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ON EXISTENCE OF OPTIMAL SOLUTIONS TO STOCHASTIC
DIFFERENTIAL INCLUSIONS OF GEOMETRIC BROWNIAN
MOTION TYPE WITH CURRENT VELOCITIES

YURI E. GLIKLIKH & OLGA O. ZHELTIKOVA

ABSTRACT. We investigate the so-called stochastic inclusions of geometric
Brownian motion type that are natural generalizations of the equations de-
scribing processes of geometric Brownian motion. The latter processes are
frequently used in mathematical models of economy. The new point here is
that the inclusions under consideration are given in terms of Nelson’s mean
derivatives, namely the current velocities — symmetric mean derivatives that
are natural analogues of ordinary velocities of deterministic processes. We
prove the existence of solutions for those inclusions that minimize a certain
cost criterion. If the inclusion is obtained from the equation with feedback
control, this result yields the existence of control that realises for the equation
the minimizing solution of the corresponding inclusion.

1. Introduction

The notion of mean derivative (forward, backward, symmetric and antisymmet-
ric) is introduced by E. Nelson (see [1, 2, 3]). In particular, forward derivatives
give information about the drift of an It diffusion type process. Later, in [4], on
the basis of some Nelson’s idea, an additional mean derivative (called quadratic)
giving information about the diffusion term, was introduced. After that it became
in principle possible to recover a stochastic process from its mean derivatives. The
differential equations and inclusions with mean derivatives arise in many subjects,
especially in mathematical physics (the first example was the so-called Newton-
Nelson equation, describing the motion of a quantum particle, see [1, 2, 3]). Many
examples can be found, e.g., in [5]. The most important (but also the most com-
plicated for investigation) case is the equations with symmetric derivatives (called
current velocities) since they are the direct analogs of ordinary physical velocities
of deterministic processes.

Inclusions of geometric Brownian motion type in terms of forward mean deriva-
tives are introduced and investigated in [6] as a natural generalization of the well-
known equation that describes the so-called geometric Brownian motion, the pro-
cess that is frequently used in mathematical models of economy. Transition to the
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corresponding inclusions allows one to apply the methods of set-valued analysis to
investigate optimal control problems for controlled equations with feedback and
many others.

In this paper there are several new points that make the problem much more
complicated and more convenient for applications. First of all, here we deal with
inclusions of geometric Brownian motion type given in terms of current velocities
(symmetric mean derivatives). It is important since current velocities are natural
analogues of ordinary velocity of deterministic processes. That is why it is not
surprising that there are a lot of economical models given in terms of current
velocities (see e.g. [7]). But equations and inclusions with current velocities are
difficult for investigation. In particular here we have to consider the inclusions
on flat n-dimensional torus, not in a linear space — otherwise we cannot prove
the existence of solutions for equations with the single-valued approximations and
so for the inclusions. The second new point is that here the right-hand sides of
equations and inclusions are not autonomous that requires serious modification of
proofs.

Some remarks on notation. Vectors in R™ are considered as coordinate columns.
If X is such a vector, the transposed row vector is denoted by X*. Linear operators
from R to R are represented as n X n matrices, the symbol * means transposition
of a matrix (pass to the matrix of conjugate operator). The space of n x n matrices
is denoted by L(R™,R™). By S(n) we denote the linear space of symmetric n x n
matrices that is a subspace in L(R™,R™). The symbol S, (n) denotes the set of
positive definite symmetric n x n matrices that is a convex open set in S(n). Its
closure, i.e., the set of positive semi-definite symmetric n X n matrices, is denoted

2. Preliminaries on the mean derivatives

Let £(t) be a stochastic process in R, ¢ € [0,T], that is given on a certain
probability space (€2, F, P) so that £(¢) is Ly-random variable for all ¢.

Every stochastic process £(¢) in R™, ¢t € [0,T], determines three families of
o-subalgebras of g-algebra F:

(i) the "past” Pf generated by pre-images of Borel sets in R™ by all mappings
£(s): Q=R for 0 < s <t

(ii) the ”future” ]-'f generated by pre-images of Borel sets in R™ by all mappings
£(s): Q=R fort <s<T;

(iii) the ”present” (“now”) ./\/t§ generated by pre-images of Borel sets in R™ by the
mapping ().

All families are supposed to be complete, i.e., containing all sets of probability 0.

For convenience we denote the conditional expectation of () with respect to
N¢ by B{ ().

Ordinary (“unconditional”) expectation is denoted by E.

Strictly speaking, almost surely (a.s.) the sample paths of {(¢) are not differ-
entiable for almost all ¢. Thus its “classical” derivatives exist only in the sense of
generalized functions. To avoid using the generalized functions, following Nelson
(see, e.g., [1, 2, 3]) we give
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Definition 2.1. (i) Forward mean derivative DE(t) of £(t) at time ¢ is an Lq-
random variable of the form

L ¢ S+ At) —£(t)

De(t) = Alﬂo Ei( At ) 2.1)

where the limit is supposed to exists in L1 (€2, F,P) and At — 40 means that At
tends to 0 and At > 0.
(ii) Backward mean derivative D,&(t) of £(t) at ¢ is an Ly-random variable

§(t) — &t = A
A ) (22)

where the conditions and the notation are the same as in (i).

D.£(t) = lim E(

Note that mainly DE(t) # D.E(t), but if, say, £(t) a.s. has smooth sample
paths, these derivatives evidently coinside.

From the properties of conditional expectation (see [8] ) it follows that DE(t)
and D, £(t) can be represented as compositions of £(t) and Borel measurable vector
fields (regressions)

£(t+ At) — &(1)

Vo) = tim pUTE =8Oy
Yota) = tim pEWZEEZAY gy o (2.3)

At—+0 At
on R™. This means that DE&(t) = YO(t,£(¢)) and D.£(t) = YO (t,£(1)).
Definition 2.2 ([1, 5]). The derivative Dg = (D + D,) is called symmetric

mean derivative. The derivative Dy = %(D — D,) is called anti-symmetric mean
derivative .

Consider the vector fields
1
v (t, x) = §(Y0(t7x) +Y2(t, x))

and
ut(t,x) = %(Yo(t,x) —Y2(t, x)).

Definition 2.3. v¢(t) = v&(t,£(t)) = Dgé(t) is called current velocity of &(t);
us(t) = us(t,&(t)) = DAE(t) is called osmotic velocity of &(t).

For stochastic processes the current velocity is a direct analogue of ordinary
physical velocity of deterministic processes (see, e.g., [1, 2, 3, 5]). The osmotic
velocity measures how fast the “randomness” grows up.

Following [4, 5] we introduce the differential operator Dy that differentiates an
L, random process £(t), t € [0,T] according to the rule

Doé(t) = AlijEH) Eté((ﬁ(t + At) — f(t)ii(t + AL — £()*

), (2.4)

where (£(t+At)—£(t)) is considered as a column vector (vector in R™), (€(t4+At)—
&(1))* is a row vector (transposed, or conjugate vector) and the limit is supposed
to exists in Ly (€, F,P). We emphasize that this matrix product of a column on
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the left and a row on the right is a matrix of rank 1 but after passing to the limit,
Dy£(t) becomes a symmetric positive semi-definite matrix function on [0, 7] x R™.
We call D, the quadratic mean derivative. For the diffusion process £(t) it is
proven that the regression of D2&(t) coincides with the diffusion coefficient.

3. Inclusions of geometric Brownian motion type with current
velocities

A set-valued mapping F' from a set X into a set Y is a correspondence that
assigns a non-empty subset F(x) C Y to every point x € X; F(z) is called
the image of x. If in the right-hand side of a differential equation the single-
valued function is replaced by a set-valued one, the equation is transformed into
an iclusion.

Some preliminaries from set-valued analysis in the amount, enough for our
purpose, can be found, e.g, in [5]. For convenience we recall the following two
notions.

Definition 3.1. A set-valued mapping F' is called upper semicontinuous at the
point z € X if for each € > 0 there exists a neighbourhood U(x) of = such that
from 2’ € U(x) it follows that F(z’) belongs to the e-neighbourhood of the set
F(z). F is called upper semicontinuous on X if it is upper semicontinuous at every
point of X

Definition 3.2. Let X and Y be metric spaces. For a given € > 0 a continuous
single-valued mapping f. : X — Y is called an e-approximation of the set-valued
mapping F': X — Y, if the graph of f, as a set in X x Y, lies in e-neighbourhood
of the graph of F.

Let v(t,m) be a set-valued vector field and B(¢,m) be a set-valued symmetric
positive semi-definite (2, 0)-tensor field on 7. The system of the form

{ Ds&(t) + 3diagDag(t) € v(t,£(t)),
(3.1)
Dag(t) € B(t,£(1))-

is called a first order differential inclusion of geometric Brownian motion type with
current velocities.

By some technical reasons we consider inclusions of (3.1) type on the flat n-
dimensional torus 7"™. This means that the torus is obtained as a quotient space
of R™ relative to the integral lattice and that the Riemannian metric on 7" is in-
herited from the Euclidean metric in R™. Everywhere below we use the operations
of addition and subtraction of points and integration in 7" as in R modulo fac-
torization relative to the integral lattice. Note that for such processes the notions
of "past”, "present” and ”future” o algebras are the same as for R". The con-
struction and notation of stochastic integrals and stochastic differential equations
on 7™ are the same as in R™ because of the use of Euclidean metric.

Definition 3.3. We say that (3.1) on 7" has a solution on [0,7] with initial
condition £(0) = & if there exists a probability space (€, F,P) and a process £(t)
given on (9, F,P) and taking values in 7" such that £(0) = &, and for almost all
t € [0, T] equation (3.1) is satisfied P-a.s. by £(¢).
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Definition 3.4 ([9]). The perfect solution of (3.1) is a stochastic process with
continuous sample paths such that it is a solution in the sense of Definition 3.3
and the measure corresponding to it on the space of continuous curves, is a weak
limit of measures generated by solutions of a sequence of equations of the form
analogous to (3.1), with continuous coefficients.

Theorem 3.5. Let the set-valued vector field v(t,m) and the set-valued (2,0)-
tensor field B(t, m), taking values in symmentric positive definite matrices, on T™
be uniformly bounded, have closed conver images and be upper-semicontinuous.
Then for any initial condition £(0) = & with smooth density that nowhere equals

zero, inclusion (3.1) has a perfect solution well-posed on the entire interval t €
[0, 77].

Proof. First of all, by [5, Theorem 4.11], under the hypothesis of the Theorem,
for every sequence of positive numbers ¢, — 0 there exists a sequence of single-
valued continuous €,-approximations v, (t,m) of v(t,m) (B,(t,m) of B(t,m)) that
point-wise converges to a Borel measurable selector v(t,m) of v(t,m) (B(t,m) of
B(t,m), respectively). Then vy(t,m) — %diang (t,m) point-wise converges to a
Borel measurable selector v(t,m) — %diagB(t,m). Without loss of generality we
can suppose those e,-approximations to be smooth.

Consider the sequence of equations

Dg&(t) + SdiagB, = w,(t,&(t))
{ Dy{(t) = Bg(t,&(t)) (3.2)

We consider the same initial condition §; for all those equations. Note that
all vy, and B, are uniformly bounded by the same constant since they are e-
approximations of uniformly bounded set-valued mappings. Since all those e,4-
approximations are at least C''-smooth and given on the compact torus, their first
partial derivatives are uniformly bounded for every k (by a constant depending
on k). Thus all equations (3.2) satisfy the hypothesis of [10, Theorem 3], i.e. for
every equation there exists a solution. We denote by &, () the solution of the ¢-th
equation.

Introduce on (C°([0,T],7") the o-algebra C generated by cylinder sets. By P;
we denote the o-algebra generated by cylinder sets with bases in [0, ¢]. Its restric-
tion to the time instant ¢ is denoted by N;. By [11, Lemma 3] the set {p4} of
measures on (C°([0,T],7"),C), corresponding to &,, is weakly compact. Hence,
one can choose a subsequence that weakly converges so a certain measure p. With-
out loss of generality we can suppose that the sequence 1, weakly converges to p.
Consider the coordinate process £(t) on the probability space (C°([0,T],T™),C, i),
i.e. for every elementary event x(-) € C°([0,T],T™) by definition £(¢, z(+)) = z(t).
Recall that Py is the “past” for £(t), while N; is the “present” for this coordinate
process.

If for any specified ¢ we introduce B, (t,m(-)) = B,(t,m(t)) and B(t,m(-)) =
B(t,m(t)), we obtain that B,(¢t,m(t)) and B(t,m(t)) can be considered as
given on C°([0,T],T™).

By the construction, for every ,(t) its quadratic derivative equals By(t,&,(1)).
This means that for every bounded continuous real function f on C°([0,T],T™)
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that is measurable with respect to NV;, the equality
lim [(m(t + At) —m(t))(m(t + At) — m(t))*
At—0 co([0,T],7™) At

=By (t,m(®))]f(m(-))dpg =0

holds.

Since B, (t,m) pointwise tends to B(t,m) as ¢ — oo, B,(t,m(t)) = B,(t,m(-))
tends to B(t,m(t)) = B(t,m()) a.s. on C°([0,T],T™) with respect to all measures
pq and with respect to p. Specify § > 0. By Egorov’s theorem (see, e.g., [12])
for every i there exists a subset K} C C°([0,7],7™) such that (u;)(K{) >1—6
and the sequence By(m(t)) on K} converges to B(m(t)) uniformly. Introduce
Ks = |J K. The sequence B,(t,m(t)) on K; for all i converges to B(t,m(t))

=0
uniformly and p(Ks) > 1 —4.

The field B(t,m(t)) is continuous on a set of complete measure pu
on C°([0,7],7™). Indeed, consider the sequence §; — 0 and the corresponding
sequence Ks,. By construction, B(m(t)) is a uniform limit of the sequence of
continuous functions on every Ks,. That is why B(t,m(t)) is continuous on every
Ks,, i.e. on any finite union |J Kj,. Evidently lim u(|J Kj,) = 1.

i=1 N =1

Taking into account the uniform convergence on Kj for all k (see above) we

derive from boundedness of f(m(-)) that for ¢ large enough

| . [By(t,m(t)) — B(t, m(t))]f(m(-))duqll < 0.
5
Since f(m(+)) is bounded, there exists a certain number = > 0 such that |f(m(-))]
< E for all m(-). Recall that all B, (¢, m) and B(t,m) are uniformly bounded, i.e.,
their norms are not greater than some number ¢ > 0. Then, since
1q(CO([0,T), T")\Ks) < 6
for all ¢ large enough,
/ [Bylt.m(t) ~ Bt m()) ()| < 2605
CO([O,T],T")\K5
for all g large enough. Since J is an arbitrary positive number,
lim [By(t,m(t)) — B(t,m(t))]f(m(:))dpq = 0.
q—0o0 Co([0,T),7™)

The function B(t,m(t)) is p-a.s. continuous and bounded on C°([0,T],7™) (see
above). Since in addition the measures p, weakly converge to u, by Lemma from
[13, section VI.1]

Jim B(t,m(t)f(m(:))duq = / B(t,m(t)) f(m())dp.
e co(lo,T), 1) co(lo,7],7™)
Evidently

. (m(t + At) — m(t))(m(t + At) —m(t))*
lim
k— o0 Co([0,T],7™) At

1£(m(-))dnq
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[ o+ 20) = (@)t + 80 = m )" 1),
co([o,11,T™)

Thus,
lim (m(t + At) —m(t))(m(t + At) — m(t))*

At—0 co([0,17,7™) At
—B(t,m(t))]f(m(-))dp = 0.

Since f(m(-)) is an arbitrary bounded continuous function, measurable with re-
spect to NV, this means that D>&(t) = B(t,£(¢)). But by construction B(t,£(t)) €
B(t,&(t)) pras.

Next step deals with the current velocity of the solution. As well as By (t, m(t))
and B(t,m(t)) (see above), vg(t, m(t)) and v(t, m(t)) for any specified ¢ can be con-
sidered as given on C°([0,7], T"). By construction Ds&,(t) + sdiagB,(t,m(t)) =
vg(t,&,(t)) for all k. This means that for every real bounded continuous function
f on CY([0,T],T™), measurable with respect to N, for all ¢ the equality

lim m(t + At) —m(t — At)
At—0 Co([0,T],7™) 2At

—vg(m(®)]f(m(-))dpg =0

1
+ §diang (t,m(t))

holds.
Specify an arbitrary € > 0. Since p, weakly converges to i, there exists K(e)
such that for ¢ > K(¢)

m(t + At) — m(t — At)

||Wmﬂ7w 2AL 1f(m(-))dpq
At) —m(t — A
_/00([0 7] T">[m(t+ t)2Atm(t t)]f(m(-))du\l <e

and
| F(m(-))v(m(t))dpg —/ f(m())v(m(t))du| <e.
co(lo,1],T™) co(lo,11,T™)

With the same arguments as above, by the use of Egorov’s theorem we prove
that
lim [vg(m(t)) — v(m(t))]f (m(-))dpq = 0.
=0 Jeo([o,1],T™)
and that v is continuous on the set of complete measure. Recall that v is bounded
as a selector of bounded set-valued mapping.
Then by Lemma from [13, section VI.1] we obtain

lim o) SO (e = [ o(m(t)) f(m())dp.
a0 Jeo(lo,1],T™) co([o,11,T™)
Evidently
lim (mlt £ A8 —mlt = A0) LB, m)] Fm()dug

:/ e+ A0 — m{t — A1)
oo([0.71.7™)

2At + %diang(t’ m(t))]f(m(-))dp.
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Thus

)

lim (m(t + At) — m(t — At)
At—0 Co([0,T],7™) 2At

—v(m(t))]f(m())du = 0.
Since f(m(-)) is an arbitrary bounded continuous function, measurable with re-
spect to A, this means that Dgé&(t) = v(£(¢)). But by construction v(£(t)) €
v(&(t)) p-a.s. By the construction, the measure p is a weak limit of measures p,.
Thus the constructed solution is perfect. This completes the proof. [J

1
+ idiang(t, m(t))

Remark 3.6. Note that all sequences of e,-approximations for all sequences of
€4 — 0, used in the proof of Theorem 3.5, satisfy the hypothesis of [11, Lemma
3] and so the set of measures {4} (corresponding to all sequences and all ¢) is
weakly compact.

4. Optimal solutions

Let f(t,m) be a continuous bounded real-valued function on R x 7. Introduce
the cost criterion in the form

T
JE() = F / F(t. ()t (4.1)

We are looking for solutions, for which the value of the criterion is minimal.
Theorem 4.1. There is a perfect solution of (3.1) that minimizes the value of J.

Proof. (cf. [6])* Since all the measures on (C°([0,7],7"),C), constructed in
the proof of Theorem 3.5 for perfect solutions of (3.1), are probabilistic and the
function f in (4.1) is bounded, the set of values of J on those solutions is bounded.
If that set of values has a minimum, then the corresponding measure p is the one
we are looking for: the coordinate process on the space (C°([0,7],7T"),C),u) is
an optimal solution.

Suppose that the above-mentioned set of values has no minimum, but then
it has a greatest lower bound R that is a limit point in that set. Let uf be a
sequence of measures such that for the corresponding solutions & (¢) the values
J(&f(t)) converge to N. Every pf is a weak limit of a sequence of measures fi;;
corresponding to some sequence of €;-approximations as j — co. One can easily
see that it is possible to select from the sequence a subsequence (for simplicity
we denote it by the same symbol ;) such that for the corresponding solutions
&i;(t) and for all i we obtain the uniform convergence of J(§;;(+)) to J(&(-)) as
Jj — oo. Then J(&:;(-)) — R as i — oo. Since the set of all measures corresponding
to all approximations, is weakly compact (see Remark 3.6), we can select from
1i; a subsequence (denote it by the same symbol p;;) that weakly converges to
a certain measure p*. By the construction, for the coordinate process £*(t) on
(C([0,T),T™),C), u*) we get J(£*(-)) = R, i.e., the value is minimal. Since p* is
a limit of p;;, £*(t) is a perfect solution of (3.1) that we are looking for. [J

IThis proof is in fact coincides with that of [6, Theorem 2] but we include it here for
completeness
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Recall that there is a standard method of transition from the right-hand side of
equation with feedback control to an inclusion: one has to consider all values
the right-hand side at the given point for all values of control and construct
convex closure. It follows from an obvious analogue of well-known Filippov’s

lemma that for any solution of the obtained inclusion there exists a control under
which this solution is realized as a solution of the equation. In particular, this is
valid for optimal solutions of inclusions obtained above.
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