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Abstract. We generally use numerical approximations like ADM, DTM to

solve fractional order initial value problems. This paper deals with the con-
cept of α- fractional Laplace transform as an analytic development of new

directions in the theory. The model generalizes classical Laplace transform

along with some suitable kernel, using the theory of the UD derivative. More-
over, the illustrative numerical examples are also included to demonstrate the

validity and applicability of the proposed α- fractional Laplace transform.

1. Introduction

The basic properties and history of fractional calculus may be searched in
[14, 15, 16, 17] and still, the theory is under the developing stage. There are
so many definitions of fractional derivatives available with some properties. But
we see that even finding a fractional higher-order derivative of a function is a diffi-
cult task. Though many mathematicians have presented the solution of fractional
differential equation [3, 10] of the concerned problem through appropriate model-
ing with the help of Mittag-Leffler function, Reimann-Liouville integral, or Caputo
integral. But It should be noted that some approximation methods like ADM or
DTM have been used for the computation of the complex operations which causes
error [1, 2, 8, 9]. And to obtain some error-free results, an analytic method has
been searched. When the theory of conformable derivative [11, 12] has taken place,
it has minimized the difficulty of computation so that many important properties
like product rule, quotient rule, chain rule, fundamental theorems, Taylor series,
power series, etc. have been studied for a fractional derivative and a number of
applications have been produced [4, 5, 18].
As differential equations describe the quantities of interest vary over time along
with some initial or boundary conditions. Laplace transform has seemed like a
powerful technique to solve differential equations. It converts an initial value prob-
lem to algebraic equations and using inverse operator we get the desired solution.
Although, authors use fractional Laplace transform in sense of Caputo derivative
to solve respective initial value problems but it is not convenient to apply and
therefore, we require a suitable α- fractional Laplace transform [13]. This is the
motivation of the authors to work forward.
Recently theory of The UD derivative has been taken. It is easy to apply as well

2000 Mathematics Subject Classification. 34A08, 34A12, 26A33.
Key words and phrases. The UD derivative, fractional differential equations, fractional initial

value problem, α fractional Laplace transform.

1

Journal of Mathematical Control Science & Applications,
Vol. 8 No. 2 (July, 2022)
ISSN : 0974-0570

107

Journal of Mathematical Control Science & Applications, Vol. 8 No. 1 (January-June, 2022)
ISSN : 0974-0570



2 AJAY DIXIT AND AMIT UJLAYAN

as to compute the fractional derivative of the desired order. To brief study of the
UD derivative, we refer [6, 7].

2. Preliminaries

Definition 2.1. (The UD derivative) Following differential operator Dα is called
UD derivative of g(t).

Dαg(t) = (1− α)g(t) + αg′(t);α ∈ [0, 1] (2.1)

which satisfies the condition of being Conformable D0g(t) = g(t) and D1g(t) =
g′(t)

Note: If we take β = 1− α then Dαg(t) = βg(t) + αg′(t).

Definition 2.2. (The UD Integral) Let α ∈ (0, 1] and G(t) be the anti- α deriva-
tive (in UD sense) of g(t) then

G(t) =
1

α
e(

α−1
α )t

∫
e

1−α
α tg(t)dt+ Ce−(α−1

α )t. (2.2)

where C is constant.

Definition 2.3. (Laplace transform) Let function g(t) is piece wise continuous
and is of exponential order. Then following improper integral is known as Laplace
transform with kernel k(s, t) = e−st and denoted by L(g(t))

L(g(t)) =

∞∫
0

e−stg(t)dt = G(s) (2.3)

where s > 0 is the parameter.

3. α-Fractional Laplace transform

Definition 3.1. Let α ∈ (0, 1] and f(t) be a real valued piece wise continuous
function for t > 0 which is of the exponential order. Then α- Laplace transform
of f(t) of order α is defined and denoted as:

Lα (f(t)) =

∞∫
0

k(s, t)f(t)dt

=
1

α
e−

βs
α

∞∫
0

e−(s− βα )tf(t)dt = Fα(s),

where k(s, t) = 1
αe
− βα (s−t)e−st is the kernel and β = 1− α.

Here it is clear that if L denotes the usual Laplace transform such that

L (f(t)) = F (s),
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then

Lα (f(t)) =
1

α
e−

βs
α F

(
s− β

α

)
= Fα(s)

or

Lα (f(t)) =
1

α
e−

β
α sL

(
e
β
α tf(t)

)
4. α-Fractional Laplace Transform

Definition 4.1. Let α ∈ (0, 1] and p(t) be a real valued piece wise continuous
function for t > 0 which is of the exponential order. Then α-fractional Laplace
Transform of p(t) is defined and denoted as:

Lα (p(t)) =

∞∫
0

k(s, t)p(t)dt

=
1

α
e−

(1−α)s
α

∞∫
0

e−(s− (1−α)
α )tp(t)dt

= Pα(s)

where k(s, t) = 1
αe
− (1−α)

α (s−t)e−st is the kernel

Here it is clear that if L denotes the usual Laplace Transform such that

L (p(t)) = P (s),

then

Lα (p(t)) =
1

α
e−

(1−α)s
α F

(
s− (1− α)

α

)
= Pα(s) (4.1)

or

Lα (p(t)) =
1

α
e−

(1−α)
α sL

(
e

(1−α)
α tp(t)

)
. (4.2)

5. Some Results on α-Fractional Laplace Transform

Theorem 5.1. (Existence theorem of α-fractional Laplace Transform)
Let p be a piece wise continuous function in [0,∞) and is of exponential order,
then α- fractional Laplace Transform Fα exists for s > b where b is real.

Proof. Consider a,M, b such that

|p(t)| 6Mebt ∀ t > a,

now consider

I =

∞∫
0

e−(s− (1−α)
α )tp(t)dt =

a∫
0

e−(s− (1−α)
α )tp(t)dt+

∞∫
a

e−(s− (1−α)
α )tp(t)dt = I1 + I2,

existence of I1 is obvious and for I2 =
∞∫
a

e−(s− (1−α)
α )tp(t)dt we have∣∣∣e−(s− (1−α)

α )tp(t)
∣∣∣ 6Me−(s− (1−α)

α −b)t
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4 AJAY DIXIT AND AMIT UJLAYAN

therefore

∞∫
a

∣∣∣e−(s− (1−α)
α )tp(t)

∣∣∣ dt 6M

∞∫
a

e−(s− (1−α)
α −b)tdt =

M

s− (1−α)
α − b

.

Thus I2 converges absolutely for s > b+ (1−α)
α and hence I exists for s > b+ (1−α)

α .

Theorem 5.2. If Lα(p(t)) = Pα(s) then Pα(s)→ 0 as s→∞.

Proof. Since p(t) is of exponential order, there exist M, b, a such that

|p(t)| 6M1e
bt, t > a

and p(t) is piece wise continuous function too in [0.a], so we have |p(t)| 6M2e
ct

for 0 6 t 6 a except at the finite points where p(t) is not defined.
Assume that M = max{M1,M2}, θ = max{b, c} we get

∞∫
0

e−(s− (1−α)
α )t |p(t)| dt 6M

∞∫
0

e−(s− (1−α)
α −θ)tdt =

M

s− (1−α)
α − θ

,

where s > θ + (1−α)
α

hence

Pα(s) =
1

α
e−

(1−α)s
α

∞∫
0

e−(s− (1−α)
α )tp(t)dt→ 0

as s→∞.

Proposition 5.3. (Relation between α-fractional Laplace Transform and ordinary
Laplace Transform)
From the definition of ordinary Laplace Transform

L(p(t)) =

∞∫
0

e−stp(t)dt = P (s),

consider Heaviside function for α ∈ (0, 1]

H(t) =

{
f
(
t− (1−α)

α

)
, t > (1−α)

α

0, t < (1−α)
α
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so that

L
(
e

(1−α)
α (t− (1−α)

α )H(t)
)

=

∞∫
0

e−ste
(1−α)(t− (1−α)

α )
α H(t)dt

=

∞∫
(1−α)
α

e−ste−
(1−α)
α (t− (1−α)

α )f

(
t− (1− α)

α

)
dt

= e−
(1−α)
α s

∞∫
0

e−(s− (1−α)
α )yf(y)dy; y = t− (1− α)

α

= e−
(1−α)
α sF

(
s− (1− α)

α

)
.

Therefore,

Lα(p(t)) =
1

α
L
(
e

(1−α)
α (t− (1−α)

α )H(t)
)
. (5.1)

We may also write

Lα(p(t)) =
1

α
L

[
e

(1−α)
α (t− (1−α)

α )
(
p

(
t− (1− α)

α

)
U

(
t− (1− α)

α

))]
, (5.2)

where U(t) is the Unit step function.

Proposition 5.4. Followings are the α-fractional Laplace Transform of some el-
ementary functions:

(a) Lα(1) = e−
(1−α)
α

αs−(1−α) ,

(b) Lα(tn) = αne−
(1−α)
α s Γ(n+1)

(αs−(1−α))n+1 ,

(c) Lα(eat) = e−
(1−α)
α

s

(s−a)α−(1−α) ,

(d) Lα(sin at) = aαe
−(1−α)

α
s

(αs−(1−α))2+α2a2 ,

(e) Lα(cos at) = sαe
−(1−α)

α
s

(αs−(1−α))2+α2a2 ,

(f) Lα(sinh at) = aαe
−(1−α)

α
s

(αs−(1−α))2−α2a2 ,

(g) Lα(cosh at) = sαe
−(1−α)

α
s

(αs−(1−α))2−α2a2 .

where α ∈ (0, 1].

6. The Basic Properties of α-Fractional Laplace Transform

(a) Linear property: If Pα(s), Gα(s) represents the α-fractional Laplace
Transform of p(t), g(t) respectively. Then for the constants c1, c2 we have

Lα(c1p(t) + c2g(t)) = c1Pα(s) + c2Gα(s). (6.1)
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6 AJAY DIXIT AND AMIT UJLAYAN

(b) First shifting property: Let Pα(s) be the α-fractional Laplace Trans-
form of p(t) that is Lα (p(t)) = Pα(s). Then

Lα
(
eatp(t)

)
=

1

α
e−

(1−α)s
α P

(
s− (1− α)

α
− a
)

= Pα(s− a),∀α ∈ (0, 1]. (6.2)

(c) Second shifting property: Let Pα(s) be the α-fractional Laplace Trans-
form of p(t) that is Lα (p(t)) = Pα(s). Then for

g(t) =

{
p(t− a); t > a

0; t < 0
,

Lα (g(t)) = e−a(s−
(1−α)
α ) 1

α
e−

(1−α)s
α P

(
s− (1− α)

α

)
= e−a(s−

(1−α)
α )Pα(s) ∀ α ∈ (0, 1]

(d) Change of scale property: Let Pα(s) be the α-fractional Laplace Trans-
form of p(t) that is Lα (p(t)) = Pα(s). Then

Lα (p(at)) =
1

aα
e−

(1−α)
α sP

(
1

a

(
s− (1− α)

α

))
∀ α ∈ (0, 1]. (6.3)

Theorem 6.1. If p(t) be continuous function and its derivative p′(t) is a function
of class A that is p′(t) is piece wise continuous and is of the exponential order in
any interval t ∈ [0, c]. Then for α ∈ [0, 1)

Lα (p′(t)) =

(
s− (1− α)

α

)
Lα(p(t))− 1

α
e−

(1−α)
α sp(0).

Proof. Let c1, c2, ...cn are the discontinuities of p′(t) in [0, c]. Then we have

c∫
0

e−(s− (1−α)
α )tp′(t)dt =

c1∫
0

e−(s− (1−α)
α )tp′(t)dt+

c2∫
c1

e−(s− (1−α)
α )tp′(t)dt+ · · ·+

c∫
cn

e−(s− (1−α)
α )tp′(t)dt

= e−(s− (1−α)
α )tp(t) |c10 +e−(s− (1−α)

α )tp(t) |c2c1 +...+ e−(s− (1−α)
α )tp(t) |ccn

+

(
s− (1− α)

α

) c∫
0

e−(s− (1−α)
α )tp(t)dt

=
(
e−(s− (1−α)

α )cp(c)− p(0)
)

+

(
s− (1− α)

α

) c∫
0

e−(s− (1−α)
α )tp(t)dt.

As c→∞, e−(s− (1−α)
α )cp(c)→ 0,

so we get

Lα (p′(t)) =
1

α
e−

(1−α)
α s

∞∫
0

e−(s− (1−α)
α )tp′(t)dt =

(
s− (1− α)

α

)
Lα(p(t))− 1

α
e−

(1−α)
α sp(0).
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α− FRACTIONAL LAPLACE TRANSFORM 7

Replacing p(t) by p′(t) we may get

Lα(p′′(t)) =

(
s− (1− α)

α

)
Lα(p′(t))− 1

α
e−

(1−α)
α sp′(0)

=

(
s− (1− α)

α

)((
s− (1− α)

α

)
Lα(p(t))− 1

α
e−

(1−α)
α sp(0)

)
− 1

α
e−

(1−α)
α sp′(0)

=

(
s− (1− α)

α

)2

Lα(p(t))− 1

α
e−

(1−α)
α s

(
s− (1− α)

α

)
f(0)− 1

α
e−

(1−α)
α sp′(0).

Similarly one may get

Lα (p′′′(t)) =

(
s− (1− α)

α

)3

Lα(p(t))− 1

α
e−

(1−α)
α s((

s− (1− α)

α

)2

p(0) +

(
s− (1− α)

α

)
p′(0) + p′′(0)

)
. (6.4)

Using the above results we have

Lα(Dαp) = Lα((1− α)p+ αDp) = αsLα[p]− e−
(1−α)
α sp(0), (6.5)

Lα(DαDαp) = Lα((1− α)2p+ α2D2f + 2α(1− α)Dp)

= α2s2Lα[p]− (αs+ (1− α)) e−
(1−α)s
α p(0)− αe−

(1−α)s
α p′(0).

With the same process we have

Lα[(DαDα · · ·Dα)︸ ︷︷ ︸
n times

p(t)] = L [((1− α) + αD)
n
p(t)] . (6.6)

Theorem 6.2. If L(p(t)) = P (s),then for α ∈ (0, 1]

Lα (tnp(t)) =
1

α
e−

(1−α)s
α (−1)n

[
dn

dsn
P (S)

]
S=s− (1−α)

α

.

Proof. Since

Lα (p(t)) = Pα(s) =
1

α
e−

(1−α)s
α

∞∫
0

e−(s− (1−α)
α )tp(t)dt

d

ds
Pα(s) =

−(1− α)

α

1

α
e−

(1−α)s
α

∞∫
0

e−(s− (1−α)
α )tp(t)dt− 1

α
e−

(1−α)s
α

∞∫
0

te−(s− (1−α)
α )tp(t)dt

= −Lα
[(

(1− α)

α
+ t

)
p(t)

]
.
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d2

ds2
Pα(s) =

(
(1− α)

α

)2
1

α
e−

(1−α)s
α

∞∫
0

e−(s− (1−α)
α )tp(t)dt+

1

α
e−

(1−α)s
α

∞∫
0

t2e−(s− (1−α)
α )tp(t)dt

+
2(1− α)

α

1

α
e−

(1−α)s
α

∞∫
0

te−(s− (1−α)
α )tp(t)dt

= (−1)2Lα

[(
(1− α)

α
+ t

)2

p(t)

]
.

Similarly we get

dn

dsn
Pα(s) = (−1)nLα

[(
(1− α)

α
+ t

)n
p(t)

]
, (6.7)

we may also have

Lα (tnp(t)) =
1

α
e−

(1−α)s
α (−1)n

[
dn

dsn
P (S)

]
S=s− (1−α)

α

. (6.8)

As

Lα (p(t)) =
1

α
e−

(1−α)s
α P

(
s− (1− α)

α

)
.

Theorem 6.3. Let

g(t) =

t∫
0

p(t)dt

and
Lα(p(t)) = Pα(s)

then for α ∈ (0, 1]

Lα(g(t)) =
1(

s− (1−α)
α

)Lα[p(t)].

Proof. We have g′(t) = p(t) and g(0) = 0

Lα[g′(t)] =

(
s− (1− α)

α

)
Lα[g(t)]− 1

α
e−

(1−α)s
α g(0)

=

(
s− (1− α)

α

)
Lα[g(t)].

Therefore,

Lα

 t∫
0

p(t)dt

 =
1(

s− (1−α)
α

)Lα[p(t)]. (6.9)

Proposition 6.4. (Convolution theorem)
If α ∈ (0, 1],

L−1
α

(
1

α
e−

(1−α)s
α P (s)

)
= L−1 (P (S)) ,
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and

L−1
α

(
1

α
e−

(1−α)s
α G(s)

)
= L−1 (G(S))

then

L−1 (P (S)G(S)) = f ∗ g =

t∫
0

p(x)g(t− x)dx. (6.10)

where L−1(P (S)) = p(t), L−1(G(S)) = g(t) and S = s− (1−α)
α .

7. Numerical Examples

The section contains some examples to evaluate the solution of the problems
concerned.

Example 7.1. Consider

D1/3(yet) = t; y(0) = 1/4.

The problem is equivalent to solve Dy+3y = 3te−t with the condition y(0) = 1/4,
using ordinary Laplace Transform we get the following solution

y = e−3t +
3

2

(
t− 1

2

)
e−t.

Here we are interested to get the same solution using α-fractional Laplace Trans-
form.
So taking α-fractional Laplace Transform both sides of D1/3(yet) = t,
we get,

αsLα[Y ]− e−
(1−α)s
α Y (0) =

1

α
e−

(1−α)s
α

1(
s− (1−α)

α

)2

where

Y = ety, Lα(t) =
1

α
e−

(1−α)s
α (L(t))

s=s− (1−α)
α

and

Lα(Dαf) = αsLα[f ]− e−
(1−α)s
α f(0)

As α = 1/3, (1− α) = 2/3 we have

1

3
sLα[Y ]− e−2s

4
Y (0) = 3e−2s 1

(s− 2)2

⇒ Lα[Y ] =
9e−2s

s(s− 2)2
+

3e−2s

4s

taking Inverse α-fractional Laplace Transform

Y = L−1
α

(
9e−2s

s(s− 2)2
+

3e−2s

4s

)
= L−1

[
3

(S + 2)S2
+

1

4(S + 2)

]
;S = s− 2

=
1

4

(
4e−2t − 3 + 6t

)
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which implies

yet = e−2t +
1

4
(6t− 3)

and therefore,

y = e−3t +
3

2

(
t− 1

2

)
e−t.

Example 7.2. Consider the problem

(DαDα + 9)u(t) = sin 2t;u(0) = 1, u′(0) = 0

where α ∈ (0, 1].
Taking α-fractional Laplace Transform both sides, we get

α2s2Lα[u]− (αs+ (1− α))e−
(1−α)s
α u(0)− αe−

(1−α)s
α u′(0) + 9Lα[u] =

1

α
e−

(1−α)s
α

2(
s− (1−α)

α

)2

+ 4

Lα[u] =
1

α
e−

(1−α)s
α

2((
s− (1−α)

α

)2

+ 4

)
(α2s2 + 9)

+
αs+ (1− α)

(α2s2 + 9)
e−

(1−α)s
α

implies,

u = L−1

 2

(S2 + 4)

(
α2
(
S + (1−α)

α

)2

+ 9

) +
α
(
α
((
S + (1−α)

α

))
+ (1− α)

)
(
α2
(
S + (1−α)

α

)2

+ 9

)
 .

As L−1
α

(
1
αe
− (1−α)s

α f(s)
)

= L−1 (f(S)) where s = S + (1−α)
α .

Using Convolution theorem for Inverse α-fractional Laplace Transform

L−1 2

(S2 + 4)

(
α2
(
S + (1−α)

α

)2

+ 9

) =

t∫
0

e−
(1−α)
α x sin

3x

α
sin 2(t− x)dx

=
α

6

e− (1−α)t
α

(
− (1−α)

α cos 3
α t+

(
3
α + 2

)
sin 3

α t
)

+
(

(1−α)
α cos 2t+

(
3
α + 2

)
sin 2t

)
(

(1−α)
α

)2

+
(

3
α + 2

)


−α
6

e− (1−α)t
α

(
− (1−α)

α cos 3
α t+

(
3
α − 2

)
sin 3

α t
)

+
(

(1−α)
α cos 2t−

(
3
α − 2

)
sin 2t

)
(

(1−α)
α

)2

+
(

3
α − 2

)
 = A(say)

Also

L−1

α
(
S + (1−α)

α

)
+ (1− α)

α2
(
S + (1−α)

α

)2

+ 9

 = αe−
(1−α)
α t

(
cos

3

α
t+

(1− α)

3
sin

3

α
t

)
= B(say).
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Therefore, complete solution is

u(t) =
1

α

(
1

6
A+B

)
.

It should be noted that when α = 1 above equation reduces to the following(
D2 + 9

)
u(t) = sin 2t,

with the same initial conditions and having solution

u(t) = cos 3t+
1

15
(3 sin 2t− 2 sin 3t)

and the solution coincides with this one.

Example 7.3. Consider

(D1/4D1/4 + 2D1/4 + 1)y = 3te−7t; y(0) = 4, y′(0) = 2.

Taking α-fractional Laplace Transform

α2s2Lα[y]− (αs+ (1− α))e−
(1−α)
α sy(0)− αe−

(1−α)
α sy′(0) + 2

(
αsLα[y]− e−

(1−α)
α sy(0)

)
+Lα[y] =

3

α
e−

(1−α)
α s

(
− d

ds

(
1

s+ 7

))
s=s− (1−α)

α

where α = 1/4, (1− α) = 3/4(
s2 + 8s+ 16

16

)
L1/4[y]− e−3s(s+ 11)− 1

2
e−3s = 12

e−3s

(s+ 4)2

L1/4[y] = 16e−3s

[
12

(s+ 4)4
+

s

(s+ 2)2
+

23

2(s+ 4)2

]

y = 4L−1

(
12

(S + 7)4
+

1

(S + 7)
+

15

2(S + 7)2

)
;S = s− 3

= 4e−7t

(
2t3 +

15t

2
+ 1

)
.

Example 7.4. Consider

(D1/2D1/2 + 2D1/2 + 5)y =
1

3
e−3t sin t ; y(0) = 0, y′(0) = 1.

Taking α-fractional Laplace Transform of both sides

1

4
s2L1/2[y]−

(
1

2
s+

1

2

)
e−sy(0)− 1

2
e−sy′(0) + 2

[
1

2
sL1/2[y]− e−sy(0)

]
+5L1/2[y] = 2e−s

1

3

(
3

(s+ 3)2 + 9

)
s=s−1

1

4

(
s2 + 4s+ 20

)
L1/2[y]− 0− 1

2
e−s = 2e−s

1

(s+ 2)2 + 9
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L1/2[y] = 8e−s
[

1

(s2 + 4s+ 13)(s2 + 4s+ 20)

]
+

2e−s

s2 + 4s+ 20

= 2e−s
[

1

7

(
4

(s+ 2)2 + 9
− 3

(s+ 2)2 + 16

)]

y =
1

7
L−1

[(
4

(S + 3)2 + 9
− 3

(S + 3)2 + 16

)]
; s = S + 1

=
e−3t

84
(16 sin 3t− 9 sin 4t) .

8. Conclusion

Work is motivated by the concept of ordinary Laplace transform via the UD
derivative approach. We tried to produce some properties of α-Laplace trans-
forms and observed that these all coincide with the classical properties of Laplace
transform at α = 1. α-Laplace transform of engineering functions like Unit step,
Dirac-delta, etc. can also be obtained in the same manner. Another Integral
transform may be established by choosing another sufficient kernel of the integral.
The authors hope that the work would be meaningful to other researchers in the
future.
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