7].

Abstract results on the solvability of problem (1.3), (1.4) in the space of "noises”
are used to study the solvability of a boundary value problem for the linear system
of the Navier — Stokes equations with initial-final conditions and additive ”white

noise”, as a derivative of Nelson — Gliklikh of Wiener K-process w :I/?/K. The
stochastic problem is considered as a generalization of determinate case [4]. Pay
attention to the reduction of this problem to problem (1.1), (1.2), which differs
from the well-known approaches of O. A. Ladyzhenskaya [8] and R. Temam [9)].
The article, in addition to the introduction and reference list contains three
parts. In the first part we construct spaces of differentiable stochastic processes
with values in separable Hilbert space. Moreover, the derivative is the derivative
of Nelson — Gliklikh. We call stochastic processes with derivatives of Nelson —
Gliklikh differentiable "noises” [3], [6], [7], [10]. The example of such "noise” in

addition to the above mentioned ”white noise” I/(I)/K :Vc[)/K(t), t € Ry, is also
"black noise” (i.e., 7absolute” silence) a stochastic process, whose trajectories are
a.s. (almost surely) equal to zero. In the second part of the paper we present results
on the solvability of deterministic (1.1), (1.2) and stochastic (1.3), (1.4) problems
provided a strong (L, p)-sectorial operator M, p € {0} UN, and one condition
that guarantees the existence of relatively spectral projectors Pj, j = 0,n. These
results generalize and develop abstract results of the work [3], [4]. The third part
contains applications of the obtained abstract results. The list of references is not
exhaustive and only reflects the tastes and preferences of the authors.

2. Space of a differentiable ”noises”

Let Q = (2, A, P) be a complete probability space, R is the set of real numbers,
endowed with Boreal o-algebra. The measurable mapping £ : & — R is called
random variable. The set of random variables with zero mathematical expectations
and finite variances forms Hilbert space with scalar product ({1, &2) = E&1&2. This
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Hilbert space will be denoted Lg. Let’s call £ € Lo Gaussian values, if they have
a normal (Gaussian) distribution. Let Ay be o-subalgebra of o-algebra A. Then
we construct the space LY of random variables, measurable relative to Ag. It can
be shown that L is a subspace of La.

Let’s introduce the designation of an orthoprojector II : Ly — L3. If £ € Lo,
then II¢ is called conditional mathematical expectation of random variable £ and
is denoted by E(&|Ag). If Ay = {0, Q}, then E(¢|Ay) = E¢; and if Ay = A, then
E(¢|Ag) = & Finally, we remind that the minimum o-subalgebra A4, C A, with
respect to which the random variable £ is measurable, is called o-algebra generated
by &.

Let further Z C R be some interval. Let us consider the mapping f : Z —
Lo, which maps each ¢t € Z to a random variable ¢ € Lo and the mapping g :
Lz x 2 — R, which maps each pair ({,w) to the point {(w) € R. Let’s call a
(one-dimensional)stochastic process the mapping 1 : Z x 2 — R having the form
n=mntw)=g(f(t)w).

Thus, for every fixed ¢ € Z the stochastic process n = n(t, -) is a random variable,
ie. n(t,-) € La, and for every fixed w € 2 the stochastic process n = n(-,w) is
called a (selective) trajectory. We will call the stochastic process n continuous if
almost surely (a.s.) all its trajectories are continuous (i.e., when a. a. (almost
all) w € Q trajectories 7(-,w) are continuous). The set of continuous stochastic
processes forms a Banach space which we denote as CLa. A continuous stochastic
process, which (independent) random variables are Gaussian, is called Gaussian.

As an important example of a continuous Gaussian stochastic process we can
present a (one-dimensional) Wiener process § = [(t) simulating Brownian mo-
tion on a straight line in Einstein - Smolukhovsky theory. Let us formulate its
properties.

(W1) a.s. 5(0) = 0, a.s. all its trajectories §(t) are continuous and for all
t € Ry (= {0} UR,) the random variable 3(t) is Gaussian;

(W2) the mathematical expectation E (5 (t)) = 0 and the autocorrelation func-

tion E ((ﬁ t)—p (S))Q) = [t — s| for all s,t € Ry;

(W3) trajectories 3(t) are non-differentiable at any point of ¢+ € R and for any
arbitrarily small interval have unlimited variation.

Further, we will call the stochastic process (8 satisfying the properties (W1) —
(W3), Brownian motion.

Theorem 2.1. With probability 1 there is only one Brownian motion 3, and it
can be represented in the form

B(t) = &sin g(% + 1)t
k=0
where & are pairwise independent Gaussian random variables, E, = 0, D&, =
4m(2k +1)] 72

Now we fix n € CL3 and ¢ € Z(= (g, 7) C R) and using NV}’ we denote o-algebra
generated by a random variable n(t). We will redenote, for the sake of brevity,

E/ = E(INV).
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Definition 2.2. Let € CL2, and the random variable

. n(t—+ At,-) —nl(t,-

<Dm(t7'): lim E (”(t")_lf_m")>)’

At—0—

is called a forward Dn(t,-) (a backward D.n(t,-)) mean derivative of the stochastic
process 1 at the point t € (e,7) if the limit exists in the sense of uniform metric
on R. The stochastic process 7 is called forward (backward) mean differentiable
at t € (e,7), if for every point ¢ € (g, 7) there exists the forward (backward) mean
derivative.

Now, let the stochastic process n € CLg be forward (backward) mean differen-
tiable on (e, 7). Its forward (backward) mean derivative will also be a stochastic
process, which we denote by the symbol Dn (D.n). If the stochastic process
n € CLgy is forward (backward) mean differentiable on (g, 7), then we can define

the symmetric mean derivative Dgn = 3 (D + D.)n (the antisymmetric mean

1
derivative Dan = 3 (D. — D)n.) We note that the mean derivatives were intro-

duced by E. Nelson, [11] and the theory of these derivatives was developed by
Y. E. Gliklikh [12], so we shall call the symmetric mean derivative Dg of the

stochastic process 1 a Nelson — Gliklikh derivative (denoted by 7%)

Using 7 D we denote the I-th derivative of Nelson — Gliklikh of a stochastic
process 1, | € N, and using C'Ly we denote space of stochastic processes having
continuous derivatives of Nelson — Gliklikh to about [ € N, inclusive.

Exactly C'Ly, | € N, are called in [6] spaces of differentiable "noises” . Note
that if the trajectories of a stochastic process 7 a.s. are continuously differentiable
in the "usual sense” on (g, 7), then their derivative of Nelson — Gliklikh coincides
with the "usual” derivative.

Such, for example, is the case with a stochastic process n = asin(ft), where «
is a Gaussian random variable, 8 € R is a fixed constant, and ¢ € R has the
physical meaning of time.

It is easy to show that (an+ ()= « 7 1B ¢ for all @, B € R and
(UC)Z% ¢ +n ¢ for any 7, ¢ € C'Ls.

Theorem 2.3. (Y.E. Gliklikh, [13]) 3 (¢) = (2t)"'(¢) for all t € Ry

Let’s consider U = (U, (-,-)) is a real separable Hilbert space; we consider the
operator K € L(U), whose spectrum o(K) is non-negative, discrete finitely mul-
tiple and thickens only to zero. We denote using {);} a sequence of eigenvalues
of the operator K, numbered in non-increasing order based on their multiplicity.
Note that the linear span of the set {¢;} of the corresponding orthonormal eigen-

functions of the operator K is dense in U. We also suppose that the operator K
o0
is nuclear (i.e., its trace is Tr K = > \; < 400).

j=1
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Let’s take the sequence of independent stochastic processes {n;} and define a
stochastic K-process

Ox(t) = 3 VAmi (0, 1)

provided that the series (2.1) converges uniformly on any compact of Z. Note that
if {n;} C CLy, then the existence of stochastic K-process ©x means a.s. the
continuity of its trajectories. Now we introduce derivatives of Nelson — Gliklikh of
a stochastic K-process

B =Y /A 1), (2:2)

provided that derivatives in the right part of (2.2) to [ inclusive exist, and all series
uniformly converge on any compact of Z. Let’s consider the space CxLy of sto-
chastic K-processes whose trajectories are a.s. continuous, and the spaces ClKLQ
of stochastic K-processes whose trajectories are a.s. continuously differentiable by
Nelson — Gliklikh to order [ € N, inclusive.

As an example, let’s consider the Wiener K-process

o0

Wi(t) = V/AiBi (), (2.3)

j=1
which obviously exists on R . Moreover, the following is also true:

Corollary 2.4. Vf/K(t) = (2t)"'Wk(t) for all t € Ry and nuclear operators
K e L(U).

In addition, Wiener K-process (2.3) satisfies the conditions (W1) — (W3), if the
symbol g is replaced by Wy . If this substitution is made, then the following is
true:

Theorem 2.5. With any nuclear operator K € L(U) with probability 1 there is a
unique Wiener K-process, and it can be represented in the form (2.3).

3. Multipoint initial-final conditions

Let U and F be Banach spaces, operator L € L(U; F) (i.e. linear and contin-
uous), and the operator M € CI(U; F) (i.e. a linear, closed and densely defined).
Consider the L-resolvent set p(M) = {u € C: (uL — M)~! € L(F;U)} and the
L-spectrum o¥ (M) = C\ p* (M) of the operator M. Let p*(M) # (), then we can
consider right and left

P L
L L L L
R p) (M) = H R, (M) and Lm (M) = H Py, (M)
k=0 k=1

(L,p)-resolvents of the operator M.  Here Ri(M) = (uL — M)7'L,
LL(M) = L(pL — M)~", and points ps € p*(M), k = 0,p.
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Definition 3.1. ([2], chapter 3) Operator M is called p-sectorial relatively of
operator L with the number p € {0} UN (in short, (L, p)-sectorial), if there exist
constants K € Ry, a € R, © € (7/2,7) such, that the sector

Sko(M)={neC:larg(n—a)| <O, p#a}, Ske(M)cCp"(M),

and
K

L(Lu,p)(M)Hﬂ(}‘)} = lp—[ |k — al )

k=0

RE )|
maX{H (o) )c(u)

for all uy, € SLf)@(M), E=0,p.

Remark 3.2. Tt is clear that if inequality (*) is executed when any p € {0} UN,
then it will be executed and if ¢ € N such that ¢ > p. In the proof this fact does
not matter, and in applications we take the smallest p for which (*) is executed.

Lemma 3.3. Let operator M be (L, p)-sectorial. Then in the sector ¥ = {1 € C:
|arg 7| < © —7w/2, T # 0}, where © is taken from definition 3.1, there exists an
analytic and uniformly bounded resolving semigroup {U' : t > 0} ({F*:t > 0}) of
the equation (1.1), f =0, and it is represented by Dunford — Taylor type integrals

1 1
U'=— [ Ri(M)e'd th—/LLM“td
o [ L ay oo [ rhanean |
r r
where t € Ry, countour T' C SEg(M) is such that |argpu| — © with p — oo,

pel.

Lemma 3.4. Let operator M be (L, p)-sectorial. Then tlir(& Ulu = u for any
—

u € imR(LM))(M) and tgrgl+ Ftf=f forany f € imL(Lﬂ’p)(M)).

Consider kernels ker U" = U, ker F* = F° and images imU" = Y!, imF" = F!
of these semigroups. - -

It is easy to show that U0 Ul =U Ul = U e U', FOL Fl = FOp F! =
Foo FL.

We need a stronger statement

UWaold' =u (FPeF' =F), (A1)

which is fulfilled either in the case when the operator M is strongly (L, p)-sectorial
on the right (left), p € {0} UN, or when the space U (F) is reflexive [3].

We denote by Ly, (M, )the restriction of the operator L (M) on U* (domM NUU*),
k=0,1.

Lemma 3.5. Let operator M be (L, p)-sectorial. Then

(i) Lo € LU F°), My € Cl(U; FP), and there exists the operator My ' €
L(F%U°),

(ii) operators Ly € L(UY; FY), My € Cl(U; F1).

And if the operator M is strongly (L, p)-sectorial on the right and on the left,
p € {0} UN, then Ly € LU, F*), My € Cl(U*; F*), k = 0,1, and there ex-

ists the operator MO_1 € L(F%U®), and also the projector P = s — th%l+ Ut
—
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(Q =s— tlir61+ F?) splitting the space U (F) according (Al), and Y! = imP
—
(F! =imQ).

Let us introduce one more condition
there exists the operator L;* € L(FhUY), (A2)

which occurs in the case when the operator M is strongly (L, p)-sectorial , p €
{0} UN. (Previously, it was shown that (A1) together with the condition of (L, p)-
sectoriality of the operator M, p € {0} UN, gives a strongly (L, p)-sectoriality of
the operator M on the right (left), p € {0} UN, and if we add the condition (A2),
we obtain the strongly (L, p)-sectoriality of the operator M, p € {0} UN).

Finally, we introduce another important condition on the L-spectrum of the
operator M [5] is following form

= U jL ,n €N, and cij(M) # () is contained in bounded
=0
-

domain D; C C with piecewise smooth boundary dD; =1I'; C C. Also,

DjNok(M)=0and Dy N D; =0 for all j, k,l=T1,nk# L

(43)
We construct relatively spectral projectors [5]
1 L
= M)d
1 (3.1)
Qj = omi |1 LL(M)d,u € L(F), j=T1,n.

and it turns out that when the operator M is strongly (L, p)-sectorial, then P;P =

PP; = P; and Q,;Q = QQ; = Q;, j = 1,n. So, in this case, there is a projector

=P— > P;, Py € L(U). So, let the conditions (Al) — (A3) be fulfilled. We
i=1

fix 7; € Ry (15 < 7j4+1), u; € U, j = 0,n, and consider a multipoint initial-

final condition (1.2) for a linear Sobolev type equation (1.1). Vector function

u € CH(0,7);U) N C([0,7];U) satisfying the equation (1.1), is called its solution;

the solution u = u(t) of equation (1.1) we call the solution of the multipoint initial-
final value problem (1.1), (1.2), if the condition (1.2)is fulfilled.

Lemma 3.6. Let the opemtor M be (Lp)-sectorial and conditions (A1) — (A3)

are fulfilled. Then Ut = ZP Ut = ZUt Ft = ZQth > Fl. and U! and

F Jt can be represented in the form
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So we consider im P; = Y'Y, im Q; = FY, j = 0,n. By construction
n n

Ut = @Ulj and F! = @]—'U. We denote by L; (M;) the restriction of the op-
Jj=0 Jj=0

erator L (M) on U (domM NUY), j = 0,n. It is easy to show that the operators
L; € L(UY; FY), M; € Cl(U'Y; FY), j = 0,n, moreover, due to (A2) there exists
the operator Lj_1 € L(FY;Uu"), j =0,n. It is also easy to show that the operator
So = LalMO € Cl(Up) is sectorial, and the operator S; = L;le U = Y,
j = 1,n is bounded.

Now we are ready to prove the unique solvability of the problem (1.2) for the
equation (1.1), which due to (L, p)-sectoriality of the operator M and conditions
(A1) — (A3), is reduced to the form

Gu® =u® + Myt fO, (3.3)

i = Su + L Y9, j=0,n (3.4)

where fO = (I-Q)f, fY =Q;f, v’ = (I - P)u, u" = Pju, j = 0,n, operator
G = My 'Ly € L(UO).

Theorem 3.7. Let the operator M be (L,p)-sectorial, p € {0} UN, moreover,
the conditions (3.4), (A1) — (A3) are fulfilled. Then for any vector-function
2 e (o, 7]; FOHNCPHL((0,7); F9), fL € C([0,7]; F) and for alluj €U, j =0,n
there exists the unique solution of the problem (1.1), (1.2), which also has the form

P n t
u(t) ==Y GM; fOOt)+ ) (Uj‘”uj + / UL} Q; f(s)ds) . (35)
q=0 j=0 Tj

The proof of the existence is carried out by substitution of (3.5) in (1.2), (3.3),
(3.4). The uniqueness is proved as usual (see e.g. [2], Ch. 3; [5]). Let us consider
the stochastic problem (1.3), (1.4).

Now suppose that I/ is a real separable Hilbert space. Let the operator K &
L(U) be nuclear, and construct random K -variables

&= Vror, i=0n, (3.6)
k=1

where {{;r} C L2 is a sequence of pairwise independent random variables such
that D&, < Cj,k € N; {Ar} ({#r}) is the sequence of eigenvalues (vectors) of the
operator K. Stochastic K-process

n=n(t)=> VN (t) b,
k=1

where {n(t)} € C!L? is a sequence of differentiable "noises” will be called the
solution of equation (1.3) if the a. e. of its trajectory. a.s. satisfy (1.3) for
a stochastic K- process w = w(t) on the interval (0,7).The solution n = n(t) of
equation (1.3) will be called the solution of the problem (1.3), (1.4), if in addition it
satisfies the initial-final conditions (1.4), where the random K-variables §;, j = 0,n
are of the form (3.6).
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Theorem 3.8. Let

(i) U is a real separable Hilbert space;

(i1) operators L € L(U; F), M € Cl(U;F), and operator M is (L,p)-sectorial,
p € {0} UN;

(i) the conditions (A1) — (A3) are satisfied.

Then for any operator N € L(U;F), nuclear operator K € L(U), random
K-variables &;, j = 0,n of form (5.6), and stochastic K-process O = Ok(t),

€ [0,7), such that (I — Q)NOg € CLy([0,7); F°) N CPTLy((0,7); F0), and
QNQy € CLy([0,7); F1), there exists the unique solution n = n(t) of the problem
(1.3), (1.4), which also has the form

p

n(t) = =3 GM A - Q)N 6 () +

q=0
. (3.7)
+Z ( t TJE] / U;SLllejN@K(S)dS> .

J

Corollary 3.9. Let the conditions of theorem 3.8 are fulfilled. Then for any
operator N, nuclear operator K € L(U), random K -variables &;, j = 0,n, of form
(3.6), there exists the unique solution n = n(t) of the problem (1.3), (1.4), where

o
w =Wk 1is white "noise” , and moreover, it has the form

ZGW QN Wit 1)+

+Z(% /,

T

U °Ly; Q;N WK(s)ds> :

Proof of the last two statements is not fundamentally different from the proof
of the theorem 3.7. We will note only two things. Firstly, the first term (the
subtrahend) in the formula (3.8) satisfies (1.4) despite the corollary 2.4, as

Z GIMy (I — Q)N WV (1) € ker P

for all t € (0,7). Hence the first of the conditions (1.4) is fulfilled, the others are
obvious. Secondly, for any ¢ € (0,7) we have

t o
/ Us~*Lig QoN Wk (s)ds = Lig QoN Wik (1)~

€

t
UL L QoNWik () — / Lig MyoUL™*Lig QoN Wi (s)ds
Hence, by (W1) — (W3) there are

/ UL Ll QoN Wi (s )dSZL;OlQONWK(t)—/ Lig MyoUE™ 5 Ll NWi(s)ds.
0

The existence of other integral terms in equation (3.8) is doubtless.
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Remark 3.10. Since the solutions of Sobolev type equations (1.1) and (1.3) are
received not only by integration, but differentiation of the right side , then the
use of the traditional concept of white noise is hardly possible. However, in some
cases, [14], [15] it is possible to use the approach of Tto — Stratonovich — Skorokhod.

4. Linear Navier — Stokes system

Let @ ¢ RY d € N\ {1} be a bounded domain with the boundary 9 of the
class C*°. In the cylinder Q x R we consider the Dirichlet problem

v(z,t) =0, (x,t) €02 xRy (4.1)

for the system of equations
ve=vViv—p+f, V(V-v)=0. (4.2)
Here vector-functions v = col(vy, va, ..., v4), vp = vg(z,t), p = col(p1, pa,...,Pd),

pr = pr(x,t), and f = col(f1, fa,---, fa), fx = fr(x,t) respond to speed, the
pressure gradient and external load of a viscous incompressible fluid in the linear
approximation, respectively, (z,¢) € Q@ x Ry, k = 1,d. Note that the system of
equations (4.2) can be obtained from the linear system of Navier — Stokes (see e.g.
9], p. 8, or [16])

v =vV0—Vp+f, ep=V-v
for "weak” compressible fluid after taking the gradient of both parts of the last
equation, replacing Vp — p and aspiration € — 0.

We reduce the boundary value problem (4.1) for the system of equations (4.2)
to the abstract equation (1.1). Consider H2 and H2 (H, and H,) are subspaces
of solenoidal and potential vector functions of the space H? = (W2(Q)n Wi(Q))¢
(L2 = (L?(Q))9). Tt is obvious that the attachments HZ(W) > Hgy(r) are continu-
ous (and even compact). We will show that H, | H,. Indeed, let Sg(ﬂ) be lineal
of solenoidal (potential) vector functions whose components are infinitely differen-
tiable in © functions with compact support. Let the vector-functions ¢ € S? and
Y € 8% then 1 = V¢, where € is some infinitely differentiable in 2 function with
compact support, and

[, YLz = —(V - 9,812 = 0. (4.3)
The equality (4.3) is true for all ¢ € H, and ¥ € H, due to the density of
imbedding Sff(ﬂ) C Hi(ﬂ). We will denote by ¥ : L? — H, the projector along
H,. Therefore, 3, II € £(L?), where IT = I — X are orthoprojectors. Next, by
a square matrix of order d we will define a closed linear densely defined operator
A = diag {V?,V2,...,V?} with domain of definition domA = H?. We will denote
by A,(x) the restriction of the operator A on Hi(w). There are

Lemma 4.1. (i) The spectrum o(A) of the operator A is negative discrete finitely
multiple and thickens just to the point —oo, and c(A) = 0(A,) = o(Ax).

(ii) The operator Ay € Cl(Hy(r)) (i.e. linear, closed and densely defined),
dOm(AU(Tr)) = Hi(ﬂ), and A =AY + A;IL

The proof of this result is based on the Cattabriga — Solonnikov — Vorovich —
Yudovich theorem (see for example [17])
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Lemma 4.2. ([18]). Formula B : u — V(V -u) sets the operator B € L(H? H,),
and ker B = H2.

Letd = F =H, xH, xH,, H, = H;. Vector functions v = u(t) and f = f(¢)
are u = col(uq, Ur, up), and f = col(f,, fr,0), respectively. Formulas

I OO vd, O O
L=lo0o 1 o], M=| O wvA, -I
O 0O O B O

set operators L € L(U; F), imL = H, x H,; x {0}, ker L = {0} x {0} x H,, and
M € Cl(U;F), dom M = H2 x H2 x H,,. Thus, the reduction of the problem
(4.1), (4.2) to the equation (1.1) is complete.

Lemma 4.3. For any v € Ry the operator M is strongly (L, 1)-sectorial.

Let us sketch the proof, which is in itself verification of the requirements of the
definition 2.2 and the conditions (A1) and (A2). We denote by {\;} a sequence
of eigenvalues of the operator A indexed in non-increasing order and taking into
account their multiplicity. Without loss of generality we can identify o(A) = {\x}.
Then L-spectrum o (M) of the operator M can be identified with the sequence
{vAr}, i.e. we believe o (M) = {vA;}. Indeed, L-resolvent of the operator M

(Wl —vA,)"t O (0)
(uL — M)~' = (0] () -B!
(0) I —(uIl—-vA,)B; !

exists and is continuous (even holomorphic) for all u € p(M). Here B, is the
restriction of the operator B on H2. By Lemma 4.2 the operator B, : H2 — H,
is a top-linear isomorphism). Here right and left

(WlI-vA,)"t O O (WlI-vA,)"1 O O

L L
RE(M) = 0 o o |, Itm)= 0 o 1
O I O (0} O O

L-resolvents of the operator M, respectively. So, by definition 2.2 and sectoriality
of the operator A, the operator M is (L, 1)-sectorial.

We will construct subspaces U" = F = {0} xH, xH, U = F' = H, x {0} x
{0}. The fulfilment of conditions (A1) and (A2) is obvious, and

O O (0]
Mili-@)=| o o B
O -1 vA, B!
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Also it is easy to check that

O O O
M;'LyI-P)=] O O O
O 10

is a nilpotent operator of degree 1.

So the validity of Lemma 4.3 is established. Let us now consider the conditions
(A3). As shown above, L-spectrum of the operator M has the form ol(M) =
{ur € C : g = v\, k € N}, where {\;} is spectrum of the operator A,
v € R. Therefore, we can choose finite subsets of (M) C o%(M), and construct

groups of operators Uj =  diag Z exp(urt) (-, ox)o0r, 0,0 3,
pr€ol (M)
j = 1,n. Here {-,-), is the scalar product in H, ((,")s = [,"|L,); {©k} is the

orthonormal sequence of eigenvectors of the operator A,, corresponding eigen-

n

values {\;}. By the way, if we set of (M) = ol (M) \ U oer(M) , then

j=1

Ut = diag Z exp(pit) (-, or)opr, O,0 p. Thus, from theorem 3.7 and
N«kEUDL(M)
lemmas 4.1 — 4.3 follows
Theorem 4.4. For anyv, 7€ Ry, 0< 11 < ... <7, <7, fo € CY%0,7]; H,),
fr= € C°([0,7]; Fr) N CH(0,7); Hy) and uy; € Hy, j =0,n, 7 € Ry, there exists
the unique solution of the problem
lim Z <u0'(t) — Us0, ¢k>§0k - 07 Z <UU(Tj) — Ugj,s @k%pk = 07

t—0+
pr€ol (M) px€o (M)

j=1,n, which also has the form

ue() =Y Y exp(uat)(uos, or)er +
i=0 \px€ok (M)
t

+ Z exp(,uk(t - 3))<fo.(5), (,Ok>§0k;d$ ; .] = O,’I’L, To = 07
Tj H’K‘GUJ'L(M)
ur =0; wu, = fo(t), te(0,7).

Let us now consider the problem (1.3), (1.4) in the context of the linear Navier —
Stokes system(4.1), (4.2). First let’s construct the nuclear operator K € £(Ls). As
the first step we consider the operator A™ = diag {(—=A)™, (=A)™,...,(=A)™}
with domain of definition dom A™ = {v € (WFm(Q))? : A™ ly(z) = ... =
Av(z) =v(z) =0, z € 90}, m € N\ {1}. The operator A™ € CI(L?) (i.e. linear,
closed and densely defined.) It is also self-adjoint and positively defined. Its
spectrum o(A™) is positive, discrete and thickens just to the point +oo. If we set
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o(A™) = { .k}, where {\,r} is the sequence of eigenvalues of the operator A™,
numerated in non-decreasing order taking into account their multiplicity, we find
that Ayr = [Ak|™. Moreover, as the eigenfunctions of the operator A we can take
the eigenfunctions of the operator A. As the second (and the last step) we notice
that for any m € N\ {1} there exists the inverse operator A~ € £(L?), which
is compact due to the compactness of the attachment domA™ (= imA~1!) — L2
It is easy to show that the eigenvalues {|\x|~'} of the operator A=™ have the
following asymptotic behavior

[Ai| =™ ~ =2/ % ynder k — occ.

This means that if m/d?> > 1, the operator A~™ is nuclear. We fix such m €

N\ {1}
Further arguments are not fundamentally different from the reasoning in para-
graph 2 of this article, and therefore omitted.
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