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Abstract

Ferroelectric fluid is a colloidal suspension of ferroelectric grains, i.e.
electrical counterpart of ferrofluids. In order to discuss the dynamics
of ferrolectric particle suspended in homogeneous fluid, continuous time
random walk theory has been implemented in this article. We are con-
sidering external field is giving delta-kicks to the stochastic particles of
the medium. Translation and rotation in time domain has been stud-
ied. Dynamic frequency response has also been developed. Fokker-Planck
equations of rotation and translation have also been solved numerically,
correlation functions calculated and a comparative study between these
two theories has also been demonstrated.!
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1 Introduction

A ferroelectric fluid is a colloidal suspension of ferroelectric particles dispersed
in a solvent with the help of surfactant. For the stability of such dispersions[1, 2]
aggregation must be avoided and the attractive Van-der-Waals forces must be coun-
terbalanced by steric or electrostatic repulsive forces. Each particle of a ferroelectric
fluid possesses a permanent electric dipole moment so that the ferroelectric colloids
have much in common with dipolar[2, 10, 11] liquids.

In order to discuss our problem relating to the dynamics of a ferroelectric fluid,
by comparing ferrofluids (colloidal suspension of ferromagnetic particles) , we at first
consider a particle under the influence of collisions or ¢ kicks from the particles of the
medium , due to their Brownian motion. Under this circumstance the particle under
consideration can have only two types of motion ; displacement and rotation. Here
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we try to apply the principle of Continuous Time Random Walk ( CTRW ) to this
case in order to treat the problem at hand ( i.e. to find the position and final spin/
magnetization of the particle after time t)[1, 2, 3, 4, 5].

Firstly we make some assumptions , we take that each collision changes the position
of the particle by an amount either in the positive or the negative x direction( i.e. we
consider only the one dimensional displacement of the particle.) . This is similar to
the basic CTRW idea to regard the stochastic process as a chain made up of primary
events or collisions , in a generalized sense. The process s viewed as an ongoing
renewal of a stochastic sequence. The strategy is to break up the time interval (0,t)
into sub intervals specified by the points t1,t2,t3,. . .,t» at which the system is assumed
to be subject to certain events or collisions or §-kicks as in this case. The situation is
schematically shown below.

Also we treat the spin independently of the displacement . i.e. we try to go for the
decoupled approach[8]. The justification behind this is that the rotational transition
of the particle between two spin states has such a fast process that upon comparison
with the process of displacement it can be treated as an instantaneous event. In our
consideration a spin change operator changes the spin between up (41) and down(-1)
states. Strictly speaking here we have made another assumption. If we consider the
particle as an extended rigid body then the rotation should be continuous but in our
model we take the particle such that the time it takes to reorient itself from 6 = 0
to @ = m or from § = 7 to # = 0 is much much smaller in comparison to he time
it remains in one of its equilibrium positions ( # = 0 or § = 7) (viz. similar to the
superparamagnetic relaxation phenomena[l]). Thus allowing us to treat the process
of spin change as an instantaneous jump process and also preparing the way for the
application of the Two-level Jump Process (TJP) to our problem at hand both for the
spin and the displacement part since we are going for the decoupled approach[12].

2 Theoretical framework

Two collsion operators, denoted by D(z) and S(6) are operating on ferroelectric fluid
particle causing translation and in rotation respectively. Translation and rotation are
delta-kicked process as in CTRW. (i) No collision term: The conditional probability
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Figure 1: Schematic diagram of TJP

for this event is §(zo —x1)exp(—At) This comes from the fact that for a poisson process,
exp(—At) measures the probability of no collision in time t.Where \ is the mean pulse
rate.So the corresponding operator would be lexp(—At).

P = §(xo — 21)5(00 — 01)exp(—At) (1)
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(ii) Single collision term: Here the probability is that a collision occurs at time
t1 in the interval (¢1,¢1 + dt1) which is multiplied by the probability that no further
collision occurs between t; and ¢

t
P= / exp[—A(t — t1)|Adty (z, 0|T |20, 00 )exp(—At1) (2)
0
where J = DS which gives

P = /t exp[—A(t — t1)]Adt1 (z, 0|DS|z0, 0o)
xexp(—At1) 3)

(iii)Two collision term: The conditional probability for this event is

p - Z[)tdt2/ot2dtlexp[x(ttz)]A(:c,e|(“S)|x1,el)

xexp[—A(ta — t1)A(z1, 01|(DS)|z0, 6o) (4)

(iv)n- colliion term: We can see now that the conditional probability for n-collisional

events is
t tn
. T /dtn/ Qb ..
0 0

z1,0122,02,23,03,...,Tn_1,0n 1

X /t2 dtiexp[—A(t — tn)]A
x(x,0|(DS)|zn_1,0n_1) (5)

So the collision probability operator has the form

(oo}

P(t) =) fu()(DS)" (6)

n=0

2.1 APPLICATION OF TJP FOR DISPLACEMENT

The simplest Stationary Markov Process is the TJP.Here the stochastic variable x is
a stepwise constant process which jumps between two discrete values xpand —xo with
equal probability (ref fig.)

It can be shown that the collision matrix J for such a TJP is given by J=DS§S

where / /
. 1/2 1/2
S = ( 1/2 1/2 ) (7)

~  ( 1/2 1/2

D= ( 12 172 ) (8)
J here is an idempotent matrix ( this property helps us to construct the conditional
probability matrix) P(t).

also

P(t) = cap(d — 1)1] ()
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Figure 2: Schematic diagram of TJP

Hence using a direct power series expansion and the property that Jisan idempotent
matrix we obtain

Pt) = exp(- )1 —-T+> ((A)"/k!)J]
= exp(—At)[1 —J ;je:ﬂp()\t)] (10)

Which gives with some simple algebra

P(t) = < 1 em;(—m) - exf(dt) > (11)

We work in a 2 dim vector space spanned by the orthonormal set |n) with the matrix

representation
1
|w—(0) (12)

|m=($) (13)

The fluctuating variable z may then be regarded as an operator Xwhose matrix is
diagonal in the above representation

S o 0
(o) -

average value of x in the stationary state is
<2(0)z(t) >= Y pa(n|XIn) =0 (15)

where p, =1/2
and the autocorrelation of z is given by

2

<2(0)z(t) >= Y pa(n[X[n)(m|P(t)[n)(m|X|m) (16)

n,m=1
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which is calculated to be

< 2(0)z(t) >= zo exp(—At) (17)
also )
<2®>=> pa(n|X’n) = 3 (18)

So eqn(17) can be recast into the form
< z(0)x(t) >=< 2 > exp(—\t) (19)

Now the correlation time 7. of this stochastic process is given by

Te=(1/ < 2®>) /oo dt < z(0)z(t) >=1/X (20)

2.2 APPLICATION OF TJP FOR ROTATION

As seen in the magnetization of a superparamagnetic material the magnetic enregy of
the particle has its origin in the anisotropy energy of the particles. We can assume
that our case of ferrofluid particle is also quite similar to that model.So the application
of the two level jump process (TJP) in this case will be analogous to that applied for
a superparamagnetic relaxation phenomena.

Here the stochastic variable at hand is the angle of rotationf.Which has the matrix
representation of the operator as @

5 [ Bo 0

(% ) o
applying a similar treatment as we did in the case of displacement we have the following
results

<0> = 0 (22)
<0> = 6 (23)
<0(0)0(t) > = 6O exp(—At) (24)
Since

w ="V Moycosb (25)

thus we have
<p> =0 (26)
<> = 0,°VPM; (27)
<pO)u(t) > = 60°V2Miexp(—At) (28)

We know the linear response to a constant magnetic field along Z is given by the
response function

P(t) = Bl<p’>— < p0)u(t) >)
= B60°VZM{[1 — exp(—At)] (29)
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On the other hand, the relaxation function is obtained from the response correlation
function for generalized susceptibility

YaB(t) = dap(t =0) — pap(t) (30)
to be
B(t) = P(t=o00)—(t)
= 8002V MZexp(—\t) (31)

Finally the frequency-dependent response is derived by substituting equation (29) into
equation (30)[1] :

x(w) = BO°VZMENN — iw) ™" (32)
which can be written in the alternative form
x(w) = BO°VZMIN1 — iwr) ™" (33)

3 Rotation translation coupling and Fokker Planck
approach

Rotation and translational dynamics of ferrofluid can also be portrayed by means
of Fokker Planck Equation. Two state Brownian motion will be enough to discuss
a simplistic model with such external delta kicks as described earlier. The initial
coupled distribution (rotation as well as translation) will be d(xo — 21)d(6o — 601) (as
no collision term at t=0 in previous section). When distribution spreads in absence of
any potential, that will follow

P(ZC, 95 t) = P’I‘Dt (07 t)Ptrans (.’L’, t)

1 (o — x)?
—— exp 2L
27‘(‘\/ DTDQ 2Da:

X exp (—(0021_)06)2> exp(—At) (34)

The corresponding Fokker-Planck equation is given by

9Py d *pP

5 = " pglfof(0)or(t)Pe] + Dogom (35)
8;;”” = —%[Fo¢(m)5T(t)Pz} + DO?’)T}; (36)

Now Vi¢(0) is rotational potential
and Va¢(z) is the translational potential
also
o
o) =2 (37)
Vs
g) = 22
70)=2" (39)

Suppose rotational potential is harmonic potential

_av(o)

F0) = === = ko (39)
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We consider the rotational potential to be ratchet potential.
¢(x) = cos(kx) (40)
so the Fokker-Planck equation (FPE) for rotational motion is

AP, d 9P
0 kFo057(t) Ps] + Do

ot = 96!

062

Now as we are considering external force is giving aperiodic delta kicks to the ferrofluid
particle [5, 6]

(41)

oo

or(t) = Z o(t —nT)

n=-—oo

+ % 3 603(27;3%) (42)

m=1

Nl =

where T is the period of the external force. Therefore the equations are

P, o *pP
S =~ g kFo00r(t) o] + Dos o (43)

P, d °pP
el fa[Fgcos(kx)éT(t)Pm} + me

Numerical solution computed with 201 mesh points.

0.5

Translation X

Figure 3: Numerical simulation of the probability with 201 mesh points
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Figure 4: Translational probability at t=2 and t=0

Solution at X=0
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Figure 5: Solid line indicates Translational Probability at x=0 and dotted line
is according to CTRW
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Numerical solution computed with 50 mesh points.
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Figure 6: Numerical simulation of the probability with 50 mesh points
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Figure 7: Rotational probability at t=2 and t=0
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Solution at 6= 0

1 :
——P(0=0,1)
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- 06} ]
=)
3 :
o .

0.4f . ]

0.2f ]

0 L L L
0 0.5 1 1.5 2

Figure 8: Solid line indicates Rotational Probability at x=0 and dotted line is
according to CTRW

where Dog and Do, are the rotational[3, 7] and the translational diffussion coef-
ficient respectively.By solving the above stochastic differential equations with initial
condition we can get the probabilities P(0,t),P(x,t) and study their variation with
time and with 6 and z respectively.These results have been graphically depicted in
Figs. 3,4,5,6 and 7.

4 Rotation and translation: Langevin aproach

Rotation and translational dynamics of ferro-fluid can be portrayed by means of
Langevin Equation as well. We persist our discussion with the two state Brownian
motion which would be a simplistic model with such external delta kicks as described
earlier.
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Figure 9: Translation in time
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Figure 10: Sample temporal autocorrelation of translation
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Figure 12: Sample temporal auto-correlation of rotation

The initial coupled distribution (rotation as well as translation) will be §(zo —
21)0(6o — 61) (as no collision term at t=0 in previous section). When distribution
spreads in absence of any potential, that will follow

P(l‘7 07 t) = P’rot (07 t)Ptrans (I, t)
1 (zo — z)?
271'\/ DIDQ 2D’I‘

X exp <(00255)2> exp(—At) (45)
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The corresponding Langevin equation for a thermal bath at temperature T is given
by
Ox oV (z,0)

= e ) + Fo) (46)
80 aV(x,0)
T R + Ao (t) + Fo(t) (47)

Where &, and &y are Gaussian white noise for translation and rotation respectively
and Fy(t) and Fy(t) are the external force (delta kick) for translation and rotation
respectively. Now Vi¢(0) is rotational potential

and Va¢(z) is the translational potential

also
oV
-2 4
10) =25 (48)
OV,
f(0) = e (49)
Suppose rotational potential is harmonic potential
_ oV _
f(0) = 50 = k20 (50)
Now the potential V (z, ) is of the form
V(x,0) =Ratchet Potential for translation 4+ harmonic potential for rotation
V(x) = cos(kix) (51)
V(o) = Shat? (52)

Now as we are considering external force is giving aperiodic delta kicks to the ferrofluid
particle

oo

or(t) = Z o(t —nT)

n=-—oo

+ % Z cos(27;nt) (53)

m=1

N~

where T is the period of the external force.By solving the above stochastic differential
equations with initial condition we can get < 8(0)0(t) > , < (0)z(t) >, and frequency
response and susceptibility can be found [9].

5 Result and discussion

In this paper we have started with CTRW method to discuss rotational and transla-
tional motion of a analytically discuss the rotational and the translational motion of
a ferrofluid particle analytically. Later on we have used the FPE and the Langevin
Equation in order to analyze the dynamics using numerical methods to solve these
equations. By solving Langevin’s stochastic differential equation for both rotation
and translation, we have computed the autocorrelation functions and relaxation time.
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Resemblance has been found in both approach. CTRW was assumed as Poisson dis-
tribution in time, and Langevin equation has also show the same distribution with
A =. The whole study is quite satisfactory towards understanding the stochastic be-
havior of ferrofluid particles under delta kicks. In the end we have made a comparitive
study between the analytical and the numerical approaches to solve the problem at
hand. From figs 3 (and 6) we can understand both the variation of the translational
( and rotational) probability with x ( and #)and also the evolution of the distribution
with time.The fig 4 ( and 7) show the Evolution of the Translational (and rotational
) probability with time , here the initial poisson distribution(at t=0) is seen to be
spreading out as time evolves.The fig 5 ( and 8) give us the solutions at x=0 ( and
6 = 0)as found out numerically from the FPE | the dotted lines represent our analyti-
cal results for A = 1.35 the close matching of the two is worth noticing.Finally figures
9 and 11 represent the solutions for x ( and ) obtained numerically from the Langevin
approach. We can see the initial transient growth followed by saturation which is of
course accompanied by some thermal noise due to fluctuations in the thermal bath.In
fig. 10 and 12 the autocorrelation function obtained from the Langevin approach has
been depicted.
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