
A HYBRID METHOD FOR SOLVING THE MINIMUM TIME

CONTROL PROBLEM

ALIOUA IMANE, BIBI MOHAND OUAMER, AND KHIMOUM NOUREDDINE*

Abstract. In this paper, a new hybrid method is presented to solve a mini-
mum time optimal control problem. For this, we consider an auxiliary prob-

lem with free terminal time which is transformed into another one with a
fixed terminal time. The proposed method combines the support method for
optimal control problems with a fixed terminal time and an indirect finishing

procedure, similar to the shooting method.
This approach by the auxiliary problem can be considered as a two-phase op-
timal control method, where we try to make the norm tending to zero while
minimizing the time.

1. Introduction

Studying a dynamic system is often synonymous with improving its behavior
[8]. Optimal control offers an ideal framework for evaluating the performance of a
dynamic system. This is done by optimizing its objective functional whose value
is determined by the behavior of the system on which we act by means of a control
[31, 22].

For some optimal control problems the terminal time is not fixed and it will
be considered as an unknown variable to be found. These problems known as
optimal control problems with free terminal time have been extensively studied in
the literature. The authors in [1], solve an optimal control problem with free final
time by a method based on a transformation and a modified quasilinearization
technique. In [23], the authors deal with a time delay optimal control problem in
which the terminal time is a free parameter and they used an optimization method
based on the gradient. Second order sufficient conditions for control problems
with control-state constraints and free final time are presented in [25], using a
transformation of the free terminal time problem into a fixed terminal time problem
based on a Riccati’s approach. Also, an optimal control problem with free terminal
time is treated in [34] by using the constraint transcription and local smoothing
technique to approximate the state inequality constraints to conventional ones,
and the problem is solved by means of the filled function method. Another variant
of these problems is studied in [2], where the problem treated has the particularity
of having controls and constrained target sets varying over time.
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We deal with a minimum time optimal control problem when it is essentially
about driving a system to a desired state in minimum time. So this is a particular
case of the optimal control problems for a special form of the functional to be
optimized. Since the publication of the first works on this subject in the sixties
for linear systems [21], several researchers have studied the model [27, 10, 12, 29,
26, 11]. Soon after, the support method [15, 6, 32, 7] is at the origin of several
works dealing with the numerical resolution of optimal control problems [14, 35].
The theoretical and practical interests have made that the minimum time optimal
control problem remains one of the most attractive subjects in optimal control.
Based on the concept of support, a numerical method was described in [18] using
differential equations for the optimal support and the optimal value of the cost
function. In [20], by taking the initial state values depending on a parameter, the
authors have studied the problem of the solution structure identification for small
parameter perturbations.

Methods based on other concepts are also proposed for solving the time optimal
control problem. The authors in [30] have considered the problem of structural sta-
bility for the minimum time problem in the case when it has a bang-bang strongly
local optimal control which exhibits a double switch. In [24], the authors have ob-
tained the optimal time by solving a sequence of norm optimal control problems
that is equivalent to solve a nonlinear equation by an iteratively reweighted least
square method. Other instances of the time optimal control problem have been
treated such as multivariable and discrete dynamic systems [28, 9, 36].

In this paper, we present a new hybrid method to solve the time optimal control
problem. This method combines the support method of a nonlinear-quadratic
problem of optimal control [16, 17] and an indirect finishing procedure [15, 5, 3, 4,
19]. For this, we proceed in two steps, in the first one we transform an auxiliary
optimal control problem with a free terminal time into a bilinear-quadratic problem
with a fixed terminal time. We solve the latter by means of the support method
and this gives an idea about the optimal structure of the commutations, that allows
us to calculate an approximate optimal control and an approximate minimal time.
In the second step, we use a finishing procedure similar to the shooting method [33]
in order to compute the minimum time more precisely. This procedure consists of
solving a system of equations using the Newton method, where the initial iteration
is deduced from the approximations obtained in the first step.

2. Problem statement and definitions

Consider the following time optimal control problem:

min J(u1, t∗) = t∗, (2.1)

ẋ(t) = Ax(t) + bu1(t), x(0) = x0, (2.2)

x(t∗) = 0, (2.3)

u1(t) ∈ U = [−L,L], t ≥ 0, (2.4)

where ẋ(t) =
dx

dt
, x(t) = (x1(t), x2(t), . . . , xn(t))

T is an n-vector of state at instant

t; x(0) = x0 ̸= 0 is an initial state; u1(t) is a piecewise continuous scalar function

72



SHORT TITLE FOR RUNNING HEADING

called a control that may take any value from the set U ; A is an n × n matrix
which characterizes the system; b is an n-vector and L a positive constant.
The functional J(u1, t∗) is called the quality criterion, where the terminal time
t∗ is not fixed but rather considered as an unknown variable to be found. The
symbol (T ) denotes the transposition operation. Furthermore, we suppose that
the dynamic system (2.2) is controllable. This means that we will assume that the
state vector x can be brought from x(0) = x0 to x(t∗) = 0 in a finite time using
an admissible control u ∈ U defined as follows :

Definition 2.1. The control u1(t), t ∈ T (t∗) = [0, t∗], is called an admissible
control of the problem (2.1)-(2.4) if:

(i) it is a piecewise continuous function on T , continuous on the right in its
break points:

lim
t→tj ,t>tj

u1(t) = u1(tj + 0) = u1(tj), j = 1, . . . , s;

(ii) −L ≤ u1(t) ≤ L, t ∈ T ;
(iii) the corresponding trajectory satisfies: x(t∗) = 0.

Definition 2.2. The admissible control u∗
1(t), t ∈ [0, τ∗], is said to be optimal if

it minimizes the quality criterion:

J(u∗
1, τ∗) = min

u1,t∗
J(u1, t∗), (2.5)

where u1 is any control taken among the admissible controls and t∗ > 0. The
corresponding trajectory x∗(t), t ∈ [0, τ∗], is said to be an optimal trajectory.
Furthermore, we call a suboptimal control (or ε−optimal), any admissible control
uε
1(t), t ∈ [0, tε∗], satisfying the inequality

J(uε
1, t

ε
∗)− J(u∗

1, τ∗) ≤ ε, (2.6)

where the couple (u∗
1, τ∗) is optimal in the problem (2.1)-(2.4), and ε is a nonneg-

ative number chosen as an accuracy.
For the classical minimum time problem, we recall the well known maximum prin-
ciple of Pontryagin.

Theorem 2.3 (Maximum Principle [31]). For the instant τ∗ and the admissi-
ble control u∗

1(t), t ∈ T = [0, τ∗], to be optimal in the problem (2.1)-(2.4), it is
necessary and sufficient that the following conditions hold:

(i) The Hamiltonian H(x,Ψ, u1) = ΨT (Ax+ bu1) reaches its maximum:

H(x∗(t),Ψ∗(t), u∗
1(t)) = max

v∈U
H(x∗(t),Ψ∗(t), v), t ∈ T = [0, τ∗],

(ii) and must be zero at the terminal time

H(x∗(τ∗),Ψ
∗(τ∗), u

∗
1(τ∗)) = 0,

where x∗(t) is the trajectory of the direct system (2.2) corresponding to u∗
1(t); Ψ

∗(t)
being a nonzero solution of the conjugate system:

Ψ̇ = −ATΨ = −∂H

∂x
.
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To solve numerically this problem, several methods have been proposed, using
the maximum principle, dynamic programming, as well as other approaches [21,
27, 10, 12, 29, 26, 11, 18]. In the following, we present a new constructive approach
consisting of two steps. To begin, we consider an auxiliary problem to approximate
the minimum time and the zero terminal state. After that, a finishing procedure,
similar to the shooting method, is used to calculate more precisely the optimal
solution.

3. Auxiliary Problem with Free Terminal Time

Consider the following auxiliary optimal control problem:

minJa(u1, t∗) =
1

2
∥ x(t∗) ∥2 +t∗, (3.1)

ẋ(t) = Ax(t) + bu1(t), x(0) = x0, (3.2)

u1(t) ∈ U = [−L,L], t ∈ T = [0, t∗]. (3.3)

An admissible control of the problem (3.1)-(3.3) verifies the conditions (i) and
(ii) of Definition 2.1. Here the problem of optimization consists in finding a time
t̂∗ > 0, and an admissible control û1(t), t ∈ [0, t̂∗], realizing the minimum of the
functional (3.1). So we have the following lemma:

Lemma 3.1. Let t̂∗ and û1(t), t ∈ [0, t̂∗], be an optimal couple in the problem
(3.1)-(3.3). Then two cases may occur:

(a) If x̂(t̂∗) = 0, then t̂∗ is the minimum time of the problem (2.1)-(2.4).
(b) If x̂(t̂∗) ̸= 0, then the couple (û1, t̂∗) is not admissible in the problem

(2.1)-(2.4) and we have:

τ∗ ≥ 1

2
∥ x̂(t̂∗) ∥2 +t̂∗, (3.4)

where τ∗ is the minimum time of the problem (2.1)-(2.4).

Proof.

(a) Suppose that t̂∗ is not the minimum time in the problem (2.1)-(2.4). So
there exist a time instant t̄∗ > 0 and a control ū1 such that x̄(t̄∗) = 0 and
t̄∗ < t̂∗. Hence,

Ja(ū1, t̄∗) =
1

2
∥ x̄(t̄∗) ∥2 +t̄∗ <

1

2
∥ x̂(t̂∗) ∥2 +t̂∗,

which contradicts the optimality of (û1, t̂∗) in the problem (3.1)-(3.3).
Therefore, t̂∗ is the minimum time of the problem (2.1)-(2.4).

(b) Let (u∗
1, τ∗) be a couple which is the solution to the problem (2.1)-(2.4).

In virtue of the optimality of the couple (û1, t̂∗) in the problem (3.1)-(3.3),
then we will have:

Ja(u
∗
1, τ∗) =

1

2
∥ x∗(τ∗) ∥2 +τ∗ ≥ 1

2
∥ x̂(t̂∗) ∥2 +t̂∗.

Since x∗(τ∗) = 0, thus we obtain

τ∗ ≥ 1

2
∥ x̂(t̂∗) ∥2 +t̂∗.
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3.1. Maximum principle in the auxiliary problem with free terminal
time. Let t̂∗ and û1(t), t ∈ [0, t̂∗], be an optimal solution of the auxiliary problem
(3.1)-(3.3). For a such fixed time t̂∗, the control û1(t), t ∈ [0, t̂∗], is an optimal
solution of the following problem:

min Ja(u1) =
1

2
∥ x(t̂∗) ∥2 +t̂∗, (3.5)

ẋ(t) = Ax(t) + bu1(t), x(0) = x0, (3.6)

|u1(t)| ≤ L, t ∈ T = [0, t̂∗]. (3.7)

Indeed, if it is assumed that there is another admissible control ũ1(t), t ∈ T , such
that Ja(ũ1) < Ja(û1), then this latter inequality would contradict the optimality
of the couple (û1, t̂∗) in the problem (3.1)-(3.3). Hence, for the control û1, the
following theorem holds for the fixed terminal time t̂∗:

Theorem 3.2 (Maximum Principle [13]). The control û1(t), t ∈ T = [0, t̂∗], is
optimal in the problem (3.5)-(3.7) if and only if, along û1(t) and the corresponding

trajectories x̂(t) (3.6) and Ψ̂(t) of the conjugate system:

Ψ̇ = −ATΨ, Ψ(t̂∗) = −x̂(t̂∗), (3.8)

the hamiltonian H(x,Ψ, u1) = ΨT (Ax+ bu1) reaches its maximum:

H(x̂(t), Ψ̂(t), û1(t)) = max
υ∈U

H(x̂(t), Ψ̂(t), υ), t ∈ T = [0, t̂∗]. (3.9)

The following theorem provides the necessary and sufficient conditions that the
optimal time t̂∗ in the problem (3.1)-(3.3) must satisfy:

Theorem 3.3. For the time t̂∗ and the admissible control û1(t), t ∈ T = [0, t̂∗],
to be optimal in the problem (3.1)-(3.3), it is necessary and sufficient that the
following conditions hold:

(i) H(x̂(t), Ψ̂(t), û1(t)) = max
v∈U

H(x̂(t), Ψ̂(t), v), t ∈ T = [0, t̂∗];

(ii) H(x̂(t̂∗), Ψ̂(t̂∗), û1(t̂∗)) = 1,

where x̂(t) is the trajectory of the direct system (3.2) corresponding to û1(t) and

Ψ̂(t) being the solution of the conjugate system (3.8).

Proof. For (i) see Theorem 3.2. For the condition (ii), let us compare the optimal
process generated by the optimal control û1(t), t ∈ T = [0, t̂∗], with two others
processes for which the duration of one is greater than the optimal time t̂∗, and
the duration of the other less than t̂∗. Indeed, let’s first consider the control:

ũ1(t) =

{
û1(t), t ∈ [0, t̂∗],
û1(t̂∗), t ∈ [t̂∗, t̂∗ + ε], ε > 0.

(3.10)
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From the equation (3.6), we obtain the trajectory corresponding to the control
ũ1(t):

x̃(t) = x̂(t), t ∈ [0, t̂∗]

x̃(t̂∗ + ε) = x̃(t̂∗) + ε
dx̃(t̂∗)

dt
+ o(ε)

= x̂(t̂∗) + ε[Ax̂(t̂∗) + bû1(t̂∗)] + o(ε).

Therefore, we will have:

0 ≤ ∆Ja(û1, t̂∗) = Ja(ũ1, t̂∗ + ε)− Ja(û1, t̂∗)

= ε
∂φ

∂x
(x̂(t̂∗), t̂∗)[Ax̂(t̂∗) + bû1(t̂∗)] + ε

∂φ

∂t
(x̂(t̂∗), t̂∗) + o(ε),

where φ(x, t) =
1

2
∥ x ∥2 +t, with

∂φ

∂x
= x and

∂φ

∂t
= 1.

So we obtain

∆Ja(û1, t̂∗) = Ja(ũ1, t̂∗ + ε)− Ja(û1, t̂∗)

= εx̂T (t̂∗)[Ax̂(t̂∗) + bû1(t̂∗)] + ε+ o(ε)

= ε[x̂T (t̂∗)(Ax̂(t̂∗) + bû1(t̂∗)) + 1 +
o(ε)

ε
] ≥ 0.

For a small enough ε > 0, we deduce that

x̂T (t̂∗)[Ax̂(t̂∗) + bû1(t̂∗)] + 1 ≥ 0.

Since Ψ̂(t̂∗) = −x̂(t̂∗), then we can write:

H(x̂(t̂∗), Ψ̂(t̂∗), û1(t̂∗)) ≤ 1. (3.11)

On the other hand, we consider the control ū1(t) = û1(t), t ∈ [0, t̂∗ − ε], ε > 0.
Then the corresponding trajectory verifies x̄(t) = x̂(t), t ∈ [0, t̂∗−ε]. In particular,
for a small enough ε > 0 we have:

x̄(t̂∗ − ε) = x̂(t̂∗ − ε) = x̂(t̂∗)− ε
dx̂(t̂∗)

dt
+ o(ε). (3.12)

Therefore, we obtain

∆Ja(û1, t̂∗) = Ja(ū1, t̂∗ − ε)− Ja(û1, t̂∗)

= −εx̂T (t̂∗)[Ax̂(t̂∗) + bû1(t̂∗)]− ε+ o(ε)

= ε[−x̂T (t̂∗)(Ax̂(t̂∗) + bû1(t̂∗))− 1 +
o(ε)

ε
] ≥ 0,

consequently, we deduce:

H(x̂(t̂∗), Ψ̂(t̂∗), û1(t̂∗)) ≥ 1. (3.13)

According to the inequalities (3.11) and (3.13), we conclude that the optimal time
t̂∗ in the problem (3.1)-(3.3) must verify the following equality:

H(x̂(t̂∗), Ψ̂(t̂∗), û1(t̂∗)) = 1. (3.14)

�
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Remark 3.4. The case (a) of Lemma 3.1 can not occur, because the terminal

condition (3.8) would give H(x̂(t̂∗), Ψ̂(t̂∗), û1(t̂∗)) = 0, which would contradict the
relation (3.14).

3.2. Solving the Auxiliary Problem. To use the optimality conditions of the
auxiliary problem (3.1)-(3.3), we begin by transforming the latter into an equiva-
lent control problem on the fixed time interval [0, 1]. We will treat the unknown
variable t∗ > 0 as an additional control u2, then the knowledge of u1 and u2 gives
the possibility to reconstruct the state x(t), ∀t ∈ T = [0, t∗]. So these observations
will guide our approach:

(1) s =
t

t∗
is a quantity included between 0 and 1, and this, whatever the

value of t∗;
(2) u2 = t∗ is an arbitrary positive constant.

This leads us to formulate everything in terms of the new variable s ∈ [0, 1].
The relation t = s× t∗ allows us to set: x̃(s) = x(s× t∗),

ũ1(s) = u1(s× t∗),
ũ2(s) = t∗ ≡ const.

s ∈ [0, 1]. (3.15)

After this change of variable, x̃(·) and ũ1(·) have respectively the same dimensions
as x(·) and u1(·). Furthermore, we have

x̃(0) = x(0) = x0 and x̃(1) = x(t∗).

Let x̃n+1 be a new variable such that x̃n+1(s) = s× t∗. So this variable verifies

˙̃xn+1(s) = t∗ = ũ2, s ∈ [0, 1], x̃n+1(0) = 0.

To define the new optimal control problem, we consider

z(s) = (x̃(s), x̃n+1(s)) ∈ Rn × R, ũ(s) = (ũ1(s), ũ2) ∈ U × R+.

Thus, by increasing the size of the state vector and that of the control, via the
change of variable t = s × t∗, we reformulate the problem (3.1)-(3.3) into an
equivalent optimal control problem on the fixed time interval [0, 1]. Let us start
with the quality criterion by defining the following function:

φ : Rn × R → R

z = (x̃, x̃n+1) 7→ φ(z) =
1

2
∥x̃∥2 + x̃n+1.

So we have

φ(z(1)) =
1

2
∥x̃(1)∥2 + x̃n+1(1) =

1

2
∥x(t∗)∥2 + t∗.

Let us write the dynamic system according to the new variable s ∈ [0, 1]: ˙̃x(s) =
d

ds
x(s× t∗) = ẋ(s× t∗)t∗ = [Ax̃(s) + bũ1(s)]ũ2, x̃(0) = x0,

˙̃xn+1(s) = ũ2, x̃n+1(0) = 0.
(3.16)
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Hence, this gives the following equivalent control problem with the fixed terminal
time s∗ = 1:

min J̃a(ũ) =
1

2
zT (s∗)D̃z(s∗) + c̃T z(s∗), (3.17)

ż(s) =

(
[Ax̃(s) + bũ1(s)]ũ2

ũ2

)
, z(0) =

(
x0

0

)
, (3.18)

ũ(s) = (ũ1(s), ũ2) ∈ U × R+, s ∈ [0, s∗], (3.19)

where D̃ =

(
In 0
0 0

)
is an (n + 1) × (n + 1) matrix and c̃ = (0, 1) an (n + 1)-

vector whose the first n components are equal to zero. The vector z(s) ∈ Rn+1

represents the state vector at instant s, z(0) = z0 = (x0, 0) being the initial state
of the system; ũ(s) = (ũ1(s), ũ2), s ∈ [0, s∗], is the control of the system, where
ũ1(s) is a piecewise continuous scalar function with values in U = [−L,L] and ũ2

is a parameter of R+. Let ũ∗(s) = (ũ∗
1(s), ũ

∗
2 = t∗∗) be the optimal control obtained

by solving the equivalent auxiliary problem (3.17)-(3.19) by the method [16], and
x̃∗(s), s ∈ [0, 1] be the corresponding optimal trajectory.

4. Finishing Procedure

The Finishing Procedure of the support method [15, 19], similar to the shooting
method, constitutes the second phase of the elaborated approach. It consists in
calculating the minimum time of the problem (2.1)-(2.4) with a good accuracy.

Here, we consider that the problem (2.1)-(2.4) is simple, so the optimal control
ũ∗
1(s) has (n − 1) switching points such that 0 < s01 < s02 < ... < s0n−1 < 1.

Returning to the variable t, we set:

τ0∗ = t∗ =
1

2
∥ x̃∗(1) ∥2 +t∗∗, τ0i = s0i t∗, i = 1, . . . , n− 1, T 0

s = (τ01 , . . . , τ
0
n−1)

T .

We form the following n× (n− 1) matrix supposed to be of complete rank:

Q0 = (q(t∗, τ
0
i ), i = 1, . . . , n− 1), (4.1)

with q(t∗, t) = eA(t∗−t)b, t ∈ [0, t∗].

We calculate the vector of the potentials λ0 = (y0, 1) ∈ Rn−1 × R such that
QT

0 λ
0 = 0, and the cocontrol E0(t) = (Ψ0)T (t)b, where Ψ0(t), t ∈ T = [0, t∗], is

the solution of the conjugate system

Ψ̇ = −ATΨ, Ψ(t∗) = −λ0.

Hence

E0(t) = −(λ0)T eA(t∗−t)b = −(λ0)T q(t∗, t) = −((y0)T , 1)q(t∗, t), t ∈ [0, t∗].

Furthermore, we calculate the quasicontrol

ω0(t) = L signE0(t), t ∈ T = [0, t∗],

and the trajectory κ0(t), t ∈ T = [0, t∗], of the system (2.2), corresponding to ω0(t),

t ∈ T . Since the problem is simple, we assume that Ė0(τ0i ) ̸= 0, i = 1, . . . , n− 1.
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So the finishing procedure consists in finding the solution υ = (y, τ∗, Ts) ∈ Rn−1×
R× Rn−1, τ∗ ∈ R+, Ts = (τ1, τ2, . . . , τn−1)

T , of (2n− 1) equations:

F1(υ) = F1(y, τ∗, Ts) = κ(τ∗, Ts) = (κj(τ∗, Ts) = 0, j = 1, . . . , n),

F2(υ) = F2(y, τ∗, Ts) = E(y, τ∗, Ts) = (Ei(y, τ∗, τi) = Ei = 0, i = 1, . . . , n− 1),

(4.2)
where Ei(y, τ∗, t) = (yT , 1)eA(τ∗−t)b, t ∈ [0, τ∗], i = 1, . . . , n − 1, and κ(t, Ts), t ∈
[0, τ∗] is the trajectory (2.2) corresponding to the quasicontrol ω(t, Ts), t ∈ [0, τ∗]:

ω(t, Ts) =


−L signĖ0(τ01 ), if t ∈ [0, τ1[;

−L signĖ0(τ0i ), if t ∈ [τi−1, τi[, i = 2, . . . , n− 1;

L signĖ0(τ0n−1), if t ∈ [τn−1, τ∗].

(4.3)

From (4.3) and the Cauchy Formula, we get:

κ(τ∗, Ts) = eAτ∗x0 +

∫ τ∗

0

eA(τ∗−t)bω(t, Ts)dt.

By virtue of Lemma 3.1, so we can write:

κ(τ∗, Ts) = eA(τ∗−t∗+t∗)x0 +

∫ t∗

0

eA(τ∗−t∗+t∗−t)bω(t, Ts)dt+

∫ τ∗

t∗

eA(τ∗−t∗+t∗−t)bω(t, Ts)dt

= eA(τ∗−t∗)[eAt∗x0 +

∫ t∗

0

eA(t∗−t)bω(t, Ts)dt+

∫ τ∗

t∗

eA(t∗−t)bω(t, Ts)dt]

= eA(τ∗−t∗)X(τ∗, Ts).

Since eA(τ∗−t∗) is always invertible, then after applying (4.3), the n first equations
(4.2) are equivalent to:

X(τ∗, Ts) = κ0(t∗)+L

∫ τ∗

t∗

q(t∗, t)signĖ
0(τ0n−1)dt−2L

n−1∑
k=1

signĖ0(τ0k )

∫ τk

τ0
k

q(t∗, t)dt = 0.

Hence, this gives the following simplified system: F (v) = (F1(v), F2(v))
T = 0, i.e,{

F1(υ) = F1(y, τ∗, Ts) = X(τ∗, Ts) = (Xj(τ∗, Ts) = 0, j = 1, . . . , n),
F2(υ) = F2(y, τ∗, Ts) = E(y, τ∗, Ts) = (Ei(y, τ∗, τi) = Ei = 0, i = 1, . . . , n− 1).

(4.4)
In particular, for τ∗ = t∗ we get:

X(t∗, Ts) = κ0(t∗)− 2L
n−1∑
k=1

signĖ0(τ0k )

∫ τk

τ0
k

q(t∗, t)dt, (4.5)

and

κ(t∗, Ts) = eA(t∗−t∗)X(t∗, Ts) = X(t∗, Ts) = 0,

and we obtain the standard formula (4.5) for the fixed terminal time τ∗ = t∗
[15, 16, 19].
We solve the system (4.4) via the Newton method, starting with the initial ap-
proximation υ0 = (y0, τ0∗ , T

0
s ). The (k + 1)th approximation υk+1 is equal to:

υ(k+1) = υ(k) − J−1(υ(k))F (υ(k)), (4.6)
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where

J(υ) =


∂X(τ∗, Ts)

∂y

∂X(τ∗, Ts)

∂τ∗

∂X(τ∗, Ts)

∂Ts
∂E(y, τ∗, Ts)

∂y

∂E(y, τ∗, Ts)

∂τ∗

∂E(y, τ∗, Ts)

∂Ts


is the Jacobian matrix of the system (4.4).

5. Numerical Example

For illustration, we consider the following minimum time optimal control prob-
lem [18]:

min J(u, t∗) = t∗ (5.1)

ẋ1 = x2,

ẋ2 = x3, (5.2)

ẋ3 = u1, |u1| ≤ 1, t ∈ T (t∗) = [0, t∗],

x = (x1, x2, x3)
T , x0 = x(0) = (16, 0, 0)T , x(t∗) = 0, (5.3)

with

A =

 0 1 0
0 0 1
0 0 0

 , b =

 0
0
1

 .

With the variable s ∈ [0, 1], we obtain the following auxiliary bilinear-quadratic
problem of optimal control with a fixed terminal time:

min J̃a(ũ) =
1

2
zT (1)D̃z(1) + c̃T z(1), (5.4)

ż1 = ˙̃x1 = x̃2ũ2,

ż2 = ˙̃x2 = x̃3ũ2, (5.5)

ż3 = ˙̃x3 = ũ1ũ2,

ż4 = ˙̃x4 = ũ2,

z = (x̃, x̃4) = (x̃1, x̃2, x̃3,x̃4)
T , z0 = z(0) = (16, 0, 0, 0)T , (5.6)

ũ(s) = (ũ1(s), ũ2) ∈ U×R+, s ∈ [0, 1], U = [−1, 1], (5.7)

where D̃ =

(
I3 0
0 0

)
and c̃ = (0, 0, 0, 1)T .

Using the support method of optimal control [16], we obtain the optimal control
ũ∗(s) = (ũ∗

1(s), ũ
∗
2) such as:

ũ∗
1(s) =

 −1, t ∈ [0, s01[,
1, t ∈ [s01, s

0
2[,

−1, t ∈ [s02, 1],
ũ∗
2 = 7.1771,

80



SHORT TITLE FOR RUNNING HEADING

with s01 = 0.2772, s02 = 0.8177 and J̃(ũ∗) =
1

2
∥ x̃∗(1) ∥2 +x̃∗

4(1) = 7.5155.

Returning to the variable t, we get:

τ0∗ = t∗ = J̃(ũ∗) = 7.5155

τ01 = s01 × t∗ = 2.0833

τ02 = s02 × t∗ = 6.1454.

We calculate:

eAt∗ = I3 + t∗A+
t2∗
2
A2 =

 1 t∗
t2∗
2

0 1 t∗
0 0 1

 =

 1 7.5155 28.2414
0 1 7.5155
0 0 1

 ,

q(t∗, t) =

 1 t∗ − t
1

2
(t∗ − t)2

0 1 t∗ − t
0 0 1


 0

0
1

 =


1

2
(t∗ − t)2

t∗ − t
1

 =

 1
2 (7.5155− t)2

7.5155− t
1

 ,

q(t∗, τ
0
1 ) =

 14.7544
5.4322

1

 , q(t∗, τ
0
2 ) =

 0.9386
1.3701

1

 , Q0 =

 14.7544 0.9386
5.4322 1.3701

1 1

 ,

and we solve the system

QT
0 λ

0 =

(
14.7544 5.4322 1
0.9386 1.3701 1

) y01
y02
1

 = 0 ⇒
{

14.7544 y01 + 5.4322 y02 + 1 = 0
0.9386 y01 + 1.3701 y02 + 1 = 0.

Hence we find λ0 = (y01 , y
0
2 , 1)

T = (0.2687,−0.9140, 1)T .
We determine the cocontrol E0(t) and the quasicontrol ω0(t), t ∈ [0, t∗]:

E0(t) = −(y0
′
, 1)q(t∗, t)

= −(0.2687,−0.9140, 1)


1

2
(7.5155− t)2

7.5155− t
1


= −0.1344t2 + 1.1056t− 1.7202,

ω0(t) =

 −1, t ∈ [0, 2.0833[,
+1, t ∈ [2.0833, 6.1454[,
−1, t ∈ [6.1454, 7.5155].
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Figure 1. The cocontrol E0(t) and the quasicontrol ω0(t), t ∈ [0, t∗].

Hence, the finishing procedure is to find the solution υ = (y, τ∗, Ts) ∈ R2×R×R2

of the following 5 equations:

X(τ∗, Ts) =


1

6
(7.5155− τ∗)

3 +
1

3
(7.5155− τ1)

3 − 1

3
(7.5155− τ2)

3 − 54.7493

1

2
τ2∗ − 7.5155τ∗ + τ21 − 15.0310τ1 − τ22 + 15.0310τ2

−τ∗ − 2τ1 + 2τ2

 =

 0
0
0

 ,

E(y, τ∗, Ts) =

(
E1(y, τ∗, τ1)
E2(y, τ∗, τ2)

)
=

 1

2
y1(τ∗ − τ1)

2 + y2(τ∗ − τ1) + 1

1

2
y1(τ∗ − τ2)

2 + y2(τ∗ − τ2) + 1

 =

(
0
0

)
.

For this, we form the Jacobian matrix:

J(υ) =

(
(∂X(τ∗,Ts)

∂y )3×2 (∂X(τ∗,Ts)
∂τ∗

)3×1 (∂X(τ∗,Ts)
∂Ts

)3×2

(∂E(y,τ∗,Ts)
∂y )2×2 (∂E(y,τ∗,Ts)

∂τ∗
)2×1 (∂E(y,τ∗,Ts)

∂Ts
)2×2

)
, Ts = (τ1, τ2).

So

J(υ) =



0 0 −1

2
(7.5155− τ∗)

2 −(7.5155− τ1)
2 (7.5155− τ2)

2

0 0 τ∗ − 7.5155 −2(7.5155− τ1) 2(7.5155− τ2)
0 0 −1 −2 2

1

2
(7.5155− τ1)

2 7.5155− τ1 y1(t∗ − τ1) + y2 −(y1(t∗ − τ1) + y2) 0

1

2
(7.5155− τ2)

2 7.5155− τ2 y1(t∗ − τ2) + y2 0 −(y1(t∗ − τ2) + y2)


.

We solve the system via the Newton method, starting with the initial approxima-
tion υ0 = (y0, τ0∗ = t∗, T 0

s ) = (0.2687,−0.9140, 7.5155, 2.0833, 6.1454)T , and the
following results for ε = 10−4 are found:
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k υ(k) J(υ(k))−1F (υ(k)) υ(k+1) ∥ υ(k+1) − υ(k)) ∥

0


0.2687
−0.9140
7.5155
2.0833
6.1454




0.1651
−0.3820
−0.5818
0.0796
0.0931




0.1036
−0.5320
8.0973
2.0037
6.0523

 0.7257

1


0.1036
−0.5320
8.0973
2.0037
6.0523




−0.0610
0.1323
0.0951
0.0034
0.0509




0.1647
−0.6643
8.0022
2.0003
6.0014

 0.1813

2


0.1647
−0.6643
8.0022
2.0003
6.0014




−0.0020
0.0024
0.0022
0.0003
0.0014




0.1667
−0.6667
8.0000
2.0000
6.0000

 0.0041

3


0.1667
−0.6667
8.0000
2.0000
6.0000

 10−5


−0.1224
0.0656
0.0905
0.0160
0.0613




0.1667
−0.6667
8.0000
2.0000
6.0000

 1.7747× 10−6

For this provided example, the minimum time in the problem (2.1)-(2.4) is τ∗ = 8,
with the instants of commutation τ1 = 2 and τ2 = 6, corresponding to the exact
optimal control of the problem [18], where

u0(t) =

 −1, t ∈ [0, 2[,
+1, t ∈ [2, 6[,
−1, t ∈ [6, 8].
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