
A DETERIORATING SYSTEM MAINTENANCE MODEL WITH

IMPERFECT DELAYED REPAIR UNDER PARTIAL SUM PROCESS

BABU Dଵ, MANIGANDAN Cଶ, AND PARVATHAM Rଷ

Aൻඌඍඋൺർඍ. In this paper, the partial sum process is introduced and proved that it is a

decreasing monotone process. Considering the maintenance model for a deteriorating

system with imperfect delayed repair for which successive operating times follows partial

sum process and successive repair times assumes geometric process, an expression for

the mean cost in long-run under ே-policy is derived explicitly. An optimal policy ே∗

for minimizing the mean cost in long-run is determined analytically. To illustrate the

theoretical results, a numerical example given.

1. Introduction

The study of a maintenance model for a basic repairable system is a fundamental and

significant problem in reliability. A common assumption in the initial period of studying

maintenance issues is that repair is perfect, a repairable framework after the repair is as

good as new. Deteriorating systems have a different problem as the one portrayed above.

For instance, in machine maintenance problems, after every repair, the working time of

a machine will end up shorter and shorter, so the absolute working time or the existence

of the machine must be limited. However, in perspective on the aging and aggregate

wear, the repair time will turn out to be longer and tend to increase so that at the end the

machine is non-repairable. Therefore, there is need to consider a repair replacement model

for deteriorating systems, the progressive survival times are diminishing, while the repair

times are expanding. The monotone process model would therefore be the most suitable

model for a deteriorating system.

Lam (1988) first presented a Geometric Process Repair model to model a deteriorating

system with the above characteristics.

Definition 1.1. The sequence {𝑋௡, 𝑛 = 1, 2, 3, …} of non negative independent random

variables is called a geometric process, if the distribution function of 𝑋௡ is given by

𝐹 ൫𝑎௡ିଵ𝑥൯ for 𝑛 = 1, 2, 3, …, where 𝑎(> 0)is a constant

Finkelstein (1993) generalizes the geometric process to particular deteriorating re-

newal process in which the distribution function of 𝑋௡ is 𝐹 (𝑎௡𝑥) where 𝑎௡ are scale

parameters. It involves a large number of parameter which can be troublesome in actual

applications.

To overcome this, the partial sum process is introduced in which the parameters 𝑎௡ are

related by 𝑎௡ = 𝑎଴ + 𝑎ଵ +…+ 𝑎௡ିଵ for 𝑛 = 1, 2, 3, ….
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2 BABU Dభ, MANIGANDAN Cమ, AND PARVATHAM Rయ

Definition 1.2. Let {𝑋௡, 𝑛 = 1, 2, 3, …} be a sequence of independent non-negative ran-

dom variables and let 𝐹 (𝑥) be the distribution function of𝑋ଵ. Then {𝑋௡, 𝑛 = 1, 2, 3, …} is

called a partial sum process, if the distribution function of𝑋௜ାଵ is𝐹 (𝛽௜𝑥) (𝑖 = 1, 2, 3, …)

where 𝛽௜ > 0 are constants with 𝛽௜ = 𝛽଴ + 𝛽ଵ + 𝛽ଶ +⋯𝛽௜ିଵ and 𝛽଴ = 𝛽 > 0.

Lemma 1.3. For real 𝛽௜ (𝑖 = 1, 2, 3, ...), 𝛽௜ = 2௜ିଵ𝛽.

Proof. When 𝑖 = 1, 𝛽ଵ = 𝛽଴ = 𝛽. Thus, the result is true for 𝑖 = 1.

Assume that the result is true for 𝑖 = 𝑛.

𝛽௡ାଵ = (𝛽଴ + 𝛽ଵ + 𝛽ଶ + ... + 𝛽௡ିଵ) + 𝛽௡

= 2𝛽௡

= 2 × 2௡ିଵ𝛽 (𝑏𝑦 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)

= 2(௡ାଵ)ିଵ𝛽

Thus, the result is true for 𝑖 = 𝑛 + 1 also. �

By Lemma 1.3, the distribution function of 𝑋௜ାଵ is 𝐹 ൫2
௜ିଵ𝛽൯ for 𝑖 = 1, 2, 3, ...

Lemma1.4. The partial sum process {𝑋௡, 𝑛 = 1, 2, 3, ...}with parameter𝛽(> 0) is stochas-

tically decreasing and hence it is a monotone process.

Proof. Note that for any 𝛼 ≥ 0,

𝐹 (𝛼) ≤ 𝐹 (𝛽𝛼) ≤ 𝐹 (2𝛽𝛼) ≤ ... ≤ 𝐹 ൫2௡ିଵ𝛽𝛼൯

⇒ 𝑃 (𝑋ଵ > 𝛼) ≥ 𝑃 (𝑋ଶ > 𝛼) ≥ 𝑃 (𝑋ଷ > 𝛼) ≥ ... ≥ 𝑃 (𝑋௡ > 𝛼)

This implies that {𝑋௡, 𝑛 = 1, 2, 3, ...} is stochastically decreasing(Ross(1983)). �

It is easy to verify the following lemma.

Lemma 1.5. Let 𝐸 (𝑋ଵ) = 𝛾. Then for 𝑖 = 1, 2, 3, ...

𝐸 (𝑋௜ାଵ) =
𝛾

2௜ିଵ𝛽

In the greater part of the research works for the simple repairable systems, there is a

supposition that the framework will be fixed immediately when it fails. This, however,

is not often the situation. In the real world, for instance, the system after failure can’t be

fixed promptly on the grounds that the repairman might be on a vacation. This will cause

a deferred fix time. In any case, repairs are not constantly postponed. That is the repair

can be done immediately or the repair can be delayed. This type of repair is often referred

to as the imperfect delayed repair(see, Zhang(2017)).

In Geometric process, the operating times of a system are uniformly decreasing. But

practically, it is not uniform. Thus, we propose the “Partial sum process” to model it,

because partial sum process has more number of parameters.

In the following sections, a deteriorating system maintenance model with imperfect

delayed repair for which successive operating times follows partial sum process and suc-

cessive repair times assumes geometric process is studied.

In section 2, the model descriptions are given. The mean cost in long-run expression is

determined explicitly and an optimal policy 𝑁∗ for minimizing the mean cost in long-run

is determined analytically in section 3. To demonstrate the theoretical results, a numerical

example is provided in section 4.
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PARTIAL SUM PROCESS 3

2. Model Descriptions

We consider the deteriorating system maintenance model with the descriptions as follows.

2.1 A new simple repairable system is used at the start. At whatever point the system

fails, it might be repaired or replaced by a new and similar one.

2.2 Let 𝑋ଵ be the operating time before the first failure and let 𝐹 (𝑥)be the distri-

bution function of 𝑋ଵ. Assume that 𝛾ଵ = 𝐸 (𝑋ଵ) = 𝛾 > 0. Let 𝑋௜ାଵ be the

operating time after the 𝑖-th repair for 𝑖 = 1, 2, 3, .... Then the distribution func-

tion of𝑋௜ାଵis 𝐹 ൫2
௜ିଵ𝛽൯where 𝛽 > 0 is a constant and 𝛾௜ାଵ = 𝐸 (𝑋௜ାଵ) =

𝛾

2௜ିଵ𝛽
for 𝑖 = 1, 2, 3, .... The successive operating times {𝑋௡, 𝑛 = 1, 2, 3, ...} after repair

constitute a partial sum process.

2.3 After the 𝑛௧௛ failure, Let 𝑌௡ be the repair time and let the distribution function of

𝑌௡ be 𝐹 ൫𝑎
௡ିଵ𝑥൯ , where 0 < 𝑎 ≤ 1 is a constant. That is the successive repair

times {𝑌௡, 𝑛 = 1, 2, 3, …} constitute a increasing geometric process(Lam(1988))

or a renewal process. Also, assume that 𝐸 (𝑌ଵ) = 𝜉 ≥ 0, where 𝜉 = 0means that

expected repair time is negligible. By Lam(1988), 𝐸 (𝑌௜) =
𝜉

𝑎௜ିଵ
, 𝑖 = 1, 2, 3, ....

2.4 When the system fails, the repair is postponedwith probability 𝑝 and is immediate

with probability 1 − 𝑝.

2.5 After the 𝑛-th failure, let {𝐷௡, 𝑛 = 1, 2, 3, ...} denote the delayed repair time and

let it be a sequence of iid random variables. Further, let 𝐸 (𝐷௡) = 𝜈 ≥ 0, 𝑛 =

1, 2, 3, ..., where 𝜈 = 0 negligible delayed repair time.

2.6 Let the random variable 𝑍 denote the replacement time with mean 𝜏.

2.7 𝑋௡, 𝑌௡, 𝐷௡, 𝑛 = 1, 2, 3, ... and 𝑍 are independent of each other.

2.8 The reward rate is 𝑟, the repair cost rate is 𝑐 and the the basic replacement cost is

𝑅. Let 𝑐௉ be the proportional cost associated with the duration of the replacement

time 𝑍.

2.9 The system can not incur costs or generate income when waiting for repairs.

2.10 The 𝑛-th cycle of the system (𝑛 = 1, 2, 3, ...) is the time period between the (𝑛 −

1)-st repair completion and the 𝑛-th repair completion. In the 𝑛-th cycle, let 𝐴௡
denote the event that the repair is postponed and let 𝐴௡ denote the event that the

repair is undelayed.

3. The replacement policy 𝑁

Definition 3.1. The replacement policy 𝑁 is a policy that replaces the system after the

𝑁-th failure since the last replacement.

The period between the system initialization and the first replacement or a period of two

successive replacements is called a cycle. The subsequent cycles will establish a renewal

process. Then, according to renewal reward theorem, Ross(1983), the mean cost per unit
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4 BABU Dభ, MANIGANDAN Cమ, AND PARVATHAM Rయ

time in long-run under 𝑁-policy is given by

𝐶 (𝑁) =
the mean of incurred cost in a cycle

the mean duration of a cycle

=

𝑐𝐸ቆ
ேିଵ

∑
௜ୀଵ

𝑌௜ቇ + 𝑅 + 𝑐௣𝐸 (𝑍) − 𝑟𝐸ቆ
ே

∑
௜ୀଵ

𝑋௜ቇ

𝐸ቆ
ே

∑
௜ୀଵ

𝑋௜ቇ + 𝐸 ቈ
ேିଵ

∑
௜ୀଵ

(𝐷௜ + 𝑌௜) 𝜒஺௜቉ + 𝐸ቆ
ேିଵ

∑
௜ୀଵ

𝑌௜𝜒஺௜
ቇ + 𝐸 (𝑍)

where 𝜒஺ (.) denotes the indicator function. Then

𝐶 (𝑁) =

𝑐𝐸ቆ
ேିଵ

∑
௜ୀଵ

𝑌௜ቇ + 𝑅 + 𝑐௣𝐸 (𝑍) − 𝑟𝐸ቆ
ே

∑
௜ୀଵ

𝑋௜ቇ

𝐸ቆ
ே

∑
௜ୀଵ

𝑋௜ቇ + 𝐸 ቈ
ேିଵ

∑
௜ୀଵ

(𝐷௜ + 𝑌௜)቉ 𝑝 + 𝐸ቆ
ேିଵ

∑
௜ୀଵ

𝑌௜ቇ (1 − 𝑝) + 𝐸 (𝑍)

=

𝑐
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝑅 + 𝑐௣𝜏 − 𝑟
ே

∑
௜ୀଵ

𝛾௜

ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 +
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝜏

=

(𝑐 + 𝑟)
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏 + 𝑟𝑝 (𝑁 − 1) 𝜈

ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 +
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝜏

− 𝑟 (3.1)

=

(𝑐 + 𝑟) 𝜉
ேିଵ

∑
௜ୀଵ

1

𝑎௜ିଵ
+ 𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏 + 𝑟𝑝 (𝑁 − 1) 𝜈

𝛾ቌ1 +
1

𝛽

ே

෍

௜ୀଶ

1

2௜ିଶ
ቍ + 𝑝 (𝑁 − 1) 𝜈 + 𝜉

ேିଵ

∑
௜ୀଵ

1

𝑎௜ିଵ
+ 𝜏

− 𝑟 (3.2)

For minimizing 𝐶 (𝑁), we shall evaluate the difference 𝐶 (𝑁 + 1) − 𝐶 (𝑁).

From equation (1),

𝐶 (𝑁 + 1) − 𝐶 (𝑁)

=

⎛
⎜⎜

⎝

(𝑐 + 𝑟) ቆ𝜉ே ቈ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 + 𝜏቉ −
ேିଵ

∑
௜ୀଵ

𝜉௜ [𝛾ேାଵ + 𝑝𝜈]ቇ

− ൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏 + 𝑟𝑝𝑁𝜈൯ [𝛾ேାଵ + 𝑝𝜈 + 𝜉ே]

+𝑟𝑝𝜈 ቈ
ேାଵ

∑
௜ୀଵ

𝛾௜ + 𝑝𝑁𝜈 +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏቉

⎞
⎟⎟

⎠

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ + 𝑝𝑁𝜈 +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏ቇቆ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 +
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝜏ቇ
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PARTIAL SUM PROCESS 5

=

⎛
⎜⎜

⎝

(𝑐 + 𝑟) ቆ𝜉ே ቈ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 + 𝜏቉ −
ேିଵ

∑
௜ୀଵ

𝜉௜ [𝛾ேାଵ + 𝑝𝜈]ቇ

− ൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯ [𝛾ேାଵ + 𝑝𝜈 + 𝜉ே]

−𝑟𝑝𝑁𝜈 [𝛾ேାଵ + 𝑝𝜈 + 𝜉ே] + 𝑟𝑝𝜈 ቈ
ேାଵ

∑
௜ୀଵ

𝛾௜ + 𝑝𝑁𝜈 +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏቉

⎞
⎟⎟

⎠

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ + 𝑝𝑁𝜈 +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏ቇቆ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 +
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝜏ቇ

=

⎛
⎜⎜

⎝

(𝑐 + 𝑟) ቈ𝜉ே ቆ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 + 𝜏ቇ −
ேିଵ

∑
௜ୀଵ

𝜉௜ (𝛾ேାଵ + 𝑝𝜈)቉

− ൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯ [𝛾ேାଵ + 𝑝𝜈 + 𝜉ே]

+𝑟𝑝𝜈 ቈ
ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏 − 𝑁(𝛾ேାଵ + 𝜉ே)቉

⎞
⎟⎟

⎠

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ + 𝑝𝑁𝜈 +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏ቇቆ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 +
ேିଵ

∑
௜ୀଵ

𝜉௜ + 𝜏ቇ

(3.3)

Let

𝐴 (𝑁)=

⎛
⎜

⎝

(𝑐 + 𝑟) ቈ𝜉ே ቆ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 + 𝜏ቇ −
ேିଵ

∑
௜ୀଵ

𝜉௜ (𝛾ேାଵ + 𝑝𝜈)቉

+𝑟𝑝𝜈 ቈ
ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏 − 𝑁(𝛾ேାଵ + 𝜉ே)቉

⎞
⎟

⎠

൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯ (𝛾ேାଵ + 𝑝𝜈 + 𝜉ே)
(3.4)

=
1

൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯
[(𝑐 + 𝑟) 𝐴ଵ (𝑁) + 𝑟𝑝𝜈𝐴ଶ (𝑁)] (3.5)

where

𝐴ଵ (𝑁) =

𝜉ே ቆ
ே

∑
௜ୀଵ

𝛾௜ + 𝑝 (𝑁 − 1) 𝜈 + 𝜏ቇ −
ேିଵ

∑
௜ୀଵ

𝜉௜ (𝛾ேାଵ + 𝑝𝜈)

𝛾ேାଵ + 𝑝𝜈 + 𝜉ே
(3.6)

and

𝐴ଶ (𝑁) =

ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏 − 𝑁(𝛾ேାଵ + 𝜉ே)

𝛾ேାଵ + 𝑝𝜈 + 𝜉ே
(3.7)

It is clear that the denominator term in equation (3.3) is positive. Thus from equations

(3.3) and (3.4), we have

Lemma 3.2. For 𝐶 (𝑁) given by equation (3.1) and 𝐴 (𝑁) by the equation (3.4), we have

𝐶 (𝑁) is increasing(decreasing) if and only if 𝐴 (𝑁) > 1(𝐴 (𝑁) < 1).

Next, we shall prove 𝐴(𝑁) is non-decreasing in 𝑁. From equations (3.6) and (3.7), we

have
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6 BABU Dభ, MANIGANDAN Cమ, AND PARVATHAM Rయ

𝐴ଵ (𝑁 + 1) − 𝐴ଵ (𝑁)

=

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝑝𝑁𝜈 + 𝜏ቇ [(𝛾ேାଵ𝜉ேାଵ − 𝛾ேାଶ𝜉ே) + 𝑝𝜈 (𝜉ேାଵ − 𝜉ே)]

(𝛾ேାଶ + 𝑝𝜈 + 𝜉ேାଵ) (𝛾ேାଵ + 𝑝𝜈 + 𝜉ே)

(3.8)

𝐴ଶ (𝑁 + 1) − 𝐴ଶ (𝑁)

=

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝜏 + 𝑁𝑝𝜈ቇ (𝛾ேାଵ − 𝛾ேାଶ + 𝜉ே − 𝜉ேାଵ)

(𝛾ேାଶ + 𝑝𝜈 + 𝜉ேାଵ) (𝛾ேାଵ + 𝑝𝜈 + 𝜉ே)
(3.9)

Lemma 3.3. 𝐴(𝑁) given in equation (3.5) is non-decreasing.

Proof. Using equations (3.8) and (3.9), we have

𝐴 (𝑁 + 1) − 𝐴 (𝑁)

=
1

൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯
ቈ
(𝑐 + 𝑟) (𝐴ଵ (𝑁 + 1) − 𝐴ଵ (𝑁))

+𝑟𝑝𝜈 (𝐴ଶ (𝑁 + 1) − 𝐴ଶ (𝑁))
቉

=

⎛
⎜

⎝

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝑝𝑁𝜈 + 𝜏ቇ

× ቈ
(𝑐 + 𝑟) ((𝛾ேାଵ𝜉ேାଵ − 𝛾ேାଶ𝜉ே) + 𝑝𝜈 (𝜉ேାଵ − 𝜉ே))

+𝑟𝑝𝜈 (𝛾ேାଵ − 𝛾ேାଶ + 𝜉ே − 𝜉ேାଵ)
቉

⎞
⎟

⎠

൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯ (𝛾ேାଶ + 𝑝𝜈 + 𝜉ேାଵ) (𝛾ேାଵ + 𝑝𝜈 + 𝜉ே)

=

⎛
⎜

⎝

ቆ
ேାଵ

∑
௜ୀଵ

𝛾௜ +
ே

∑
௜ୀଵ

𝜉௜ + 𝑝𝑁𝜈 + 𝜏ቇ

×ቆ
𝑐 ൣ (𝛾ேାଵ𝜉ேାଵ − 𝛾ேାଶ𝜉ே) + 𝑝𝜈 (𝜉ேାଵ − 𝜉ே) ൧

+𝑟 (𝛾ேାଵ𝜉ேାଵ − 𝛾ேାଶ𝜉ே) + 𝑟𝑝𝜈 (𝛾ேାଵ − 𝛾ேାଶ)
ቇ

⎞
⎟

⎠

൫𝑅 + ൫𝑐௣ + 𝑟൯ 𝜏൯ (𝛾ேାଶ + 𝑝𝜈 + 𝜉ேାଵ) (𝛾ேାଵ + 𝑝𝜈 + 𝜉ே)

This implies that 𝐴(𝑁) is non-decreasing, because 𝛾௡ is non-increasing and 𝜉௡ is non-

decreasing. �

Using Lemma (3.2) and Lemma (3.3), we have the following theorem.

Theorem 3.4. For 𝐴 (𝑁) given in equation (4),

𝑁∗ = min {𝑁| 𝐴 (𝑁) ≥ 1} (3.10)

is the optimal replacement policy. Moreover, 𝑁∗ is unique iff 𝐴 (𝑁∗) > 1.
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4. Numerical Example

Let the parameter values be 𝑐 = 10, 𝑟 = 40, 𝑐௣ = 15, 𝛾 = 40, 𝜉 = 10, 𝛽 =

1.25, 𝑎 = 0.95 , 𝑅 = 4000, 𝜈 = 0.2, 𝑝 = 0.1 and 𝜏 = 10.

From equations(3.2) and (3.4), we have

𝐶 (𝑁) =

500 ×
ேିଵ

∑
௜ୀଵ

1

0.95
௜ିଵ

+ 4550 + 0.8 × (𝑁 − 1)

40ቌ1 +
1

1.25

ே

෍

௜ୀଶ

1

2௜ିଶ
ቍ + 0.02 × (𝑁 − 1) + 10

ேିଵ

∑
௜ୀଵ

1

0.95
௜ିଵ

+ 10

(4.1)

𝐴 (𝑁) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

50
⎛
⎜⎜

⎝

10

0.95
ேିଵ ቌ40 +

40

1.25

ே

෍

௜ୀଶ

1

2௜ିଶ
+ 0.02 (𝑁 − 1) + 10ቍ

−ቆ
40

1.252ேିଵ
+ 0.02ቇ

ேିଵ

∑
௜ୀଵ

10

0.95
௜ିଵ

⎞
⎟⎟

⎠

+0.8
⎛
⎜

⎝

40 +
40

1.25

ேାଵ

෍

௜ୀଶ

1

2௜ିଶ
+

ே

෍

௜ୀଵ

10

0.95
௜ିଵ

+ 10

−𝑁ቆ
40

1.252ேିଵ
+

10

0.95
ேିଵቇ

⎞
⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4550ቆ
40

1.252ேିଵ
+ 0.02 +

10

0.95
ேିଵቇ

(4.2)

The results of (4.1) and (4.2) are tabulated in Table 1 and plotted in Figure 1.

Tൺൻඅൾ 1. The results obtained using equations (4.1) and (4.2)

𝑁 𝐶 (𝑁) 𝐴 (𝑁) 𝑁 𝐶 (𝑁) 𝐴 (𝑁)

1 51.0000 0.1308 7 3.9358 1.1720

2 14.8881 0.2919 8 4.2447 1.2114

3 7.0447 0.5315 9 4.5836 1.2322

4 4.5477 0.7794 10 4.9205 1.2431

5 3.7998 0.9736 11 5.2422 1.2487

6 3.7309 1.0993 12 5.5441 1.2517

Obviously, At 𝑁 = 6 , 𝐶 (𝑁) attains its minimum. Also 𝑁 = 6 is the first value of 𝑁 for

which 𝐴 (𝑁) ≥ 1. Further 𝐴 (6)=1.0993 > 1.

Thus, the unique optimum replacement policy 𝑁∗ is 6 and therefore at the sixth failure,

system ought to be replaced.
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Fං඀ඎඋൾ 1. The plots of 𝐶(𝑁) and 𝐴(𝑁) against 𝑁

5. Conclusion

The partial sum process is introduced for the first time and studied its application to

deteriorating system maintenance model under imperfect delayed repair. An expression

for themean cost in long-run under𝑁-policy is derived explicitly. An optimal policy𝑁∗ for

minimizing the mean cost in long-run is determined analytically. The numerical example

is also provided. In future, we can use partial sum process as monotone decreasing process

for many maintenance models of deteriorating systems.
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