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Abstract. This paper focused to the study of the boundedness, the persis-

tence, and the asymptotic behavior of the positive solutions of the system of
three difference equations of exponential form:

xn+1 =
λ+ ρe−xn + εe−yn

η + ωyn
,

yn+1 =
λ+ ρe−yn + εe−zn

η + ωzn
,

zn+1 =
λ+ ρe−zn + εe−xn

η + ωxn

where λ, ρ, ε, η and ω are positive constants and the initial values

xo, yo, zo are positive real values.

1. Introduction

Discrete dynamical structures defined by means of difference equations are great
appropriate for population dynamics in comparison to maintains ones. Population
fashions incorporate exponential difference equations and their stability evaluation
although complex, however interesting. The start of 21st century has witnessed
a growing interest inside the population dynamics. Therefore, many works were
regarded on difference equations or systems of difference equations associated with
exponential terms (see [1-9] and reference referred to therein). ”As an instance,
Metwally et al. [1] have investigated the dynamics of the subsequent second-order
difference equation:

zn+1 = σ + ψzn−1e
−zn (1.1)

That is the solution of the subsequent logistic equation with piecewise regular
arguments:

dz

dt
= rz(1− z

K
) (1.2)

Wherein σ and ψ and preliminary conditions z−1, z0 are arbitrary non-negative
real numbers. Equation (1) can be considered as a model in Mathematical Biology
where σ is immigration rate and ψ is the populace growth rate. Further it’s far
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additionally mentioned in [2] that this model is recommended through the people
from the Harvard school of public health, reading the population dynamics of
single-species zn.

Further, Papaschinopoulos et al. [2] and Papaschinopoulos and Schinas [3] de-
livered pleasant outcomes toward this path by exploring the dynamical properties
like boundedness and persistence of positive solutions, existence of the unique
positive equilibrium, local and global asymptotic stability of two-species model
portrayed by frameworks of difference equations, which is natural extension of
single-species population model depicted in (1.1).

In [4], Grove et al. have researched the global dynamics of the positive solution
of the accompanying difference equations:

zn+1 = σzn + ψzn−1e
−zn (1.3)

where σ, ψ and initial conditions z−1, z0 are arbitrary non-negative real num-
bers. This equation can be considered as a biological model, since it arises from
models studying the amount of litter in perennial grassland (see [6]). After that
Papaschinopoulos et al. [5, 6] have studied the asymptotic conduct of the effective
result of two-species model which is also natural extension of single-species model
represented in (3). In 2016, Wang and Feng [7] have investigated the dynamics of
positive solution for the following difference equation that is clearly a brand new
form of single-species model depicted in (1.1):

zn+1 = σ + ψzne
−zn−1 (1.4)

where σ, ψ and initial conditions z−1, z0 are arbitrary nonnegative real num-
bers. According to biological point of view σ is immigration rate and ψ is popu-
lation growth rate.

Ozturk et al. [8] have investigated the global asymptotic stability, boundedness
and periodic nature of the following 2nd-order exponential difference equation:

zn+1 =
σ + ψe−zn

χ+ zn−1
, n = 0, 1, ... (1.5)

where σ, ψ, χ and z−1, z0 are arbitrary non-negative numbers.
Equation (1.5) is likewise viewed as a model in Mathematical Biology wherein

σ is immigration rate, ψ is population growth rate and χ is the carrying capacity.
Later Papaschinopoulos et al. [9] have investigated boundedness and persistence
and local and global asymptotic behavior of two-species model which is natural
extension of single-species model (1.55), represented by way of the subsequent
exponential structures of difference equations:

xn+1 =
α+ βe−yn

γ + yn−1
, yn+1 =

δ + εe−xn

ς + xn−1

xn+1 =
α+ βe−yn

γ + xn−1
, yn+1 =

δ + εe−xn

ς + yn−1
(1.6)

xn+1 =
α+ βe−xn

γ + yn−1
, yn+1 =

δ + εe−yn

ς + xn−1
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where α, β, γ, δ, ε, ς and initial conditions x−1, x0, y−1, y0 are non-negative
real numbers.

Vu Van Khuong and Tran Hang Thai [10], have investigated the boundedness,
persistence, and the asymptotic behavior of the positive solutions of the system of
two difference equations of exponential form:

xn+1 =
a+ be−yn + ce−xn

d+ hyn
, yn+1 =

a+ be−xn + ce−yn

d+ hxn
(1.7)

where a, b, c, d and h are positive constants and the initial values x0, y0 are
positive real values”.

Prompted by means of the above study, we can amplify the above difference
equation to a system of difference equations; our aim could be to research the
boundedness character, persistence, and asymptotic conduct of the positive solu-
tions of the following system of exponential form:

xn+1 =
λ+ ρe−xn + εe−yn

η + ωyn
,

yn+1 =
λ+ ρe−yn + εe−zn

η + ωzn
,

zn+1 =
λ+ ρe−zn + εe−xn

η + ωxn
, (1.8)

where λ, ρ, ε, η and ω are positive constants and the initial values xo, yo, zo
are positive real values.

Difference equations and system of difference equations of exponential form can
be discovered in [1, 2, 11, 12, 13]. Furthermore, as difference equations have many
programs in applied sciences, there are numerous papers and books that can be
determined concerning the theory and applications of difference equations; see
[14-16] and the references mentioned therein.

2. Global Behavior of Solutions of System(1.8)

Inside the first lemma we take a look at the boundedness and persistence of the
positive solutions of (1.8).

Lemma 2.1. Every positive solution of (1.8) is bounded and persists.

Proof. Let (xn, yn, zn) be an arbitrary solution of (1.8).
from (1.8) we can see that

xn ≤
λ+ ρ+ ε

η
, yn ≤

λ+ ρ+ ε

η
, zn ≤

λ+ ρ+ ε

η
, n = 1, 2, .... (2.1)

In addition from (1.8) & (2.1)

xn+1 =
λ+ ρe−xn + εe−yn

η + ωyn
, xn ≥

λ+ ρe−(λ+ρ+ε)/η + εe−(λ+ρ+ε)/η

η + ω((λ+ ρ+ ε)/η)

77



4 ABDUL KHALIQ, MUHAMMAD ZUBAIR, AND MARYAM ASGIR

yn+1 =
λ+ ρe−yn + εe−zn

η + ωzn
, yn ≥

λ+ ρe−(λ+ρ+ε)/η + εe−(λ+ρ+ε)/η

η + ω((λ+ ρ+ ε)/η)
(2.2)

zn+1 =
λ+ ρe−zn + εe−xn

η + ωxn
, zn ≥

λ+ ρe−(λ+ρ+ε)/η + εe−(λ+ρ+ε)/η

η + ω((λ+ ρ+ ε)/η)

n = 2, 3, ..

Concluding from (2.1) and (2.2), the proof is completed. �

A good way to prove the main result of this phase, we remember the following
theorem without its proof (see [17, 18]).

Theorem 2.2. (see[17,18 ]). ”Let R = [a1, b1]× [c1, d1]× [e1, f1] and

f : R→ [a1, b1], g : R→ [c1, d1], t : R→ [e1, f1] (2.3)

be a continuous functions such that the following hold:
(a) f(x, y), g(y, z) and t(z, x) are non-increasing in their variables for each

(x, y, z) ∈ R
(b) If (m1, M1, m2, M2, m3, M3) ∈ R3 is a solution of

M1 = f(m1, m2), m1 = f(M1, M2)

M2 = g(m2, m3), m2 = g(M2, M3) (2.4)

M3 = t(m3, m1), m3 = t(M3,M1)

Then m1 = M1, m2 = M2, m3 = M3 then the following system of difference
equations.

xn+1 = f(xn, yn), yn+1 = g(yn, zn), zn+1 = t(zn, xn) (2.5)

has a unique equilibrium (x, y, z) and every solution (xn, yn, zn) of the system
(2.5), with (xo, yo, zo) ∈ R converges to the unique equilibrium (x, y, z). In
addition, the equilibrium (x, y, z) is globally asymptotically stable.

Now, on this phase, we state the main theorem.

Theorem 2.3. (see[10]). Assume that the following relation holds true for system
(1.8):

ρ+ ε < η (2.6)

then system (1.8) has a unique positive equilibrium (x, y, z) and each positive
solution of (1.8) approaches to the unique positive equilibrium (x, y, z) as n →
∞. In addition, the system is globally asymptotically stable on the equilibrium
(x, y, z).

Proof. Let us consider the functions

f(u, v) =
λ+ ρe−u + εe−v

η + ωv

g(v, w) =
λ+ ρe−v + εe−w

η + ωw
(2.7)

t(w, u) =
λ+ ρe−w + εe−u

η + ωu
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Where

u, v, w ∈ I =

[
λ+ (ρ+ ε)e−(λ+ρ+ε)/η

η + ω{(λ+ ρ+ ε)/η}
,
λ+ (ρ+ ε)e−(λ+ρ+ε)/η

η + ω{(λ+ ρ+ ε)/η}
,
λ+ ρ+ ε

η

]
(2.8)

It can be seen that f(u, v), g(v, w) & t(w, u) are non-increasing in variables
for each (u, v, w) ∈ I × I × I. In addition from (2.7) and (2.8) we have f(u, v) ∈
I, g(v, w) ∈ I & t(w, u) ∈ I as (u, v, w) ∈ I× I× I and so f : I× I× I → I, g :
I × I × I → I, t : I × I × I → I

Now let m1, M1, m2, M2, m3 & M3 be positive real numbers such that

M1 =
λ+ ρe−m1 + εe−m2

η + ωm2
, m1 =

λ+ ρe−M1 + εe−M2

η + ωM2

M2 =
λ+ ρe−m2 + εe−m3

η + ωm3
, m2 =

λ+ ρe−M2 + εe−M3

η + ωM3
(2.9)

M3 =
λ+ ρe−m3 + εe−m1

η + ωm1
, m3 =

λ+ ρe−M3 + εe−M1

η + ωM1

Furthermore arguing as inside the proof of theorem (2.2). It suffices to assume
that

m1 ≤M1, m2 ≤M2, m3 ≤M3 (2.10)

From (2.9), we get:

M1 =
λ+ ρe−m1 + εe−m2

η + ωm2

M1 (η + ωm2) = λ+ ρe−m1 + εe−m2

ρe−m1 + εe−m2 = M1 (η + ωm2)− λ

Similarly

ρe−M1 + εe−M2 = m1 (η + ωM2)− λ
ρe−m2 + εe−m3 = M2 (η + ωm3)− λ
ρe−M2 + εe−M3 = m2 (η + ωM3)− λ (2.11)

ρe−m3 + εe−m1 = M3 (η + ωm1)− λ
ρe−M3 + εe−M1 = m3 (η + ωM1)− λ

Which implies that

ρe−m1 + εe−m2 − ρe−M1 − εe−M2 = M1 (η + ωm2)− λ−m1 (η + ωM2) + λ

ρ(e−m1 − e−M1) + ε(e−m2 − e−M2) = ηM1 + ωm2M1 − ηm1 − ωm1M2

η(M1 −m1) + ω(m2M1 −m1M2) = ρe−m1−M1(eM1 − em1)

+εe−m2−M2(eM2 − em2)

η(M1 −m1) + ω(m2M1 −m1M2) = ρe−m1−M1(eM1 − em1)

+εe−m2−M2(eM2 − em2)
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Similarly

η(M2 −m2) + ω(m3M2 −m2M3) = ρe−m2−M2(eM2 − em2)

+εe−m3−M3(eM3 − em3)

η(M3 −m3) + ω(m1M3 −m3M1) = ρe−m3−M3(eM3 − em3)

+εe−m1−M1(eM1 − em1) (2.12)

Moreover, we get

eM1 − em1 = eα(M1 −m1), m1 ≤ α ≤M1

eM2 − em2 = eβ(M2 −m2), m2 ≤ β ≤M2 (2.13)

eM3 − em3 = eγ(M3 −m3), m3 ≤ γ ≤M3

Then by adding the two relations (2.12) we obtained:

η(M1 −m1) + η(M2 −m2) + η(M3 −m3) +

ω(m2M1 −m1M2) + ω(m3M2 −m2M3) +

ω(m1M3 −m3M1)

= ρe−m1−M1+α(M1 −m1) + εe−m2−M2+β(M2 −m2)

+ρe−m2−M2+β(M2 −m2) + εe−m3−M3+γ(M3 −m3) +

ρe−m3−M3+γ(M3 −m3) + εe−m1−M1+α(M1 −m1)

η(M1 −m1) + η(M2 −m2) + η(M3 −m3) +

ω(m2M1 −m1M2 +m3M2 −m2M3 +m1M3 −m3M1)

= (ρ+ ε)e−m1−M1+α(M1 −m1) + (ρ+ ε)e−m2−M2+β(M2 −m2) +

(ρ+ ε)e−m3−M3+γ(M3 −m3)

(M1 −m1)[η − (ρ+ ε)e−m1−M1+α] + (M2 −m2)[η − (ρ+ ε)e−m2−M2+β ] +

(M3 −m3)[η − (ρ+ ε)e−m3−M3+γ ] +

ω(m2M1 −m1M2 +m3M2 −m2M3 +m1M3 −m3M1)

= 0 (2.14)

Therefore from (2.14) we have:

(M1 −m1)[η − (ρ+ ε)e−m1−M1+α] + (M2 −m2)[η − (ρ+ ε)e−m2−M2+β ]

+(M3 −m3)[η − (ρ+ ε)e−m3−M3+γ ]

= 0 (2.15)

and

ω(m2M1 −m1M2 +m3M2 −m2M3 +m1M3 −m3M1) = 0 (2.16)

Then using (2.6), (2.10) and (2.15) gives us

m1 = M1,m2 = M2 and m3 = M3

Hence from theorem (2.2) system (1.8) has a unique positive equilibrium (x, y, z)
and each positive solution of (1.8) approaches to the unique positive equilibrium
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GLOBAL BEHAVIOUR OF SOME RECURSIVE SEQUENCES 7

(x, y, z) as n→∞. In addition, the system (1.8) is globally asymptotically stable
on the equilibrium (x, y, z). The proof of the theorem is completed now. �

3. Rate of Convergence

On this segment, we provide the rate of convergence of a solution of the system
(1.8) for all values of parameters that converges to the equilibrium E = (x, y, z).
In [19, 20], The rate of convergence of solutions that converges to an equilibrium
for some three dimensional systems has been obtained.

The following outcomes provide us the rate of convergence of solutions of a
system of difference equations:

Zn+1 = [A+B(n)]Zn (3.1)

wherein Zn is a k-dimensional vector, A ∈ Ck×k is a constant matrix, and
B : Z+ → Ck×k is a matrix function that satisfying

‖B(n)‖ → 0 when n→∞ (3.2)

Where ‖.‖ denotes any matrix norm which is associated with the vector norm;
‖.‖ also denotes the Euclidean norm in R3 given by

‖x‖ = ‖(x, y, z)‖ =
√
x2 + y2 + z2 (3.3)

Theorem 3.1. (See [21]). Assume that condition (3.2) holds. If xn is a solution
of system (3.1), then either xn = 0 for all large n or

ρ = Lim
n→∞

n
√
‖xn‖ (3.4)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 3.2. (see[21]). Assume that condition (3.2) holds. If xn is a solution
of system (3.1), then either xn = 0 for all large n or

ρ = Lim
n→∞

‖xn+1‖
‖xn‖

(3.5)

exists and equals to the modulus of one of the eigenvalues of matrix A.
The following system of equation is satisfied by the equilibrium point of the

system (1.8).

x =
λ+ ρe−x + εe−y

η + ωy
, y =

λ+ ρe−y + εe−z

η + ωz
, z =

λ+ ρe−z + εe−x

η + ωx
(3.6)

If ρ + ε < η, we can easily see that the system (3.6) has a unique equilibrium
E = (x, x, x).

The system (1.8) is associated with map T as:

T (x, y, z) =

 f(x, y)
g(y, z)
t(z, x)

 =


λ+ρe−x+εe−y

η+ωy
λ+ρe−y+εe−z

η+ωz
λ+ρe−z+εe−x

η+ωx

 (3.7)

The Jacobian matrix T is:
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JT =

 fx fy fz
gx gy gz
tx ty tz


f(x, y) =

λ+ ρe−x + εe−y

η + ωy
, g(y, z) =

λ+ ρe−y + εe−z

η + ωz
, t(z, x) =

λ+ ρe−z + εe−x

η + ωx

∂f

∂x
= fx =

−ρe−x

η + ωy
,
∂f

∂y
= fy =

(η + ωy)(−εe−y)− (λ+ ρe−x + εe−y)ω

(η + ωy)2
,
∂f

∂z
= fz = 0

∂g

∂x
= gx = 0,

∂g

∂y
= gy =

−ρe−y

η + ωz
,

∂g

∂z
= gz =

(η + ωz)(−εe−z)− (λ+ ρe−y + εe−z)ω

(η + ωz)2

∂t

∂x
= tx =

(η + ωx)(−εe−x)− (λ+ ρe−z + εe−x)ω

(η + ωx)2
,
∂t

∂y
= ty = 0,

∂t

∂z
= tz =

−ρe−z

η + ωx

JT =


−ρe−x

η+ωy k1 0

0 −ρe−y

η+ωz k2

k3 0 −ρe−z

η+ωx

 , (3.8)

where k1 = (η+ωy)(−εe−y)−(λ+ρe−x+εe−y)ω
(η+ωy)2 , k2 = (η+ωz)(−εe−z)−(λ+ρe−y+εe−z)ω

(η+ωz)2 and

k3 = (η+ωx)(−εe−x)−(λ+ρe−z+εe−x)ω
(η+ωx)2 . At the equilibrium point E = (x, y, z) =

(x, x, x), the value of Jacobian matrix T from the system (3.6) is:

JT =


−ρe−x

η+ωx k4 0

0 −ρe−x

η+ωx k5

k6 0 −ρe−x

η+ωx

 , (3.9)

where k4 = (η+ωx)(−εe−x)−(λ+ρe−x+εe−x)ω
(η+ωx)2 , k5 = (η+ωx)(−εe−x)−(λ+ρe−x+εe−x)ω

(η+ωx)2 and

k6 = (η+ωx)(−εe−x)−(λ+ρe−x+εe−x)ω
(η+ωx)2 .

Our intention on this segment is to evaluate the rate of convergence of each
solution of the system (1.8) inside the areas in which the factors λ, ρ, ε, η & ω ∈
(0,∞), (ρ + ε < η) and initial conditions xo and yo are arbitrary, non-negative
numbers.

Theorem 3.3. The error vector en =

 e1n
e2n
e3n

 =

 xn − x
yn − y
zn − z

 of every solution

xn 6= 0 of (1.8) satisfies both of the following asymptotic relations.

Lim
n→∞

n
√
‖en‖ = |λi(JT (E))| for some i = 1, 2, 3....

Lim
n→∞

‖en+1‖
‖en‖

= |λi(JT (E))| for some i = 1, 2, 3.... (3.10)

wherein |λi(JT (E))| is equal to modulus of one of the eigenvalues evaluated on
the equilibrium JT (E) of the Jacobian matrix.
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Proof. Initially, we can find a system that satisfied by means of error terms. The
error terms are given as:

xn+1 − x =
λ+ ρe−xn + εe−yn

η + ωyn
− λ+ ρe−x + εe−y

η + ωy

xn+1 − x =
(λ+ ρe−xn + εe−yn)(η + ωy)− (λ+ ρe−x + εe−y)(η + ωyn)

(η + ωyn)(η + ωy)

xn+1 − x =

λη + λωy + ρηe−xn + ρωe−xny + εηe−yn + εωye−yn − λη − λωyn−
ρηe−x − ρωyne−x − εηe−y − εωyne−y

(η + ωyn)(η + ωy)

xn+1 − x =

λω(y − yn) + ρη(e−xn − e−x) + ρω(ye−xn − yne−x) + εη(e−yn − e−y)+
εω(ye−yn − yne−y)

(η + ωyn)(η + ωy)

xn+1 − x =
−ρη(exn − ex)

exn+x(η + ωyn)(η + ωy)
+

−εη(eyn − ey)

eyn+y(η + ωyn)(η + ωy)
+
ρω(ye−xn − yne−x)

(η + ωyn)(η + ωy)
+

εω(ye−yn − yne−y)

(η + ωyn)(η + ωy)
+

−λω(yn − y)

(η + ωyn)(η + ωy)

xn+1 − x =
−ρη(exn − ex)

exn+x(η + ωyn)(η + ωy)
+

−εη(eyn − ey)

eyn+y(η + ωyn)(η + ωy)
+

ρω(ye−xn − e−xnyn + e−xnyn − yne−x)

(η + ωyn)(η + ωy)
+

εω(ye−yn − e−ynyn + e−ynyn − yne−y)

(η + ωyn)(η + ωy)
+

−λω(yn − y)

(η + ωyn)(η + ωy)

xn+1 − x =
−ρη(exn − ex)

exn+x(η + ωyn)(η + ωy)
+

−εη(eyn − ey)

eyn+y(η + ωyn)(η + ωy)
+

ρωe−xn(y − yn)

(η + ωyn)(η + ωy)
+
ρωyn(e−xn − e−x)

(η + ωyn)(η + ωy)
+

εωe−yn(y − yn)

(η + ωyn)(η + ωy)

+
εωyn(e−yn − e−y)

(η + ωyn)(η + ωy)
+

−λω(yn − y)

(η + ωyn)(η + ωy)

xn+1 − x =
−ρ(exn − ex)

exn+x(η + ωyn)(η + ωy)
{η + ωyn}+

−ε(eyn − ey)

eyn+y(η + ωyn)(η + ωy)
{η + ωyn}+

−ω(yn − y)

(η + ωyn)(η + ωy)
{λ+ ρe−xn + εe−yn}

xn+1 − x =
−ρ

exn+x(η + ωy)
(exn − ex) +

−ε
eyn+y(η + ωy)

(eyn − ey) +

−ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)
(yn − y)

xn+1 − x =
−ρ

exn(η + ωy)
(exn−x − 1) +

−ε
eyn(η + ωy)

(eyn−y − 1) +

−ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)
(yn − y)
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xn+1 − x =
−ρ

exn(η + ωy)
[(xn − x) + Ψ1(xn − x)2] +

−ε
eyn(η + ωy)

[(yn − y) + Ψ2(yn − y)2] +

−ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)
(yn − y)

xn+1 − x =
−ρ

exn(η + ωy)
(xn − x) +

−εe−yn(η + ωyn)− ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)
(yn − y) +

−ρ
exn(η + ωy)

Ψ1(xn − x)2 +
−ε

eyn(η + ωy)
Ψ2(yn − y)2

xn+1 − x =
−ρ

exn(η + ωy)
(xn − x) +

−εe−yn(η + ωyn)− ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)
(yn − y) +

−ρ
exn(η + ωy)

Ψ1(xn − x)2 +
−ε

eyn(η + ωy)
Ψ2(yn − y)2 (3.11)

Similarly, we get

yn+1 − y =
−ρ

eyn(η + ωz)
(yn − y) +

−εe−zn(η + ωzn)− ω(λ+ ρe−yn + εe−zn)

(η + ωzn)(η + ωz)
(zn − z) +

−ρ
eyn(η + ωz)

Ψ3(yn − y)2 +
−ε

ezn(η + ωz)
Ψ4(zn − z)2 (3.12)

zn+1 − z =
−ρ

ezn(η + ωx)
(zn − z) +

−εe−xn(η + ωxn)− ω(λ+ ρe−zn + εe−xn)

(η + ωxn)(η + ωx)
(xn − x) +

−ρ
ezn(η + ωx)

Ψ5(zn − z)2 +
−ε

exn(η + ωx)
Ψ6(xn − x)2 (3.13)

From equations (3.11), (3.12) & (3.13)

xn+1 − x ≈ −ρ
exn(η + ωy)

(xn − x) +
−εe−yn(η + ωyn)− ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)
(yn − y)

yn+1 − y ≈ −ρ
eyn(η + ωz)

(yn − y) +
−εe−zn(η + ωzn)− ω(λ+ ρe−yn + εe−zn)

(η + ωzn)(η + ωz)
(zn − z)

zn+1 − z ≈ −ρ
ezn(η + ωx)

(zn − z) +
−εe−xn(η + ωxn)− ω(λ+ ρe−zn + εe−xn)

(η + ωxn)(η + ωx)
(xn − x)

(3.14)

set

e1n = xn − x, e2n = yn − y, e3n = zn − z (3.15)

Then system (3.14) can be represented as:

e1n+1 ≈ ane
1
n + bne

2
n

e2n+1 ≈ cne
2
n + dne

3
n (3.16)

e3n+1 ≈ pne
3
n + qne

1
n
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Where

an =
−ρ

exn(η + ωy)
; bn =

−εe−yn(η + ωyn)− ω(λ+ ρe−xn + εe−yn)

(η + ωyn)(η + ωy)

cn =
−ρ

eyn(η + ωz)
; dn =

−εe−zn(η + ωzn)− ω(λ+ ρe−yn + εe−zn)

(η + ωzn)(η + ωz)
(3.17)

pn =
−ρ

ezn(η + ωx)
; qn =

−εe−xn(η + ωxn)− ω(λ+ ρe−zn + εe−xn)

(η + ωxn)(η + ωx)

Taking the limits of an, bn, cn, dn, pn and qn as n→∞, we obtain

Lim
n→∞

an =
−ρ

ex(η + ωy)
=

−ρ
ex(η + ωx)

Lim
n→∞

bn =
−εe−y(η + ωy)− ω(λ+ ρe−x + εe−y)

(η + ωy)(η + ωy)
=
−εe−x(η + ωx)− ω[λ+ (ρ+ ε)e−x]

(η + ωx)2

Lim
n→∞

cn =
−ρ

ey(η + ωz)
=

−ρ
ex(η + ωx)

(3.18)

Lim
n→∞

dn =
−εe−z(η + ωz)− ω(λ+ ρe−y + εe−z)

(η + ωz)(η + ωz)
=
−εe−x(η + ωx)− ω[λ+ (ρ+ ε)e−x]

(η + ωx)2

Lim
n→∞

pn =
−ρ

ez(η + ωx)
=

−ρ
ex(η + ωx)

Lim
n→∞

qn =
−εe−x(η + ωx)− ω(λ+ ρe−z + εe−x)

(η + ωx)(η + ωx)
=
−εe−x(η + ωx)− ω[λ+ (ρ+ ε)e−x]

(η + ωx)2

that is

an =
−ρ

ex(η + ωx)
+ αn ; bn =

−εe−x(η + ωx)− ω[λ+ (ρ+ ε)e−x]

(η + ωx)2
+ βn

cn =
−ρ

ex(η + ωx)
+ γn ; dn =

−εe−x(η + ωx)− ω[λ+ (ρ+ ε)e−x]

(η + ωx)2
+ δn(3.19)

pn =
−ρ

ex(η + ωx)
+ µn ; qn =

−εe−x(η + ωx)− ω[λ+ (ρ+ ω)e−x]

(η + ωx)2
+ υn

where αn → 0, βn → 0, γn → 0, δn → 0, µn → 0, & υn → 0 as n→∞
Now, in accordance to the system of the form (3.1), we have:

en+1 = [A+B(n)]en (3.20)

A =


−ρe−x

(η+ωx) k7 0

0 −ρe−x

(η+ωx) k8

k9 0 −ρe−x

(η+ωx)

 , (3.21)

where k7 = −εe−x(η+ωx)−ω[λ+(ρ+ε)e−x]
(η+ωx)2 , k8 = −εe−x(η+ωx)−ω[λ+(ρ+ε)e−x]

(η+ωx)2 and k9 =

−εe−x(η+ωx)−ω[λ+(ρ+ε)e−x]
(η+ωx)2 .

B(n) =

 αn βn 0
0 γn δn
υn 0 µn


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‖B(n)‖ → 0, as n→∞
Thus,the limiting system of error terms can be written as e1n+1

e2n+1

e3n+1

 = A

 e1n
e2n
e3n

 (3.22)

The system (1.8) which evaluated at the equilibrium E = (x, y, z) = (x, x, x)
is perfectly linearized system. Then Theorems 3.1 and 3.2 follow the result. �

4. Numerical Simulations

If you want to affirm our theoretical discussion, we keep in mind numerous
thrilling numerical examples on this phase. These examples constitute one of a
kind forms of qualitative behavior of solutions to the system (1.8) of nonlinear dif-
ference equations. The first example suggests that positive equilibrium of system
(1.8) is unstable with suitable parametric choices. Moreover, from the remaining
examples it is clear that unique positive equilibrium point of system (1.8) is glob-
ally asymptotically stable with different parametric values. All plots on this phase
are drawn with MATLAB.

Example 4.1. Let λ = 7.6, ρ = 9.2, ε = 3.8, η = 5.2 and ω = 1.9 then system
can be written as

xn+1 =
7.6 + 9.2e−xn + 3.8e−yn

5.2 + 1.9yn
,

yn+1 =
7.6 + 9.2e−yn + 3.8e−zn

5.2 + 1.9zn
,

zn+1 =
7.6 + 9.2e−zn + 3.8e−xn

5.2 + 1.9xn
(4.1)

with initial condition xo = 1.5, yo = 1.8 and zo = 2.2.
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(4.1)
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(b) Phase portrait of system (4.1)

Figure 1. Plots for the system (4.1)
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In this case, the positive equilibrium point of the system (4.1) is unstable.
Moreover, in Figure 1 the plot of xn, yn & zn are shown in Figure 1(A) and a
phase portrait of the system (4.1) is shown in Figure 1(B).

Example 4.2. Let λ = 6.6, ρ = 0.2, ε = 0.8, η = 1.2 and ω = 0.9 then system
can be written as

xn+1 =
6.6 + 0.2e−xn + 0.8e−yn

1.2 + 0.9yn
,

yn+1 =
6.6 + 0.2e−yn + 0.8e−zn

1.2 + 0.9zn
,

zn+1 =
6.6 + 0.2e−zn + 0.8e−xn

1.2 + 0.9xn
(4.2)

with initial condition xo = 1.3, yo = 1.1 and zo = 2.5.
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(a) Plot of xn, yn and zn for system
(4.2)
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(b) Phase portrait of system (4.2)

Figure 2. Plots for the system (4.2)

In this case, the unique positive equilibrium point of the system (4.2) is given
by (x, y, z) = (2.14542, 2.14542, 2.14542). Moreover, in Figure 2, the plot of
xn, yn & zn are shown in Figure 2(A), and XY, YZ & ZX attractors of the system
(4.2) is shown in Figure 2(B).

Example 4.3. Let λ = 4.5, ρ = 1.2, ε = 1.8, η = 4.2 and ω = 1.9 then system
can be written as

xn+1 =
8.4 + 2.2e−xn + 3.8e−yn

4.2 + 1.9yn
,

yn+1 =
8.4 + 2.2e−yn + 3.8e−zn

4.2 + 1.9zn
,

zn+1 =
8.4 + 2.2e−zn + 3.8e−xn

4.2 + 1.9xn
(4.3)

with initial condition xo = 1.7, yo = 1.9 and zo = 3.2. In this case, the unique posi-
tive equilibrium point of the system (4.3) is given by (x, y, z) = (0.945045, 0.945045, 0.945045).
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(a) Plot of xn, yn and zn for system
(4.3)
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(b) Phase portrait of system (4.3)

Figure 3. Plot for the system (4.3)

Moreover, in Figure 3, the plot of xn, yn & zn are shown in Figure 3(A), and
XY, YZ & ZX attractors of the system (4.3) is shown in Figure 3(B).

Example 4.4. Let λ = 8.4, ρ = 2.2, ε = 3.8, η = 7.6 and ω = 1.9 then system
can be written as

xn+1 =
8.4 + 2.2e−xn + 3.8e−yn

7.6 + 1.9yn
,

yn+1 =
8.4 + 2.2e−yn + 3.8e−zn

7.6 + 1.9zn
,

zn+1 =
8.4 + 2.2e−zn + 3.8e−xn

7.6 + 1.9xn
(4.4)

with initial condition xo = 2.3, yo = 3.1 and zo = 1.5. In this case, the unique posi-
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(a) Plot of xn, yn and zn for system
(4.4)
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Figure 4. Plot for the system (4.4)

tive equilibrium point of the system (4.4) is given by (x, y, z) = (1.08099, 1.08099, 1.08099).
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Moreover, in Figure 4, the plot of xn, yn & zn are shown in Figure 4(A), and
XY, YZ & ZX attractors of the system (4.4) is shown in Figure 4(B).

5. Conclusion

This work is associated with qualitative conduct of a system of exponential
difference equations. We have investigated the existence and uniqueness of posi-
tive steady state of system (1.8). The boundedness character and persistence of
positive solutions are verified. Moreover, we have got proven that unique positive
equilibrium point of system (1.8) is locally in addition to globally asymptotically
stable under certain parametric conditions. The primary goal of dynamical struc-
tures theory is to explore the global conduct of a system based on the knowledge of
its present state. An approach to this problem consists of determining the possible
global conduct of the system and determining which parametric conditions lead
to these long-term behaviors. Furthermore, the rate of convergence of positive
solutions of (1.8) which converges to its unique positive equilibrium point is es-
tablished. In the end, a few illustrative numerical examples are furnished to help
our theoretical discussion.
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