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A DETERIORATING SYSTEM MAINTENANCE MODEL WITH
IMPERFECT DELAYED REPAIR UNDER PARTIAL SUM PROCESS

BABU D, MANIGANDAN C?, AND PARVATHAM R3

ABSTRACT. In this paper, the partial sum process is introduced and proved that it is a
decreasing monotone process. Considering the maintenance model for a deteriorating
system with imperfect delayed repair for which successive operating times follows partial
sum process and successive repair times assumes geometric process, an expression for
the mean cost in long-run under N-policy is derived explicitly. An optimal policy N*
for minimizing the mean cost in long-run is determined analytically. To illustrate the
theoretical results, a numerical example given.

1. Introduction

The study of a maintenance model for a basic repairable system is a fundamental and
significant problem in reliability. A common assumption in the initial period of studying
maintenance issues is that repair is perfect, a repairable framework after the repair is as
good as new. Deteriorating systems have a different problem as the one portrayed above.
For instance, in machine maintenance problems, after every repair, the working time of
a machine will end up shorter and shorter, so the absolute working time or the existence
of the machine must be limited. However, in perspective on the aging and aggregate
wear, the repair time will turn out to be longer and tend to increase so that at the end the
machine is non-repairable. Therefore, there is need to consider a repair replacement model
for deteriorating systems, the progressive survival times are diminishing, while the repair
times are expanding. The monotone process model would therefore be the most suitable
model for a deteriorating system.

Lam (1988) first presented a Geometric Process Repair model to model a deteriorating
system with the above characteristics.

Definition 1.1. The sequence {X,, n = 1,2, 3, ...} of non negative independent random
variables is called a geometric process, if the distribution function of X,, is given by
F (a"‘lx) forn =1,2,3, ..., where a(> 0)is a constant

Finkelstein (1993) generalizes the geometric process to particular deteriorating re-
newal process in which the distribution function of X,, is F (a,x) where a,, are scale
parameters. It involves a large number of parameter which can be troublesome in actual
applications.

To overcome this, the partial sum process is introduced in which the parameters a,, are
related by a, = ag+a + ..+ a,—; forn=1,2,3, ...
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Definition 1.2. Let {X,, n = 1,2,3, ...} be a sequence of independent non-negative ran-
dom variables and let F (x) be the distribution function of X;. Then{X,,, n = 1,2,3, ...} is
called a partial sum process, if the distribution function of X; ., is F (B;x) (i =1,2,3,...)
where 8; > 0 are constants with 8; = Bo + 1 + B2 + - Bi_1and o = f > 0.

Lemma 1.3. Forreal ; (i = 1,2,3,..), B; = 2i715.
Proof. Wheni =1, B; = By = B. Thus, the result is true for i = 1.

Assume that the result is true for i = n.
Pny1 = (.30 +p1+p+. + Bn—l) + Bn
= 2B,
2x2"1p  (by induction assumption)
2(n+1)—1ﬁ

Thus, the result is true for i = n + 1 also. ([
By Lemma 1.3, the distribution function of X; 4 is F (Zi_l[)’) fori=1,2,3,..

Lemma 1.4. The partial sum process {X,, n = 1,2, 3, ..} with parameter B (> 0) is stochas-
tically decreasing and hence it is a monotone process.

Proof. Note that for any a > 0,
F(a) <F(Ba) <F(2Ba) <..< F(2"'Ba)
SPXi>a)2PX,>a)2PXz3>a)=2..2PX, > a)
This implies that {X,,, n = 1,2, 3,...} is stochastically decreasing(Ross(1983)). O
It is easy to verify the following lemma.

Lemma 1.5. Let E (X1) =y. Then fori=1,2,3,..
Y
E(Xi41) = 21

In the greater part of the research works for the simple repairable systems, there is a
supposition that the framework will be fixed immediately when it fails. This, however,
is not often the situation. In the real world, for instance, the system after failure can’t be
fixed promptly on the grounds that the repairman might be on a vacation. This will cause
a deferred fix time. In any case, repairs are not constantly postponed. That is the repair
can be done immediately or the repair can be delayed. This type of repair is often referred
to as the imperfect delayed repair(see, Zhang(2017)).

In Geometric process, the operating times of a system are uniformly decreasing. But
practically, it is not uniform. Thus, we propose the “Partial sum process” to model it,
because partial sum process has more number of parameters.

In the following sections, a deteriorating system maintenance model with imperfect
delayed repair for which successive operating times follows partial sum process and suc-
cessive repair times assumes geometric process is studied.

In section 2, the model descriptions are given. The mean cost in long-run expression is
determined explicitly and an optimal policy N* for minimizing the mean cost in long-run
is determined analytically in section 3. To demonstrate the theoretical results, a numerical
example is provided in section 4.
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2. Model Descriptions

We consider the deteriorating system maintenance model with the descriptions as follows.

2.1

2.2

23

2.4

2.5

2.6

2.7
2.8

2.9
2.10

A new simple repairable system is used at the start. At whatever point the system
fails, it might be repaired or replaced by a new and similar one.

Let X; be the operating time before the first failure and let F (x)be the distri-
bution function of X;. Assume that y; = E(X;) = y > 0. Let X;,, be the
operating time after the i-th repair for i = 1,2, 3, .... Then the distribution func-
tion of X;44is F (2:71) where § > Oisaconstantand y;4, = E (X;11) = ﬁ
fori = 1,2,3,.... The successive operating times {X,, n = 1,2, 3, ...} after repair
constitute a partial sum process.

After the nt™ failure, Let Y,, be the repair time and let the distribution function of
Y,beF (a”_lx) , where 0 < a < 1 is a constant. That is the successive repair
times {Y,,, n = 1,2, 3, ...} constitute a increasing geometric process(Lam(1988))
or a renewal process. Also, assume that E (V) = & = 0, where § = 0 means that

ﬁ‘ i= 1, 2, 3,
When the system fails, the repair is postponed with probability p and is immediate
with probability 1 — p.

After the n-th failure, let {D,,, n = 1,2, 3,...} denote the delayed repair time and
let it be a sequence of iid random variables. Further, let E(D,) =v =20, n =
1,2,3,.., where v = 0 negligible delayed repair time.

Let the random variable Z denote the replacement time with mean 7.

Xn Y, Dp, n=1,2,3,... and Z are independent of each other.

The reward rate is 7, the repair cost rate is ¢ and the the basic replacement cost is
R. Let cp be the proportional cost associated with the duration of the replacement
time Z.

The system can not incur costs or generate income when waiting for repairs.
The n-th cycle of the system (n = 1, 2, 3, ...) is the time period between the (n —
1)-st repair completion and the n-th repair completion. In the n-th cycle, let 4,
denote the event that the repair is postponed and let 4,, denote the event that the
repair is undelayed.

expected repair time is negligible. By Lam(1988), E (Y;) =

3. The replacement policy N

Definition 3.1. The replacement policy N is a policy that replaces the system after the
N-th failure since the last replacement.

The period between the system initialization and the first replacement or a period of two
successive replacements is called a cycle. The subsequent cycles will establish a renewal
process. Then, according to renewal reward theorem, Ross(1983), the mean cost per unit
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time in long-run under N-policy is given by
the mean of incurred cost in a cycle

C(N) =
() the mean duration of a cycle

N-1 N
E( Y Yi>+R+cpE(Z)—r (z Xl>
i=1 =1
b}

N N-1
E<,§1Xi> +E [ '21 (D;+7Yy) XAi] < lXAi) +E(2)

where x4 () denotes the indicator function. Then

N-1 N
E(_Z Yi> +R+c,E(2) - rE(Z Xi>
i=1 i=1

N N-1 N-1
E(_Z Xi>+E Py (Di+Yi)]p+E<,Z Yi>(1—p)+E(Z)
=1 =1 =1

C(N)

N-1
c X &tR+ct—T XY
i=1

1

ll'Mz

~.

,_;

Zyl+p(N—1)V+ Z §itrt

(c+r)1\_12_‘,1§i+R+(cp+r)‘r+rp(N—1)v
=1 -r 3.1

IlV N-1
,Zlyi+p(N— Dv+ -21 it
i= i=

+r)r+rp(N—1)v
-r (3.2)

1 1
Y 1+Ezzi—_2 +p(N
i=2

For minimizing C (N), we shall evaluate the difference C (N + 1) — C (N)

From equation (1),

CIN+1)—-CN)
N-1
(c+m)|én Zyl+p(N—1)V+f - Z sﬂ[VN+1+pV]>
(R+(cp+r)‘r+rpNv) [yN+1+pv+€N]
+rpv[_§ yl+pNv+'§ &+t
= N+1 N N—1
< )(2 Yitp(N—-Dv+ ¥ €i+f>
i=1 i=1

% Yl+pNV+Zfl+T
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N-1
(C+T)<€N[Z Y1+P(N—1)V+T]— Z i lynsr +pv]

(R + (Cp + 7") T) [vv+1 + PV + En]
N+1
—1pNV [yy41 + 0V + En] + 1DV Z Yi+pNv+ Z sﬂ+f]

<N§1y1+p1vv+ 5 aw)(z P =D+ 3 fl+r)
N N-1
(c+r)[s‘1v<2 Vi+p(N—1)V+r>—iglfi(ymﬁpw
-(R+ (cp +71) r) [yns1 + v + EN]
+rpv ,Z Vﬁ‘; i+1— N(VN+1+§N)]

= N+1 - N—1 (3:3)
(Z YitpNv+ Z &+T>(_Z Yitp(N-1Dv+ ¥ €i+f>
i=1 i=1
Let
N N-1
(c+7)|én <§: Yitp(N—-1Dv+ T) - ‘21 §ilrver t pv)]
N+T N =
+rpV El Vit i§1 §itT—NQns1 +En)
A(N)= 3.4
“ (R+ (cp +7)7) Grvsr + 0V + &) G4
1
m [(C + T') Aq (N) + rpvA, (N)] (35)
where
N N-1
En <i§1)/i +p(N-1Dv+ T) - El $i Wner + V)
AL ()= Yn+1 + DV + Sy (3.6)
and
N+1
Z Vit Z §itT—NOns1 +En)
A, (N) = (3.7

Yn+1 TPV +EN

It is clear that the denominator term in equation (3.3) is positive. Thus from equations
(3.3) and (3.4), we have

Lemma 3.2. For C (N) given by equation (3.1) and A (N) by the equation (3.4), we have
C (N) is increasing(decreasing) if and only if A(N) > 1(A(N) < 1).

Next, we shall prove A(N) is non-decreasing in N. From equations (3.6) and (3.7), we
have
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A (N+1) -4, (N)

N+1 N
(El Yit+ El §i+pNv+ T) [(Wn+18n+1 — Yn+28n) + 0V Ener — €01

(In+2 + PV +Ens1) Wver oV +En)

(3.8)
Ay (N+1) — A (N)
N+1 N
(_Z vit X &+t NPV> v+t — Yz T 68 — Ensen)
_ i=1 =1 (3'9)

In+z t oV +Ens1) (Wver oV + &)

Lemma 3.3. A(N) given in equation (3.5) is non-decreasing.
Proof. Using equations (3.8) and (3.9), we have
AN+1)—A(N)

_ 1 [(c+r)(A1 (N+1)—A; (V)
(R+ (cp +7)7) +rpv (A, (N +1) — 4, (N))

N+1 N
X Vit X &itpNv+ T)
i= i=

[ (c+7) ((Wn+1én+1 — Yv+2én) + oV Ener — En)) ]
+1pV (Ynve1 — Yvez + € — $ns1)

(R+ (cp +7)7) sz + PV + Ens1) (Ivar + DV + Ep)

N+1 N
(2 Yit X2 fi+PNV+T>
i=1 i=1
X( c| Wns1éner — Yne2én) + v Ener — En) | )
+7 (v+1éne1 — Yve2én) 10V (Vnsr — Yue2)

(R + (Cp + 7') T) (In+2 TPV + Ens1) (Wver 0V + &)

This implies that A(N) is non-decreasing, because y,, is non-increasing and ¢, is non-
decreasing. |

Using Lemma (3.2) and Lemma (3.3), we have the following theorem.
Theorem 3.4. For A (N) given in equation (4),

N*=min{N| A(N) = 1} (3.10)
is the optimal replacement policy. Moreover, N* is unique iff A(N*) > 1.
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4. Numerical Example
Let the parameter values be ¢ = 10, r = 40, Cp = 15, y =40, £ =10, g =
1.25, a =0.95,R =4000, v=0.2,p = 0.1 and T = 10.

From equations(3.2) and (3.4), we have

N-1
500 x ———— +4550+ 08 x (N -1
igl 0.95 1 ( ) @1

N
1 1 N-1
40l 1+ 958 Z 2i-2
i=

C(N) =

o5k — 1+ 10

+0.02x (N—1)+10 z

—1)+10

50

40

10 40 i
0.95"71 25 &

1.252N-1
N+1 N

+ 0.02)

10

N-1 10

i=1 0.9571

)

40 +
+0.8

1.25 ¢
=2

1
— + E — + 10
-2 -1

2 £ 0.95

N 40 +
1.252N-1

10 )
0.95V1

AWN) =

The results of (4.1) and (4.2) are tabulated in Table 1 and plotted in Figure 1.

TaBLE 1. The results obtained using equations (4.1) and (4.2)

4550(

40
1.252N-1

+0.02 + 10 )
' 0.95""1

NTC) [AM [N CN) | A
1 |51.0000 | 0.1308 || 7 | 3.9358 | 1.1720
2 | 14.8881 | 0.2919 || 8 | 4.2447 | 1.2114
3| 7.0447 | 0.5315 | 9 | 4.5836 | 1.2322
4| 45477 | 0.7794 || 10 | 4.9205 | 1.2431
51 3.7998 | 0.9736 || 11 | 5.2422 | 1.2487
6 | 3.7309 | 1.0993 || 12 | 5.5441 | 1.2517

4.2)

Obviously, At N = 6, C (N) attains its minimum. Also N = 6 is the first value of N for
which A (N) = 1. Further A (6)=1.0993 > 1.

Thus, the unique optimum replacement policy N* is 6 and therefore at the sixth failure,
system ought to be replaced.
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FIGURE 1. The plots of C(N) and A(N) against N
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5. Conclusion

The partial sum process is introduced for the first time and studied its application to

deteriorating system maintenance model under imperfect delayed repair. An expression
for the mean cost in long-run under N-policy is derived explicitly. An optimal policy N* for
minimizing the mean cost in long-run is determined analytically. The numerical example
is also provided. In future, we can use partial sum process as monotone decreasing process
for many maintenance models of deteriorating systems.
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