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Abstract. This paper aims to propose a numerical approach to deal with

systems of fractional stochastic differential equations. This approach, which is

regarded as a modification of the fractional Euler method (FEM), is called the
modified fractional Euler method (MFEM). A susceptible infected recovered

model (SIR model) is taken into consideration as an example of a system of

fractional stochastic differential equations. Such a model is solved with the
use of the MFEM in its deterministic and stochastic cases for the purpose of

comparing the fulfilled results.

1. Introduction

Stochastic Differential Equations (SDEs) have proven to be a valuable tool for
modeling dynamic systems subject to both deterministic and stochastic influences.
In recent years, interest has grown in extending these modeling capabilities to in-
clude fractional calculus, enabling the analysis of systems with long-term memory
and non-local interactions. The fusion of fractional calculus with stochastic dy-
namics has led to the development of Fractional Stochastic Differential Equations
(FSDEs), which offer a promising framework to represent complex real-world phe-
nomena [1, 2]. In this research, we focus on addressing systems of FSDEs and pro-
pose an innovative approach to their numerical solution. The Modified Fractional
Euler Method (MFEM) stands as the centerpiece of our investigation, offering a
robust technique to efficiently tackle FSDEs. The MFEM builds upon the classical
Euler method while incorporating fractional calculus concepts, providing accurate
approximations of solutions even for highly non-linear and multi-dimensional sys-
tems [3].

Fractional calculus generalizes the notion of derivatives and integrals to non-
integer orders, enabling the modeling of systems with memory and non-local in-
teractions. We investigate FSDEs, which encompass fractional derivatives in com-
bination with stochastic elements. These equations offer a versatile approach to
describe complex systems that exhibit both deterministic trends and random fluc-
tuations see [4, 5]. The primary motivation behind exploring the MFEM lies in the
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growing demand for accurate and computationally feasible methods to study FS-
DEs. These equations frequently arise in diverse fields, including finance, physics,
signal processing, and biology, where fractional dynamics and stochasticity jointly
influence the system’s behavior. For more details, see [6, 7, 8].

The Euler method has long been an essential tool for numerically approxi-
mating solutions to ordinary differential equations. Building upon this classical
approach, we introduce the MFEM, a novel algorithm designed to handle FS-
DEs. The MFEM incorporates fractional calculus techniques, empowering it to
efficiently capture the long-term memory effects present in fractional dynamics
while preserving the accuracy required for stochastic systems [9]. The numeri-
cal solution of FSDEs is often challenging due to the interplay between fractional
derivatives and stochastic processes. Through the MFEM, we aim to strike a bal-
ance between computational efficiency and solution accuracy. Our method enables
researchers and practitioners to simulate FSDEs efficiently without compromising
the precision of results, making it an attractive choice for real-world applications.
The proposed MFEM demonstrates its effectiveness in tackling FSDEs of high
dimensionality and nonlinearity. As many real-world systems exhibit complex in-
teractions and multi-dimensional behavior, our method’s ability to handle such
scenarios is a significant advantage. For deep knowledge about these methods, the
reader may refer to the references [10, 11, 12, 13, 14, 15, 16, 17].

In this research, we present the MFEM as a powerful tool for effectively solving
systems of FSDEs. The combination of fractional calculus and stochastic dynamics
enables the modeling of intricate systems influenced by both deterministic trends
and random fluctuations. By offering a computationally efficient and accurate ap-
proach to tackle FSDEs, our research contributes to advancing the understanding
of complex real-world phenomena across diverse scientific domains.

2. Preliminaries

In this section, we recall some preliminaries and basic results related to frac-
tional calculus. For more about stochastic differential equations and the fractional
definite integral, see [18].

Definition 2.1. Let α be a real nonnegative number. Then the Riemann-Liouville
fractional-order integrator Jα

a is defined by:

Jα
a f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, a ≤ x ≤ b. (2.1)

Definition 2.2. Let α ∈ R+ and m = ⌈α⌉ such that m − 1 < α ≤ m. Then the
Caputo fractional-order differentiator of order α is given by:

Dα
a f(x) =

1

Γ(m− α)

∫ x

a

(x− t)m−α−1f (m)(t)dt, x > a. (2.2)

Theorem 2.3. [18] (Generalized Taylor’s Theorem) Suppose that Dkα
∗ f(x) ∈

C(0, b] for k = 0, 1, · · · , n + 1, where 0 < α ≤ 1. Then the function f can be
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expanded about x = x0 as:

f(x) =

n∑
i=0

xiα

Γ(iα+ 1)
Diα

∗ f(x0) +
x(n+1)α

Γ((n+ 1)α+ 1)
D

(n+1)α
∗ f(ξ), (2.3)

with 0 < ξ < x, ∀x ∈ (0, b].

Now, by using the first three terms of the generalized Taylor theorem and for
ξ ∈ (a, b), ti ∈ [a, b] in which the interval is divided as a = t0 < t1 = t0 + h <
t2 = t0 + 2h < · · · < tn = t0 + nh = b with h = b−a

n for i = 1, 2, · · · , n, we
can expand y(t) about t = ti to develop a new further modification for the FEM,
called MFEM. This formula has the form [3]:

yti+1 = y(ti) +
hα

Γ(α+ 1)
f

(
ti +

hα

2Γ(α+ 1)
, wi +

hα

2Γ(α+ 1)
f(ti, y(ti))

)
+

h2α

Γ(2α+ 1)
D2α(ξ),

(2.4)

Theorem 2.4. [19] Let dξ(t) = adt + bdw(t), and let f(x, t) be a continuous
function in (x, t) ∈ R1×[0,∞) with partial derivatives fx, fxx, ft. Then the process
f(ξ(t), t) has a stochastic differential form:

df(ξ(t), t) =

[
ft(ξ(t), t) + fx((ξ(t), t)a(t)) +

1

2
fxx(ξ(t), t)b

2(t)

]
dt

+ fx(ξ(t), t)b(t)dW (t).

Notice that if w(t) is continuously differentiable on t, then (by the standard
calculus formula for total derivatives), the term 1

2fxxb
2dt will not appear.

3. Dealing with System of FSDEs

In this section, we aim to recall the system of SDE as well as the system of
FSDEs. This would pave the way to propose our approximate numerical solutions
for these systems.

Definition 3.1. Let t be nonnegative real numbers, then the system of SDEs is
defined as:

dXi(t) = fi(t,X(t))dt+ gi(t,X(t))dW (t), (3.1)

with initial condition X0 = X(t0), for i = 1, 2, · · · , n where t ≥ t0 is a time,
X = (X1, X2, · · · , Xn) is the vector state, fi(t,X), gi(t,X) are called respectively
the drift and diffusion terms of the SDE and W is the stochastic Wiener process.

Definition 3.2. Let t be nonnegative real numbers, then the system of FSDEs is
defined as:

DαXi(t) = fi(t,X(t))dtα + gi(t,X(t))dW (t), (3.2)

with initial condition

X0 = X(t0),

where α ∈ (0, 1] and t, x, fi(t,X(t)), gi(t,X(t)), are defined above.
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With the aim of illustrating how we can apply the MFEM on a system of FSDEs
given in (3.2), we rewrite this system as follows:

DαX1(t) = f1(t,X(t))dtα + g1(t,X(t))dW (t),

DαX2(t) = f2(t,X(t))dtα + g2(t,X(t))dW (t),

DαX3(t) = f3(t,X(t))dtα + g3(t,X(t))dW (t),

...

DαXn(t) = fn(t,X(t))dtα + gn(t,X(t))dW (t),

(3.3)

with initial conditions

X1(0) = a1, X2(0) = a2, X3(0) = a3, · · · , Xn(0) = an, (3.4)

where ai are constants, for i = 1, 2, · · · , n. Now, to solve system (3.3), we apply
MFEM to obtain the following formulas:

X1(ti+1) = X1(ti) +
hα

Γ(α+ 1)
f1

(
ti + ϕ(h, α),X(ti) + ϕ(h, α)f1(ti,X(ti))

)
+ g1(ti,X(ti))∆Wi,

X2(ti+1) = X2(ti) +
hα

Γ(α+ 1)
f2

(
ti + ϕ(h, α),X(ti) + ϕ(h, α)f2(ti,X(ti))

)
+ g2(ti,X(ti))∆Wi,

X3(ti+1) = X3(ti) +
hα

Γ(α+ 1)
f3

(
ti + ϕ(h, α),X(ti) + ϕ(h, α)f3(ti,X(ti))

)
+ g3(ti,X(ti))∆Wi,

...

Xn(ti+1) = Xn(ti) +
hα

Γ(α+ 1)
fn

(
ti + ϕ(h, α),X(ti) + ϕ(h, α)fn(ti,X(ti))

)
+ gn(ti,X(ti))∆Wi,

(3.5)

where ϕ(h, α) = hα

2Γ(α+1) .

As a matter of fact, system (3.5) represents the numerical solution of the sys-
tem of FSDEs given in (3.2). It should be noted here that the system of FSDEs
(Like System 3.1) can be converted into a deterministic system by eliminating the
stochastic terms gi(t,X(t))dW (s) as well as assuming α = 1, for i = 1, 2, · · · , n.
Accordingly, system (3.5) is also regarded as a numerical solution to the determin-
istic system once α = 1 and gi(t,X(t))dW (s) is eliminated, for i = 1, 2, · · · , n.

4. An SIR Model

The SIR model is a fundamental epidemiological tool used to study the spread
of infectious diseases within a population. It provides a mathematical framework
for understanding how the number of susceptible, infected, and recovered individ-
uals changes over time during an epidemic [20, 21, 22]. The model’s simplicity and
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effectiveness have made it a cornerstone of infectious disease modeling and control
strategies. In the SIR model, the population is divided into three compartments:
Susceptible (S), Infected (I), and Recovered (R). Susceptible individuals can be-
come infected when they come into contact with infected individuals, and infected
individuals can recover from the disease and gain immunity, moving to the recov-
ered compartment. The model assumes that once recovered, individuals cannot
be infected again. Mathematically, the SIR model is described by a system of
ordinary differential equations, as follows:

dS(t)

dt
= δR(t)− β

S(t)

N(t)
S(t)I(t),

dI

dt
(t) = −(γ + σ)I(t) + β

S(t)

N(t)
S(t)I(t)

dR

dt
(t) = −δR(t) + γI(t),

(4.1)

where β is the transmission rate, γ is the recovery rate, σ is the disease mortality
rate and δ is the waning immunity rate. It should be mentioned that N(t) =
S(t) + I(t) + R(t) such that N(t) is not random. Also, it is important to know
that R(0) = 0 and S(0), I(0) > 0. In view of the above discussion, we operate the
Caputo differentiator on system (4.1) to get the following fractional system:

DαS(t) = δR(t)− β
S(t)

N(t
S(t)I(t)

DαI(t) = −(γ + σ)I(t) + β
S(t)

N(t)
S(t)I(t)

DαR(t) = −δR(t) + γI(t).

(4.2)

As a result, if we add the white noise terms that satisfy the properties of the
Wiener process, we obtain a system of FSDEs that represents a fractional stochas-
tic version of the SIR model. This model would be of the form:

DαS(t) = f1(t, S(t), I(t), R(t))dtα + g1(t, S(t), I(t), R(t))dW1(t)

− g2(t, S(t), I(t), R(t))dW2(t),

DαI(t) = f2(t, S(t), I(t), R(t))dtα + g2(t, S(t), I(t), R(t))dW2(t)

− g3(t, S(t), I(t), R(t))dW3(t)− g4(t, S(t), I(t), R(t))dW4(t),

DαR(t) = f3(t, S(t), I(t), R(t))dtα − g1(t, S(t), I(t), R(t))dW1(t)

+ g3(t, S(t), I(t), R(t))dW3(t),

(4.3)
where

f1(t, S(t), I(t), R(t)) = δR(t)− β
S(t)

N(t
S(t)I(t),

f2(t, S(t), I(t), R(t)) = −(γ + σ)I(t) + β
S(t)

N(t)
S(t)I(t),

f3(t, S(t), I(t), R(t)) = −δR(t) + γI(t),

(4.4)
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and
g1(t, S(t), I(t), R(t)) =

√
δR(t),

g2(t, S(t), I(t), R(t)) =

√
β
S(t)

N(t
S(t)I(t),

g3(t, S(t), I(t), R(t)) =
√

γI(t),

g4(t, S(t), I(t), R(t)) =
√

σI(t),

(4.5)

and where Wi(t) are independent Wiener process, for i = 1, 2, · · · , n. Note that if

S(0) ≈ N(0) such that N(0) is huge, then we have S(t)
N(t) ≈ 1. Now, if we aim to

solve system (4.3) with the use of the solution’s formula (3.5), we get:

S(ti+1) = S(ti) +
hα

Γ(α+ 1)
f1

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

2Γ(α+ 1)
f1(ti,X(ti))

)
+ g1(ti,X(ti))dW1(ti)− g2(ti,X(ti))dW2(ti),

I(ti+1) = I(ti) +
hα

Γ(α+ 1)
f2

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

2Γ(α+ 1)
f2(ti,X(ti))

)
+ g2(ti,X(ti))dW2(ti)− g3(ti,X(ti))dW3(ti)− g4(ti,X(ti))dW4(ti),

R(ti+1) = R(ti) +
hα

Γ(α+ 1)
f3

(
ti +

hα

2Γ(α+ 1)
,X(ti) +

hα

2Γ(α+ 1)
f3(ti,X(ti))

)
− g1(ti,X(ti))dW1(ti) + g3(ti,X(ti))dW3(ti),

(4.6)
for i = 1, 2, · · · , n, where X(t)) = (S(t), I(t), R(t)). Note that if we suppose
α = 1 and eliminate all Wiener process terms, then the deterministic model will
be yielded.

In what follows, we will consider the data reported in Table 1 for the purpose
of performing several numerical simulations related to our proposed fractional
stochastic model.

Parameters Values
β 0.3
γ 0.1
σ 0.05
δ 0.01

I(0) 2
R(0) 0
S(0) N(0)− 2

Table 1. The parameters and initial values of the SIR model

With the use of solutions formulas (4.5), we plot several figures that represent
the dynamics of the fractional stochastic SIR model. In particular, one can see
in Figure 1 the infected cases in their fractional stochastic state take the same
behavior as the same cases in their deterministic state. Also, we plot Figure 2
that represents the recovered cases and their fractional stochastic and deterministic
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Figure 1. Dynamics of the infected cases: First subfigure when
N(0) = 100 and second subfigure when N(0) = 500.

states. In addition, Figure 3 depicts such cases as well, but for susceptible cases.
It should be noted here that in these figures, the dashed blue color represents the
Deterministic state, while the red color represents the fractional stochastic state.

For more illustrations and in order to show the states dynamics of the model
(4.2), we plot Figure 4 which shows all these states in accordance with different
fractional-order values, (α = 0.8, 0.9, 1).

5. Conclusion

A new numerical method for fractional stochastic differential equation systems
is proposed. As an illustration of a system of fractional stochastic differential
equations, the susceptible infected recovered model (SIR model) is used. To com-
pare the completed results, a similar model is solved using the MFEM in both
deterministic and stochastic cases.
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Figure 2. Dynamics of the recovered cases: First subfigure when
N(0) = 100 and second subfigure when N(0) = 500.
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Figure 3. Dynamics of the susceptible cases: First subfigure
when N(0) = 100 and second subfigure when N(0) = 500.
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Figure 4. States’ dynamics of model (4.2) when N(0) = 100
according to different values of α in which the green color is for
α = 0.8, the blue color is for α = 0.9 and the red color is for
α = 1. The first subfigure represents the infected states, the
second subfigure represents the recovered states, and the third
subfigure represents the susceptible states.
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