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Abstract. This paper studies a second-order non-autonomous stochastic

delay differential equation in a Hilbert space. The objective is to provide
sufficient conditions for approximate and optimal controllability of the sto-

chastic system. To establish these results, we first demonstrate the existence

and uniqueness of mild solution. We have used Banach contraction principle,
the compact analytic semigroup of bounded linear operators, and stochastic

analysis techniques. An example is included as an application to show the

effectuality of the result.

1. Introduction

Controllability is a fundamental concept in the theory of control dynamical
systems. It takes a significant role in investigating and designing various con-
trol dynamics processes. Physical problems, where some randomness appears,
can be modeled by stochastic systems. Most researchers have investigated the
controllability results for the autonomous and non-autonomous stochastic systems
[1, 8, 12, 13, 22, 24, 29]. Controllability for first and second-order non-autonomous
systems has been studied by many authors [16, 18, 20, 23, 30, 31].

Controllability theory aims the ability to control a particular system to the
desired state. Exact controllability directs the system to an arbitrary final state.
However, it is possible to drive the system to an arbitrarily small part of the
desired state under approximate controllability. As well as the applications are
concerned, the approximate controllability is more relevant to dynamical systems
[10, 14, 17, 21, 27, 30].

The work of Albert Einstein and Smoluchowski on the theory of Brownian mo-
tions developed a new concept of stochastic differential equations. However, in
1940, a Japanese mathematician Kiyosi Itô established the mathematical theory
of stochastic differential equations. A differential equation involving some sto-
chastic parameters is called a stochastic differential equation. These equations are
used to model various phenomena in many areas such as epidemiology, biology,
mathematical finance, and unstable stock prices. For basic theory of the stochastic
differential equations, refer to [2, 3, 11, 25].
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2 A. RAHEEM*, A. AFREEN, AND A. KHATOON

Since 1948, scientists have been attempting to determine what factors influence
system’s behaviour and how they can be controlled to achieve the desired result.
This concept has been rigorously pursued and is now known as optimal control
theory. Hestenes presented the first mathematical formulation of an optimal con-
trol problem in 1950. It has a wide range of applications in science, engineering,
and operations research.

Optimal control theory is concerned with obtaining an optimized objective func-
tion for a specific system. It is also known as the extension theory of the calculus
of variations. We achieve control policies by optimizing a control system with a
cost functional that depends on control and state variables. We minimize the cost
function by employing optimal control. For instance, the chemical mixture A can
be regarded as a system. It has pH as a state variable x and strength as a control
function u, and the goal is to find the final product quality, where the pH value
can be controlled by the strength u of some components of A.

The optimal control problem is important in many scientific fields, including
engineering, mathematics, and biomedicine. Wei et al. [32] examined the existence
of optimal controls for the mixed-type impulsive integro-differential equation. The
papers [6, 19, 27] contain some work on optimal controllability. The applicability
of delay differential equations with stochastic term leads to the rapid development
of differential equation theory, see [4, 5, 7, 9, 28]. These equations provide a new
technique in many areas of science and economics. Moreover, this theory and its
applications are currently receiving a lot of attention from researchers.

We study the approximate and optimal controllability of the following second-
order non-autonomous stochastic delay differential equation:

d

dt

[
u′(t)− h1

(
t, u(t), ut

)]
= A(t)u(t) +Bw(t) + h2

(
t, u(t), ut

)
+h3

(
t, u(t), ut

)dv(t)

dt
, t ∈ J0 = [0, T0],

u0 = φ ∈ Bθ, u′(0) = χ0 ∈ Z,

(1.1)

where {A(t)}t∈J0 generates a compact analytic semigroup of bounded linear oper-
ators in a Hilbert space Z. The domain D

(
A(t)

)
is independent of t and is dense

in Z i.e. D
(
A(t)

)
= Z. The history function ut : (−∞, 0] → Z, ut(θ) = u(t + θ)

belongs to some abstract phase space Bθ. Let W,H be Hilbert spaces such that
B ∈ L

(
W,Z

)
is bounded linear operator. Let Υt, t ∈ J0 be a normal filtra-

tion and its complete probability space be
(
Ω,Υ, P

)
. Also, let υ be a Q-Weiner

process on
(
Ω,Υ, P

)
having tr(Q) < ∞, where Q is a covariance operator. Let

L0
2 = L2

(
Q1/2H,Z

)
be the space of all Hilbert-Schmidt operators from Q1/2H to

Z with the norm ‖ψ‖2Q = tr[ψQψ∗]. Moreover, w ∈ LpΥ
(
J0,W

)
denotes the control

function, u0, χ0 are Υ-measurable, Z-valued random variables independent of v.
The functions h1, h2 and h3 satisfy some suitable conditions to be specified in the
next section.

Let C
(
J0, L

p(Υ, Z)
)

be the Banach space of continuous maps defined on J0 into

Lp
(
Υ, Z

)
such that

sup
t∈J0

E‖u(t)‖p <∞,
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STOCHASTIC DELAY DIFFERENTIAL EQUATION 3

where Lp
(
Υ, Z

)
denotes the Banach space of all Υ-measurable, Z-valued and p-

integrable random variables. If we assume that C2 = Cp
(
J0, Z

)
, then C2 is a

closed subspace of C
(
J0, L

p(Υ, Z)
)

equipped with the norm

‖ψ‖C2
=

(
sup
t∈J0

E‖ψ(t)‖pZ
) 1
p

.

We define the phase space [15] as:

Let θ : (−∞, 0] → [0,∞) be a continuous function s.t.

∫ 0

−∞
θ(t)dt < ∞. For

any α > 0, define

Bθ =

{
χ : (−∞, 0] → Z such that

(
E‖χ(ν)‖p

) 1
p is bounded and measurable

on [−α, 0] with φ(0) = 0 and

∫ 0

−∞
θ(ν) sup

ν∈[0,s]

(
E‖χ(ν)‖p

) 1
p dν <∞

}
.

Bθ is a Banach space with respect to the norm defined by

‖χ‖Bθ
=

∫ 0

−∞
θ(ν) sup

ν∈[0,s]

(
E‖χ(ν)‖p

) 1
p dν.

2. Preliminaries and Assumptions

The present section introduces various assumptions, notations, definitions and
useful lemmas. Let ψ be a two-parameter evolution operator defined on J0×J0 to
L(Z), where L(Z) denotes the Banach space of all bounded linear operators on Z.
For more details about the evolution operator and semigroup theory, see [17, 26].
We introduce another operator ξ(t, s) associated with the evolution operator ψ(t, s)
as

ξ(t, s) = −∂ψ(t, s)

∂s
.

Definition 2.1. The set of all possible final states in [0, T0] defined by

RT0
(W ) =

{
u(T0, u0, χ0, w) : w ∈W

}
is called the reachable set.

Definition 2.2. The control system (1.1) is approximately controllable on [0, T0],
if

RT0
(W ) = Z,

where RT0
(W ) denotes the closure of RT0

(W ).
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4 A. RAHEEM*, A. AFREEN, AND A. KHATOON

Definition 2.3. (Mild Solution) A stochastic process u ∈ C2 is a mild solution of
(1.1) if for each w ∈ LpΥ

(
J0,W

)
, it satisfies

u(t) = ξ(t, 0)φ(0) + ψ(t, 0)
[
χ0 − h1

(
0, φ(0), φ

)]
+

∫ t

0

ξ(t, s)h1

(
s, u(s), us

)
ds

+

∫ t

0

ψ(t, s)Bw(s)ds+

∫ t

0

ψ(t, s)h2

(
s, u(s), us

)
ds

+

∫ t

0

ψ(t, s)h3

(
s, u(s), us

)
dv(s). (2.1)

Lemma 2.4. [22] For any uT0
∈ Lp(ΥT0

, Z), there exists X ∈ LpΥ(J0, L
0
2) such

that

uT0
= EuT0

+

∫ T0

0

X(s)dv(s).

Lemma 2.5. [21] Let µ : J0 × Ω→ L0
2 be strongly measurable mapping such that∫ T0

0
E‖µ(s)‖p

L0
2
ds <∞. Then

E

∥∥∥∥∫ t

0

µ(s)dv(s)

∥∥∥∥p ≤ Lµ ∫ t

0

E‖µ(s)‖pds,

for all 0 ≤ t ≤ T0 and p ≥ 2, where Lµ is the constant involving p and T0.

Definition 2.6. A controllability map for the system (1.1) on J0 is the bounded
linear map ST0 : L2(J0,W )→ Z defined as

ST0w :=

∫ T0

0

ψ(T0, s)Bw(s)ds,

and the controllability Grammian operator for (1.1) is given by

FT0
0 := ST0(ST0)∗,

where

FT0
0 =

∫ T0

0

ψ(t, s)BB∗ψ∗(t, s)ds,

where ∗ denotes the adjoint. The resolvent of FT0
0 is given by

R(λ, FT0
0 ) = (λI + FT0

0 )−1.

Consider the following assumptions:

(H1) There exist constants M, M ′ and M1, N̂ > 0 such that

‖ψ(t, s)‖ ≤M, ‖ξ(t, s)‖ ≤M ′, ‖B‖ ≤M1, ‖ut‖Bθ
≤ N̂‖u(t)‖.

(H2) There exist constants Lψ and Lξ > 0 such that

‖ψ(t2, s)− ψ(t1, s)‖ ≤ Lψ|t2 − t1|,
and

‖ξ(t2, s)− ξ(t1, s)‖ ≤ Lξ|t2 − t1|.
(H3) For every t ∈ J0;u1, u2, ũ1, ũ2 ∈ Z, there exist constants Mh1

and M̃h1
> 0

such that the nonlinear map h1 : J0 × Z ×Bθ → Z satisfies
(i) E‖h1(t, u1, ũ1)− h1(t, u2, ũ2)‖p ≤Mh1

[
‖u1 − u2‖p + ‖ũ1 − ũ2‖pBθ

]

4

124



STOCHASTIC DELAY DIFFERENTIAL EQUATION 5

(ii) ‖h1(t, u, ũ)‖p ≤ M̃h1

(
1 + ‖u‖p + ‖ũ‖pBθ

)
.

(H4) For every t ∈ J0;u1, u2, ũ1, ũ2 ∈ Z, there exist constants Mh2
and M̃h2

> 0
such that the nonlinear map h2 : J0 × Z ×Bθ → Z satisfies

(i) E‖h2(t, u1, ũ1)− h2(t, u2, ũ2)‖p ≤Mh2

[
‖u1 − u2‖p + ‖ũ1 − ũ2‖pBθ

]
(ii) E‖h2(t, u, ũ)‖p ≤ M̃h2

(
1 + ‖u‖p + ‖ũ‖pBθ

)
.

(H5) For every t ∈ J0;u1, u2, ũ1, ũ2 ∈ Z, there exist constants Mh3
and M̃h3

> 0
such that the nonlinear map h3 : J0 × Z ×Bθ → Z satisfies

(i) E‖h3(t, u1, ũ1)− h3(t, u2, ũ2)‖p ≤Mh3

[
‖u1 − u2‖p + ‖ũ1 − ũ2‖pBθ

]
(ii) E‖h3(t, u, ũ)‖p ≤ M̃h3

(
1 + ‖u‖p + ‖ũ‖pBθ

)
.

(H6) (i) The resolvent operator (λI−A(t))−1, satisfies the following condition:∥∥(λI −A(t))−1
∥∥ ≤ C0

|λ|+ 1
for Re(λ) ≥ 0.

(ii) For each t ∈ J0, the operator λ
(
λI + FT0

0

)−1 → 0 in the strong
operator topology as λ→ 0+.

(iii) There exist constants LA > 0 and 0 < α ≤ 1 such that∥∥(A(t)−A(ν)
)
A(s)−1

∥∥ ≤ LA|t− ν|α, for t, ν, s ∈ J0.

For any λ > 0 and uT0
, we define the control function

wλ
(
t, u, ut

)
= B∗ψ∗(T0, t)

{(
λI + FT0

0

)−1
(
EuT0

− ξ(T0, 0)φ(0)

−ψ(T0, 0)
[
χ0 − h1

(
0, φ(0), φ

)])
+

∫ T0

0

(
λI + FT0

0

)−1
X(s)dv(s)

}
−B∗ψ∗(T0, t)

∫ T0

0

(
λI + FT0

0

)−1
ξ(T0, s)h1

(
s, u(s), us

)
ds

−B∗ψ∗(T0, t)

∫ T0

0

(
λI + FT0

0

)−1
ψ(T0, s)h2

(
s, u(s), us

)
ds

−B∗ψ∗(T0, t)

∫ T0

0

(
λI + FT0

0

)−1
ψ(T0, s)h3

(
s, u(s), us

)
dv(s).

3. Existence and Uniqueness of Mild Solution

Lemma 3.1. There exist constants K̂1, K̂2 > 0 such that
E
∥∥wλ(t, u1, (u1)t)− wλ(t, u2, (u2)t))

∥∥p
≤ K̂1

(|λ|+ 1)p

∫ t

0

[
E
∥∥u1(s)− u2(s)

∥∥p + E
∥∥(u1)s − (u2)s

∥∥p
Bθ

]
ds,

and

E
∥∥wλ(t, u, (u)t)

∥∥p ≤ K̂2

(|λ|+ 1)p

[
1 +

∫ t

0

(
E
∥∥u(s)

∥∥p + E
∥∥us∥∥pBθ

)
ds

]
.

5
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6 A. RAHEEM*, A. AFREEN, AND A. KHATOON

Proof. E
∥∥wλ(t, u1, (u1)t

)
− wλ

(
t, u2, (u2)t

)∥∥p
≤ 3p−1E

∥∥∥∥B∗ψ∗(T0, t)

∫ t

0

(
λI + FT0

0

)−1
ξ(T0, s)

[
h1

(
s, u1(s), (u1)s

)
−h1

(
s, u2(s), (u2)s

)]
ds

∥∥∥∥p
+3p−1E

∥∥∥∥B∗ψ∗(T0, t)

∫ t

0

(
λI + FT0

0

)−1
ψ(T0, s)

[
h2

(
s, u1(s), (u1)s

)
−h2

(
s, u2(s), (u2)s

)]
ds

∥∥∥∥p
+3p−1E

∥∥∥∥B∗ψ∗(T0, t)

∫ t

0

(
λI + FT0

0

)−1
ψ(T0, s)

[
h3

(
s, u1(s), (u1)s

)
−h3

(
s, u1(s), (u2)s

)]
dv(s)

∥∥∥∥p.
Using (H3)-(H6) and Holder’s inequality, we have

E
∥∥wλ(t, u1, (u1)t

)
− wλ

(
t, u2, (u2)t

)∥∥p
≤

3p−1
(
M1MC0

)p
(|λ|+ 1)p

[(
M ′
)p
T
p
q

0 Mh1
+MpT

p
q

0 Mh2
+MpLh3

Mh3

]
×
∫ t

0

(
E
∥∥u1(s)− u2(s)

∥∥p + E
∥∥(u1)s − (u2)s

∥∥p
Bθ

)
ds

=
K̂1

(|λ|+ 1)p

∫ t

0

(
E
∥∥u1(s)− u2(s)

∥∥p + E
∥∥(u1)s − (u2)s

∥∥p
Bθ

)
ds,

where

K̂1 = 3p−1
(
M1MC0

)p [(
M ′
)p
T
p
q

0 Mh1 +MpT
p
q

0 Mh2 +MpLh3Mh3

]
.

Similarly, one can prove the second inequality.
�

Theorem 3.2. Assume that conditions (H1)-(H6) hold. Then the system (1.1)
has a unique mild solution on [0, T0] provided that

(4p−1)n(1 + N̂)n(T0)n
[
(M ′)pT

p
q

0 Mh1 + (MM1)pT
p
q

0

K̂1

(|λ|+ 1)p
+MpT

p
q

0 Mh2

+MpLh3
Mh3

]n
< 1.

Proof. For any λ > 0, define the operator

Fλ : C
(
J0, L

p(Υ, Z)
)
→ C

(
J0, L

p(Υ, Z)
)

by

6126



STOCHASTIC DELAY DIFFERENTIAL EQUATION 7(
Fλu

)
(t) = ξ(t, 0)φ(0) + ψ(t, 0)

[
χ0 − h1

(
0, φ(0), φ

)]
+

∫ t

0

ξ(t, s)h1

(
s, u(s), us

)
ds+

∫ t

0

ψ(t, s)Bwλ
(
s, u(s), us

)
ds

+

∫ t

0

ψ(t, s)h2

(
s, u(s), us

)
ds+

∫ t

0

ψ(t, s)h3

(
s, u(s), us

)
dv(s).

Step 1: For any u ∈ C
(
J0, L

p(Υ, Z)
)
, Fλu is continuous on J0 in the Lp-sense.

Let t1, t2 ∈ [0, T0] such that t1 < t2, we have

E
∥∥(Fλu)(t2)−

(
Fλu

)
(t1)

∥∥p
≤ 10p−1

[
E
∥∥[ξ(t2, 0)− ξ(t1, 0)

]
φ(0)

∥∥p
+E
∥∥(ψ(t2, 0)− ψ(t1, 0)

)[
χ0 − h1

(
0, φ(0), φ

)]∥∥p
+E

∥∥∥∥∫ t1

0

[
ξ(t2, s)− ξ(t1, s)

]
h1

(
s, u(s), us

)
ds

∥∥∥∥p
+E

∥∥∥∥∫ t2

t1

ξ(t2, s)h1

(
s, u(s), us

)
ds

∥∥∥∥p
+E

∥∥∥∥∫ t1

0

[
ψ(t2, s)− ψ(t1, s)

]
Bwλ

(
s, u(s), us

)
ds

∥∥∥∥p
+E

∥∥∥∥∫ t2

t1

ψ(t2, s)Bw
λ
(
s, u(s), us

)
ds

∥∥∥∥p
+E

∥∥∥∥∫ t1

0

[
ψ(t2, s)− ψ(t1, s)

]
h2

(
s, u(s), us

)
ds

∥∥∥∥p
+E

∥∥∥∥∫ t2

t1

ψ(t2, s)h2

(
s, u(s), us

)
ds

∥∥∥∥p
+E

∥∥∥∥∫ t1

0

[
ψ(t2, s)− ψ(t1, s)

]
h3

(
s, u(s), us

)
dv(s)

∥∥∥∥p
+E

∥∥∥∥∫ t2

t1

ψ(t2, s)h3

(
s, u(s), us

)
dv(s)

∥∥∥∥p ].
Using assumptions (H1), (H2) and Holder’s inequality, we get

E
∥∥(Fλu)(t2)− (Fλu)(t1)

∥∥p
≤ 10p−1

[
E
∥∥[ξ(t2, 0)− ξ(t1, 0)

]
φ(0)

∥∥p
+E
∥∥[ψ(t2, 0)− ψ(t1, 0)

][
χ0 − h1

(
0, φ(0), φ

)]∥∥p
+t

p
q

1

∫ t1

0

E
∥∥[ξ(t2, s)− ξ(t1, s)]h1

(
s, u(s), us

)∥∥pds
+(M ′)p(t2 − t1)

p
q

∫ t2

t1

E
∥∥h1

(
s, u(s), us

)∥∥pds

7
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8 A. RAHEEM*, A. AFREEN, AND A. KHATOON

+t
p
q

1

∫ t1

0

E
∥∥[ψ(t2, s)− ψ(t1, s)

]
Bwλ

(
s, u(s), us

)∥∥pds
+Mp(t2 − t1)

p
q

∫ t2

t1

E
∥∥Bwλ(s, u(s), us

)∥∥pds
+t

p
q

1

∫ t1

0

E
∥∥[ψ(t2, s)− ψ(t1, s)

]
h2

(
s, u(s), us

)∥∥pds
+Mp(t2 − t1)

p
q

∫ t2

t1

E
∥∥h2

(
s, u(s), us

)∥∥pds
+Lh3

∫ t1

0

E
∥∥[ψ(t2, s)− ψ(t1, s)

]
h3

(
s, u(s), us

)∥∥pds
+MpLh3

∫ t2

t1

E
∥∥h3

(
s, u(s), us

)∥∥pds].
By using strong continuity of ξ(t, s), ψ(t, s) and Lebesgue’ s dominated convergence

theorem, we conclude that E
∥∥(Fλu)(t2) − (Fλu)(t1)

∥∥p → 0 as t2 → t1, which
implies that Fλu is continuous on [0, T0].

Step 2: We show that Fλ(C2) ⊂ C2.

E
∥∥(Fλu)(t)∥∥pC2

≤ 6p−1

[
sup
t∈J0

E
∥∥ξ(t, 0)φ(0)

∥∥p + sup
t∈J0

E
∥∥ψ(t, 0)

[
χ0 − h1

(
0, φ(0), φ

)]∥∥p
+ sup
t∈J0

∫ t

0

E
∥∥ξ(t, s)h1

(
s, u(s), us

)∥∥pds
+ sup
t∈J0

∫ t

0

E
∥∥ψ(t, s)Bwλ

(
s, u(s), us

)∥∥pds
+ sup
t∈J0

∫ t

0

E
∥∥ψ(t, s)h2

(
s, u(s), us

)∥∥pds
+Lh3

sup
t∈J0

∫ t

0

E
∥∥ψ(t, s)h3

(
s, u(s), us

)∥∥pds]
≤ 6p−1

[
(M ′)pE‖φ(0)‖p +MpE

∥∥[χ0 − h1

(
0, φ(0), φ

)]∥∥p
+(M ′)pM̃h1T0

(
1 + ‖u‖pC2

+ ‖ut‖pBθ
)

+
MpMp

1 K̂2T0

(|λ|+ 1)p

(
1 + ‖u‖pC2

+ ‖ut‖pBθ
)

+MpM̃h2T0

(
1 + ‖u‖pC2

+ ‖ut‖pBθ
)

+Lh3
MpM̃h3

T0

(
1 + ‖u‖pC2

+ ‖ut‖pBθ
)]
.

Above inequality implies that ‖Fλu‖pC2
< ∞. Since Fλu is continuous [0, T0], we

have Fλ(C2) ⊂ C2.

8
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STOCHASTIC DELAY DIFFERENTIAL EQUATION 9

Step 3: We show that for each fixed λ, there exists n ∈ N such that Fnλ is a
contraction on C2. To prove this, let u1, u2 ∈ C2 and t ∈ [0, T0], we have

E
∥∥(Fλu1

)
(t)−

(
Fλu2

)
(t)
∥∥p

≤ 4p−1

[
E

∥∥∥∥∫ t

0

ξ(t, s)
[
h1

(
s, u1(s), (u1)s

)
− h1

(
s, u2(s), (u2)s

)]
ds

∥∥∥∥p
+E

∥∥∥∥∫ t

0

ψ(t, s)B
[
wλ
(
s, u1(s), (u1)s

)
− wλ

(
s, u2(s), (u2)s

)]
ds

∥∥∥∥p
+E

∥∥∥∥∫ t

0

ψ(t, s)
[
h2

(
s, u1(s), (u1)s

)
− h2

(
s, u2(s), (u2)s

)]
ds

∥∥∥∥p
+E

∥∥∥∥∫ t

0

ψ(t, s)
[
h3

(
s, u1(s), (u1)s

)
− h3

(
s, u2(s), (u2)s

)]
dv(s)

∥∥∥∥p].
Using (H1)-(H5) and Lemma 3.1, we get

E
∥∥(Fλu1

)
(t)−

(
Fλu2

)
(t)
∥∥p

≤ 4p−1

[
(M ′)pT

p
q

0 Mh1
+ (MM1)pT

p
q

0

K̂1

(|λ|+ 1)p
+MpT

p
q

0 Mh2
+MpLh3

Mh3

]
×
∫ t

0

(
E
∥∥u1(s)− u2(s)

∥∥p + E
∥∥(u1)s − (u2)s

∥∥p
Bθ

)
ds

≤ 4p−1

[
(M ′)pT

p
q

0 Mh1 + (MM1)pT
p
q

0

K̂1

(|λ|+ 1)p
+MpT

p
q

0 Mh2 +MpLh3Mh3

]
×
∫ t

0

(1 + N̂)E
∥∥u1(s)− u2(s)

∥∥pds
≤ 4p−1(1 + N̂)T0

[
(M ′)pT

p
q

0 Mh1
+ (MM1)pT

p
q

0

K̂1

(|λ|+ 1)p

+MpT
p
q

0 Mh2 +MpLh3Mh3

]∥∥u1 − u2

∥∥p
C2
.

Using successive iterations, we get

E
∥∥(Fnλ u1

)
(t)−

(
Fnλ u2

)
(t)
∥∥p

≤ (4p−1)n(1 + N̂)n(T0)n
[
(M ′)pT

p
q

0 Mh1
+ (MM1)pT

p
q

0

K̂1

(|λ|+ 1)p

+MpT
p
q

0 Mh2
+MpLh3

Mh3

]n∥∥u1 − u2

∥∥p
C2
.

Taking supremum over [0, T0], we get

9
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10 A. RAHEEM*, A. AFREEN, AND A. KHATOON∥∥(Fnλ u1

)
−
(
Fnλ u2

)∥∥p
C2

≤ (4p−1)n(1 + N̂)n(T0)n
[
(M ′)pT

p
q

0 Mh1 + (MM1)pT
p
q

0

K̂1

(|λ|+ 1)p

+MpT
p
q

0 Mh2
+MpLh3

Mh3

]n∥∥u1 − u2

∥∥p
C2
,

where n is sufficiently large such that

(4p−1)n(1 + N̂)n(T0)n
[
(M ′)pT

p
q

0 Mh1
+ (MM1)pT

p
q

0

K̂1

(|λ|+ 1)p

+MpT
p
q

0 Mh2
+MpLh3

Mh3

]n
< 1.

Thus, Fnλ is a contraction mapping. Therefore, by Banach contraction principle,
Fλ has a unique fixed point uλ ∈ C2 which is a mild solution of (1.1). �

4. Approximate Controllability

Theorem 4.1. Let the assumptions (H1)-(H6) hold and the functions hi : J0 ×
Z × Bθ → Z, where i = 1, 2, 3 be uniformly bounded. Then the system (1.1) is
approximately controllable on [0, T0].

Proof. From Theorem 3.2, Fλu has a fixed point uλ in C2 which is a mild solution
for the control function:

wλ
(
t, uλ

)
= B∗ψ∗(T0, t)

(
λI + FT0

0

)−1
p(uλ),

where

p(uλ) = EuT0 − ξ(t, 0)φ(0)− ψ(t, 0)
[
χ0 − h1

(
0, φ(0), φ

)]
+

∫ t

0

X(s)dv(s)

−
∫ t

0

ξ(T0, s)h1

(
s, uλ(s), (uλ)s

)
ds−

∫ t

0

ψ(T0, s)h2

(
s, uλ(s), (uλ)s

)
ds

−
∫ t

0

ψ(T0, s)h3

(
s, uλ(s), (uλ)s

)
dv(s).

10
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Further, we have

uλ(T0) = ξ(T0, 0)φ(0) + ψ(T0, 0)
[
χ0 − h1

(
0, φ(0), φ

)]
+

∫ T0

0

ξ(T0, s)h1

(
s, uλ(s), (uλ)s

)
ds

+

∫ T0

0

ψ(T0, s)Bw
λ
(
s, uλ(s), (uλ)s

)
ds

+

∫ T0

0

ψ(T0, s)h2

(
s, uλ(s), (uλ)s

)
ds

+

∫ T0

0

ψ(T0, s)h3

(
s, uλ(s), (uλ)s

)
dv(s)

= EuT0
+

∫ T0

0

X(s)dv(s)− p(uλ) + F0
T0
(
λI + FT0

0

)−1
p(uλ)

= EuT0
+

∫ T0

0

X(s)dv(s)− λR
(
λ, F0

T0
)
p(uλ).

Since the functions hi : J0×Z×Bθ → Z where i = 1, 2, 3 are uniformly bounded.
It follows that hi

(
s, u(s), us

)
are bounded in L2(J0, Z). Thus, there exist subse-

quences hi
(
s, uλ(s), (uλ)s

)
converges to hi(s).

We define

α = EuT0
+

∫ T0

0

X(s)dv(s)− ξ(T0, 0)φ(0)− ψ(T0, 0)
[
χ0 − h1

(
0, φ(0), φ

)]
−
∫ T0

0

ξ(T0, s)h1(s)ds−
∫ T0

0

ψ(T0, s)h2(s)ds−
∫ T0

0

ψ(T0, s)h3(s)dv(s).

We have,
E
∥∥p(uλ)− α

∥∥p
≤ 3p−1

∫ T0

0

E
∥∥ξ(T0, s)

[
h1

(
s, uλ(s), (uλ)s

)
− h1(s)

]∥∥p ds
+3p−1

∫ T0

0

E
∥∥ψ(T0, s)

[
h2

(
s, uλ(s), (uλ)s

)
− h2(s)

]∥∥p ds
+3p−1

∫ T0

0

E
∥∥ψ(T0, s)

[
h3

(
s, uλ(s), (uλ)s

)
− h3(s)

]∥∥p dv(s)

≤ 3p−1M ′p
∫ T0

0

E
∥∥h1

(
s, uλ(s), (uλ)s

)
− h1(s)

∥∥p ds
+3p−1Mp

∫ T0

0

E
∥∥h2

(
s, uλ(s), (uλ)s

)
− h2(s)

∥∥p ds
+3p−1Mp

∫ T0

0

E
∥∥h3

(
s, uλ(s), (uλ)s

)
− h3(s)

∥∥p dv(s)→ 0

as λ→ 0+.
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12 A. RAHEEM*, A. AFREEN, AND A. KHATOON

Again,

E

∥∥∥∥uλ − EuT0 −
∫ T0

0

X(s)dv(s)

∥∥∥∥p = E
∥∥∥λR(λ, FT0

0

)
p(uλ)

∥∥∥p
≤ E

∥∥∥λR(λ, FT0
0

)
(α)
∥∥∥p

+E
∥∥∥λR(λ, FT0

0

)[
p(uλ)− α

]∥∥∥p → 0

as λ→ 0+.

This completes the proof.
�

5. Optimal Controllability

In order to discuss the optimal controllability, we define the performance index

Ĩ(w) = E

{∫ T0

0

G̃
(
t, u(t), ut, w(t)

)
dt

}
, (5.1)

where G̃ is a functional defined on J0 × Z × Z ×Wad, where Wad denotes the set
of all admissible control and consequently is closed and convex in L2(J0,W ).

Theorem 5.1. If all the conditions of Theorem 3.2 hold, then there exists an
optimal control of the problem (1.1) provided that

4p−1
[
M ′pMp

h1
+Mp

(
Mp
h2

+ Lh3
Mp
h3

)]
T0(1 + N̂) < 1.

Proof. It is sufficient to prove that there exists w0 ∈Wad which minimize Ĩ(w).

If inf
w∈Wad

Ĩ(w) =∞, then result is trivially true.

If inf
w∈Wad

Ĩ(w) = ε0 < ∞, then we can find a sequence {wn} in Wad such that

Ĩ(wn) → ε0. As Wad is a closed and convex subset of L2(J0,W ), the sequence
{wn} has a weakly convergent subsequence {wm} converging to w0 ∈Wad. Using
Theorem 3.2, for each wm ∈ Wad, there exists a mild solution um of (1.1) such
that:

um(t) = ξ(t, 0)φ(0) + ψ(t, 0)
[
χ0 − h1

(
0, φ(0), φ

)]
+

∫ t

0

ξ(t, s)h1

(
s, um(s), ums

)
ds+

∫ t

0

ψ(t, s)Bwm(s)ds

+

∫ t

0

ψ(t, s)h2

(
s, um(s), ums

)
ds+

∫ t

0

ψ(t, s)h3

(
s, um(s), ums

)
dv(s).

Similarly, corresponding to w0, there exists a mild solution u0 of (1.1) such that:

u0(t) = ξ(t, 0)φ(0) + ψ(t, 0)
[
χ0 − h1

(
0, φ(0), φ

)]
+

∫ t

0

ξ(t, s)h1

(
s, u0(s), u0

s

)
ds

+

∫ t

0

ψ(t, s)Bw0(s)ds+

∫ t

0

ψ(t, s)h2

(
s, u0(s), u0

s

)
ds

+

∫ t

0

ψ(t, s)h3

(
s, u0(s), u0

s

)
dv(s).
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We have

E
∥∥um(t)− u0(t)

∥∥p
≤ 4p−1E

∥∥∥∥ ∫ t

0

ξ(t, s)
[
h1

(
s, um(s), ums

)
− h1

(
s, u0(s), u0

s

)]
ds

∥∥∥∥p
+4p−1E

∥∥∥∥∫ t

0

ψ(t, s)
[
Bwm(s)−Bw0(s)

]
ds

∥∥∥∥p
+4p−1E

∥∥∥∥∫ t

0

ψ(t, s)
[
h2

(
s, um(s), ums

)
− h2

(
s, u0(s), u0

s

)]
ds

∥∥∥∥p
+4p−1E

∥∥∥∥∫ t

0

ψ(t, s)
[
h3

(
s, um(s), ums

)
− h3

(
s, u0(s), u0

s

)]
dv(s)

∥∥∥∥p.
Using (H1), (H3)-(H5), Lemma 2.5 and Holder’s inequality, we obtain

E
∥∥um(t)− u0(t)

∥∥p
≤ 4p−1M ′pMp

h1

∫ t

0

[
E
∥∥um(s)− u0(s)

∥∥p + E
∥∥ums (s)− u0

s(s)
∥∥p
Bθ

]
ds

+4p−1MpMp
1

∫ t

0

E
∥∥wm(s)− w0(s)

∥∥pds
+4p−1MpMp

h2

∫ t

0

[
E
∥∥um(s)− u0(s)

∥∥p + E
∥∥ums (s)− u0

s(s)
∥∥p
Bθ

]
ds

+4p−1MpMp
h3
Lh3

∫ t

0

[
E
∥∥um(s)− u0(s)

∥∥p + E
∥∥ums (s)− u0

s(s)
∥∥p
Bθ

]
ds

≤ 4p−1
[
M ′pMp

h1
+Mp

(
Mp
h2

+ Lh3M
p
h3

)]
T0(1 + N̂)E

∥∥um(s)− u0(s)
∥∥p

+4p−1MpMp
1T0E

∥∥wm(s)− w0(s)
∥∥p.

Since 4p−1
[
M ′pMp

h1
+Mp

(
Mp
h2

+Lh3M
p
h3

)]
T0(1+N̂) < 1 and E

∥∥wm(t)−w0(t)
∥∥p →

0, we conclude that um → u0.
Applying Balder’s theorem [6] , we get

ε0 = lim
m→∞

E

{∫ T0

0

G̃
(
t, um(t), umt , w

m(t)
)
dt

}
.

≤ E

{∫ T0

0

G̃
(
t, u0(t), u0

t , w
0(t)

)
dt

}
= Ĩ(w0) ≥ ε0.

This shows that Ĩ(w0) = ε0, i.e. Ĩ attains its minimum value at w0 ∈Wad. �
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6. Application

Consider the following example:

∂

∂t

(
∂z(x, t)

∂t

)
= −c(x, t) ∂

2

∂x2
z(x, t) +

∂

∂t
h1

(
t, z(x, t), z(x, t− δ)

)
+Bw(x, t) + h2

(
t, z(x, t), z(x, t− δ)

)
+h3

(
t, z(x, t), z(x, t− δ)

)dv(t)

dt
,

x ∈ [0, 1], t ∈ [0, T0],
z(x, t− δ) = φ(x, t− δ), δ > 0,
z′(x, 0) = χ0,

(6.1)

where c(x, t) is uniformly Hölder continuous i.e. there exist K > 0 and ᾱ ∈ (0, 1)
such that ∥∥c(x, t1)− c(x, t2)

∥∥ ≤ K|t1 − t2|ᾱ,
φ(x, t− δ) ∈ Bθ, and χ0 ∈ Z.
Define the functions

h1

(
t, z(x, t), z(x, t− δ)

)
= 3t2 cos

(
2 + |z(x, t)|+ |z(x, t− δ)|

)
,

h2

(
t, z(x, t), z(x, t− δ)

)
= sin

(
πt+ |z(x, t)|+ |z(x, t− δ)|

)
,

and

h3

(
t, z(x, t), z(x, t− δ)

)
=

2et

1 + et
sin
(
1 + |z(x, t)|+ |z(x, t− δ)|

)
.

Functions h1, h2 and h3 satisfy the assumptions (H3), (H4) and (H5), respec-
tively. v(t) is defined on a filtered probability space

(
Ω,Υ, Q

)
. To write system

(6.1) into abstract form, let Z = L2[0, 1], H = R and define the operator A(t) by

A(t)z(x, t) = −c(x, t) ∂
2

∂x2
z(x, t)

with

D
(
A(t)

)
=
{
z ∈ Z|z, z′ are absolutely continuous z′′ ∈ Z and z(0) = z(1) = 0

}
,

which is independent of t.
A(t) generates an analytic compact semigroup defined by

T (t)z =

∞∑
n=1

e−n
2t〈z, yn〉yn,

where

yn(x) =

√
2

π
sin(nx)

are eigen functions corresponding to the eigenvalues λn = −n2, where n ∈ N.
Define an infinite dimensional space

W =

{
w : w =

∞∑
n=2

wnyn(x)
∣∣∣ ∞∑
n=2

w2
n <∞

}
with the norm ‖w‖ =

( ∞∑
n=2

w2
n

)1/2

.

Define the operator B : W → Z by Bw(t) = 2w2(t)y1(x) +
∞∑
n=2

wn(t)yn(x),

where B ∈ L(W,Z) .
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Clearly, the problem (6.1) satisfies all the conditions of Theorem 4.1. Therefore,
the system (6.1) is approximately controllable on [0, T0].

7. Conclusion

The main focus of this paper is to establish some sufficient conditions for the
controllability of the second-order non-autonomous stochastic delay differential
equation. Initially, we studied the existence and uniqueness of the mild solution
of (1.1) and then, we examined the approximate and optimal controllability of
the system. We used the semigroup theory, stochastic analysis techniques, and
Banach contraction principle to obtain the results. An example is also included to
show the efficacy of the result. In future, we will study fractional order semilinear
stochastic differential equation having several delays in control.

Acknowledgment. The authors would like to thank the referees for their valuable
suggestions. The second and third authors acknowledge UGC, India, for providing
financial support through MANF F.82-27/2019 (SA-III)/ 4453 and F.82-27/2019
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