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Abstract. This study determines the numerical solution of linear mixed

Volterra-Fredholm integral equations of the second kind using the linear spline

function. The proposed method is based on using the unknown function’s lin-
ear spline function at an arbitrary point and converting the Volterra-Fredholm

integral equation into a system of linear equations with regard to the unknown

function using the integration method. By solving the given system, an ap-
proximate solution can be easily established. This is done with the help of a

computer program that uses the Python code program version 3.9. Further-
more, we demonstrated theoretical results on the method’s uniqueness and

convergence analyses.

1. Introduction

Many problems of mathematical physics can be stated in the form of integral
equations. Some of these will be discussed as examples and treated explicity. To
make a list of such applications would be almost impossible. Suffice it to say that
there is almost no area of applied mathematics and mathematical physics where
integral equations do not play a role, hence, the literature on integral equations
and their application is vast.
In recent year, many studies have been carried out and results have been found
as the interplay of Fredholm integral equation, Volterra integral equation, mixed
Volterra-Fredholm integral equation and numerical part of these three type of
integral equation.

In this work, we consider the linear mixed Volterra–Fredholm integral equations
(MVFIEs) of the form:

u(x) = f(x) + λ1

∫ x

a

K(x, t)u(t)dt+ λ2

∫ b

a

L(x, t)u(t)dt, (1.1)

where the functions f(x), and the kernelsK(x, t) and L(x, t) are known L2 analytic
functions and λ1, λ2 are arbitrary constants, x is variable and u(x) is the unknown
continuous function to be determined. Such equations arise in many applications
in areas of physics, fluid dynamics, electrodynamics, and biology. Various formu-
lations of boundary value problems, with Neumann, Dirichlet or mixed boundary

2000 Mathematics Subject Classification. 65R20; 65D07.
Key words and phrases. Volterra Integral Equation, Fredholm Integral Equation, Spline

Function.

1

Global and Stochastic Analysis, Vol.9 No. 2 (March, 2022) 
Special Issue: Modern Problems of Equations of Mathematical Physics and its Applications

99



2 SARFRAZ H. SALIM1, ROSTAM K. SAEED2, AND KARWAN H.F.JWAMER3

conditions are reduced to such integral equations. They also provide mathemati-
cal models for the development of an epidemic and numerous other physical and
biological problems.

It is well-known that the analytical solution of MVFIEs generally does not
exist except for special cases, and thus, numerical method was the successful and
effective method for solving these problems. Several numerical and approximate
methods are used for solving MVFIEs such as Taylor polynomial by Yalcinbacs
and Sezer [16]; Yalcinbas [15],least square method and Chebyshev polynomials
by Dastjerdi and Ghaini [5], Lagrange collocation method by Wang [14], Series
solution, successive approximation method and method of successive substitutions
by Saeed and Berdawood [13], Trigonometric Functions and Laguerre Polynomials
by Hasan and Sulaiman [7], Touchard Polynomials (T-Ps) method by Al-Miah and
Taie [1], Some iterative numerical methods by Micula [12], Taylor polynomial by
Didgara and Vahidi [6]. The reader can consult the following references for other
information (Jerry [8], Atkinson [2], Bekelman and Gross [3], Lange and Herbert
[11], Kaminaka and Wadati [9], Ladopoulos [10]) and the references therein.

This paper wishes to study Equation (1.1) by using linear spline function. The
rest of this paper is organized as follows. In Section 2, we introduce our method
for solving equation(1.1). In Section 3, we prove the uniqueness and convergence
of the prsented method. In Section 4, we investigate several numerical examples,
which demonstrate the effectiveness of our technique. In Section 5, some tentative
conclusions will be given.

2. Description of the method

In This section, we solve equation(1.1) by using linear spline function (Cheney
and Kincaid [4]). The unknown function u(x) in (1.1)approximated by the linear
spline function S(x). In the interval [xi, xi+1] the linear spline function defined by
the following formula:

Si(x) = Ai(x)Si +Bi(x)Si+1, (2.1)
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where Ai(x) = xi+1−x
h and Bi(x) = x−xi

h where h = xi+1 − xi for all i =
0, 1, · · · , n− 1. Now substituting (2.1) in (1.1) and letting x = xi, we get

Si = f(xi) + λ1

j=i∑
j=0

[

∫ xj+1

xj

K(xi, t)[AjSj +BjSj+1]dt] + λ2[

∫ x1

a

L(xi, t)S0(t)dt

+

∫ x2

x1

L(xi, t)S1(t)dt+ · · ·+
∫ xn=b

xn−1

L(xi, t)Sn−1(t)dt]

= f(xi) +
λ1

h

j=i∑
j=0

Sj

∫ xj+1

xj

K(xi, t)(xj+1 − t)dt

+
λ1

h

j=i∑
j=0

Sj+1

∫ xj+1

xj

K(xi, t)(t− xj)dt

λ2

h

∫ x1

a

L(xi, t)[(x1 − t)S0 + (t− x0)S1]dt

+
λ2

h

∫ x2

x1

L(xi, t)[(x2 − t)S1 + (t− x1)S2]dt

+ · · ·+ λ2

h

∫ xn=b

xn−1

L(xi, t)[(xn − t)Sn−1 + (t− xn−1)Sn]dt.

By computing the integrals in the above equation using trapezoidal rule, we get

Si = fi +
λ1h

2
[

j=i∑
j=0

SjK(xi, xj) + Sj+1K(xi, xj+1)]︸ ︷︷ ︸
i=1,2,· · · ,n-1 and j≤ i

+
λ2h

2
[L(xi, x0) + 2

n−1∑
j=1

L(xi, xj)Sj + L(xi, xn)]︸ ︷︷ ︸
i=1,2,· · · ,n

; i = 0, 1, ..., n. (2.2)

In this way, Equation (2.2) construct a system of linear equations with respect to
the unknown function Si. Briefly, this system can be rewritten as follows:

CS = F, (2.3)

where S =


S0

S1

...
Sn

 , F=


f0
f1
...
fn

 and C =
[
C0 C1 C2 . . . Cn−1 Cn

]
where

C0 =



1− λ2h
2 L00

−h
2 (λ1K10 + λ2L10)

−h
2 (λ1K20 + λ2L20)

...
−h

2 (λ1K(n−1)0 + λ1L(n−1)0)
−h

2 (λ1K(n−1)0 + λ1L(n−1)0)


, C1 =



−λ2hL01

1− h
2 (λ1K11 + λ2L11)

−h(λ1K21 + λ2L21)
...

−h(λ1K(n−1)1 + λ2L(n−1)1)
−h(λ1Kn1 + λ2Ln1)


,
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C2 =



−λ2hL02

−λ2hL12

1− h
2 (λ1K22 + λ2L22)

...
−h(λ1K(n−1)2 + λ2L(n−1)2)

−h(λ1Kn2 + λ2Ln2)


, . . . ,

Cn−1 =



−λ2hL0(n−1)

−λ2hL1(n−1)

−λ2hL2(n−1)

...
1− h

2 (λ1K(n−1)(n−1) + λ2L(n−1)(n−1))
−h(λ1Kn(n−1) + λ2Ln(n−1)))


,

and Cn =



−λ2h
2 L0n

−λ2h
2 L1n

−λ2h
2 L2n

...

−λ2h
2 L(n−1)(n−1)

1− h
2 (λ1Knn + λ2Lnn)


.

In the sequel, making use of a standard rule to the resulting system yields an
approximate solution of Equation (1.1) as Si(x) given by the Equation (2.1).

3. Uniquness and convergence theorem

In this section, we consider the uniqueness and convergence analysis of the
above method by the following theorem:

Theorem 3.1. Let u(x) be the exact solution of the Equation (1.1) and Si(x) be
the approximation solution of (1.1), where Si(x) given by (2.1), then, the solution
of (1.1) by (2.1) is unique and convergent if 0 < α < 1.
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Proof. First, we proof the uniqueness. Let S(x) and Ś(x) be two different approx-
imate solutions for Equation (1.1), we will have

∣∣∣S(x)− Ś(x)
∣∣∣ = ∣∣∣∣∣f(x) + λ1

∫ x

a

K(x, t)S(t)dt+ λ2

∫ b

a

L(x, t)S(t)dt

−f(x)− λ1

∫ x

a

K(x, t)Ś(t)dt− λ2

∫ b

a

L(x, t)Ś(t)dt

∣∣∣∣∣
=

∣∣∣∣∣λ1

∫ x

a

K(x, t)S(t)dt+ λ2

∫ b

a

L(x, t)S(t)dt

−λ1

∫ x

a

K(x, t)Ś(t)dt− λ2

∫ b

a

L(x, t)Ś(t)dt

∣∣∣∣∣
=

∣∣∣∣∣λ1

∫ x

a

K(x, t)(S(t)− Ś(t))dt+ λ2

∫ b

a

L(x, t)(S(t)− Ś(t))dt

∣∣∣∣∣
≤

∣∣∣∣λ1

∫ x

a

K(x, t)(S(t)− Ś(t))dt

∣∣∣∣+
∣∣∣∣∣λ2

∫ b

a

L(x, t)(S(t)− Ś(t))dt

∣∣∣∣∣
≤ |λ1|

∫ x

a

|K(x, t)||(S(t)− Ś(t))|dt

+ |λ2|
∫ b

a

|L(x, t)||(S(t)− Ś(t))|dt

≤ |λ1|M1

∫ x

a

|(S(t)− Ś(t))|dt+ |λ2|M2

∫ b

a

|(S(t)− Ś(t))|dt,

where |K(x, t)| ≤ M1 and |L(x, t)| ≤ M2. Since a ≤ x ≤ b, we have

|S(x)− Ś(x)| ≤ (|λ1|+ |λ2|)M
∫ b

a

|(S(t)− Ś(t))|

≤ (|λ1|+ |λ2|)Mβ|(S(t)− Ś(t))|

= α|(S(t)− Ś(t))|,

where M = max {M1, M2}, α = (|λ1|+ |λ2|)Mβ, and β = (b− a).
Then ∣∣∣(S(t)− Ś(t))

∣∣∣ ≤ α
∣∣∣(S(t)− Ś(t))

∣∣∣ ,
from which we get

(1− α)
∣∣∣(S(t)− Ś(t))

∣∣∣ ≤ 0.

Since 0 < α < 1, then
∣∣∣(S(t)− Ś(t))

∣∣∣ = 0, and this is implies that S(t) = Ś(t).

Hence the uniqueness proof is complete.
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Now, we proof the convergence. From definition of the norms, we have

∥u(x)− Si(x)∥ = max
x∈[a,b]
t∈[a,c1]

|u(x)− Si(x)|

= max
x∈[a,b]
t∈[0,c1]

∣∣∣∣∣f(x) + λ1

∫ x

a

K(x, t)u(t)dt+ λ2

∫ b

a

L(x, t)u(t)dt

−f(x)− λ1

∫ x

a

K(x, t)Si(t)dt− λ2

∫ b

a

L(x, t)Si(t)dt

∣∣∣∣∣
= max

x∈[a,b]
t∈[0,c1]

∣∣∣∣λ1

∫ x

a

K(x, t)(u(t)− Si(t)))dt

+ λ2

∫ b

a

L(x, t)(u(t)− Si(t)))dt

∣∣∣∣∣
≤ max

x∈[a,b]
t∈[0,c1]

∣∣∣∣λ1

∫ x

a

K(x, t)(u(t)− Si(t))dt

∣∣∣∣
+ max

x∈[a,b]
t∈[0,c1]

∣∣∣∣∣λ2

∫ b

a

K(x, t)(u(t)− Si(t))dt

∣∣∣∣∣
≤ |λ1| max

x∈[a,b]
t∈[0,c1]

∫ x

a

|K(x, t)| |(u(t)− Si(t))| dt

+ |λ2| max
x∈[a,b]
t∈[0,c1]

∫ b

a

|L(x, t)| |(u(t)− Si(t))| dt

≤ |λ1|M1 max
x∈[a,b]
t∈[0,c1]

∫ x

a

|(u(t)− Si(t))| dt

+ |λ2|M2 max
x∈[a,b]
t∈[0,c1]

∫ b

a

|(u(t)− Si(t))| dt

≤ (|λ1|M1 + |λ2|M2) max
x∈[a,b]
t∈[0,c1]

∫ b

a

|(u(t)− Si(t))|

since a ≤ x ≤ b

≤ (|λ1|M1 + |λ2|M2)β ∥u(x)− Si(x)∥∞ ,

where M1 = maxx∈[a,b]
t∈[0,c1]

|K(x, t)|, M2 = maxx∈[a,b]
t∈[0,c1]

|L(x, t)| and β = (b− a).

Hence

(1− α) ∥u(x)− Si(x)∥∞ ≤ 0 where α = (|λ1|M1 + |λ2|M2)β.
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Then if 0 < α < 1 and n → ∞, we have

lim
n→∞

∥u(x)− Si(x)∥ = 0

This completes the convergence proof. □

4. Numerical examples

In this section, we present three examples to illustrate the effciency and the
accuracy of the proposed method. The computed errors ei are defined by ei =
|ui − Si|, where ui is the exact solution of Equation(1.1) and Si is an approxi-
mate solution of the same equation. Also we compute Least square error(LSE)=∑n

i=0(ui − Si)
2 and all computations are performed using Python program.

Example 4.1. Consider Mixed Volterra-Fredholm integral equation

u(x) = −x2

2
− 7x

2
+ 2 +

∫ x

0

u(t)dt+

∫ 1

0

xu(t)dt.

The exact solution of this equation is given by u(x) = x+ 2.
Table (1) demonstrates LSE obtained from applying our method on Example (1)
for n = 5.

Table 1. The Numerical Results for Example (1) with n = 5.

xi ui Si |ui − Si| |ui − Si|2

0 2 2 0 0
0.2 2.2 2.2 4.440892× 10−16 1.972152× 10−31

0.4 2.4 2.4 4.440892× 10−16 1.972152× 10−31

0.6 2.6 2.6 1.332267× 10−15 1.774937× 1030

0.8 2.8 2.8 4.440892× 10−16 1.972152× 10−31

1 3 3 8.881784× 10−16 7.888609× 10−31

LSE 3.155443× 10−30

Example 4.2. Consider Mixed Volterra-Fredholm integral equation

u(x) = 2cos(x)− 1 +

∫ x

0

(x− t)u(t)dt+

∫ π

0

u(t)dt.

The exact solution of this equation is given by u(x) = cos(x).
Table (2) demonstrates LSE obtained from applying our method on Example (2)
for n = 5.

Example 4.3. Consider Mixed Volterra-Fredholm integral equation

u(x) = −x5

10
+ 2x3 − x2

2
− 3x

2
+

1

10
+

∫ x

0

(x+ t)u(t)dt+

∫ 1

0

(x− t)u(t)dt.

The exact solution of this equation is given by u(x) = 2x3 + 1.
Table (3) demonstrates LSE obtained from applying our method on Example (3)
for n = 5.
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Table 2. The Numerical Results for Example (2) with n = 5.

xi ui Si |ui − Si| |ui − Si|2

0 1 0.98481596 0.01518404 2.30555188× 10−4

π
5 0.809016 0.797244 0.011772 1.385840× 10−4

2π
5 0.309016 0.306379 0.002637 6.957214× 10−6

3π
5 −0.309016 −0.299600 0.009416 8.867220× 10−5

4π
5 −0.809016 −0.787789 0.021227 4.505994× 10−4

π −1 −0.968951 0.031048 9.639885× 10−4

LSE 1.879356× 10−3

Table 3. The Numerical Results for Example (3) with n = 5.

xi ui Si |ui − Si| |ui − Si|2

0 1 0.933137 0.066862 0.004470
0.2 1.016 0.921386 0.094613 0.008951
0.4 1.128 1.001530 0.126469 0.015994
0.6 1.432 1.267976 0.164023 0.026903
0.8 2.024 1.8149013 0.2090981 0.043722
1 3 2.73618219 0.26381781 0.06959984

LSE 0.16964242

Table 4. LSE for different values of n for Examples (1)-(3).
LSE for

n Example 1 Example 2 Example 3
10 5.581190× 10−29 1.963980× 10−4 1.991238× 10−2

20 1.577721× 10−29 2.211122× 10−5 2.365762× 10−3

30 9.269115× 10−29 6.311298× 10−6 6.871413× 10−4

40 2.839899× 10−29 2.612048× 10−6 2.868519× 10−4

50 4.358456× 10−29 1.321872× 10−6 1.459168× 10−4

5. Conclusion

In this work, we use linear spline function for solving Volterra-Fredholm integral
equations, and this method is powerful numerical method. The numerical results
given in the previous section shows the suggested method that can successfully
treat the problem of Volterra-Fredholm type. From Table (4), we found that the
suggested method has very satisfactory stability properties as n increases, the
error reduces initially and then finally stabilizes. Also, we conclude that we get
good accuracy when exact solution is linear function. Accuracy remains the same
regardless where n increased. The method can be easily extended to systems
of mixed Volterra-Fredholm integral equations and systems of Volterra-Fredholm
integro-differential equations.
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