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FILTRATION MODEL PROCEEDING UNDER LINEAR
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ABSTRACT. In the work three-dimensional filtration problems are
considered, namely, the problems: Dirichlet, Neumann an A mixed
problem in a relaxation-compressible porous medium carried out

under linear Darcy’s law. This indicates that the disturbance front
instantly passes through the entire considered area, making it
instantly a filtration area. All problems are mathematically posed
correctly. The obtained results are used in the oil industry to
determine the pressure at a particular point of the oil reservoir.

1. Introduction

Multidimensional problems for models of relaxation filtration in a relaxation-
compressible porous medium carried out under linear Darcy’s law have not
been considered before. Moreover, these problems were not solved by Monte-
Carlo and probabilistic-difference methods. The physical formulation of the
problem itself promotes (encourages) the use of probabilistic methods for
solving these problems, since many physical processes, as well as their
parameters in underground hydromechanics are random. For this reason, the
relevance of solving the initial problems by Monte-Carlo and probabilistic-
difference methods is not in doubt.

2. Preliminary

Following the work [1], we consider the main principles and equations of
relaxation filtration and features of filtering with a finite velocity of the
propagation disturbances.

1. The equations of conservation of momentum of resistance forces and
liquid mass

The law of conservation of momentum of resistance forces has the form

;’i‘[/JdV—gpndS=0’ (1)
t
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and the law of conservation of the liquid mass is written in integral form
d
= mpav + {pw,ds =0 (2)
dt

where ¢ — time, J — impulse density of resistance forces, 7 — arbitrary fixed

in space volume, § — surface limiting V, p — pressure, jy — projection of the

filtration velocity w to the normal m, m — porosity, p — liquid density. The
system of equations (1), (2) are open with respect to the quantities m, p, p

, W, J. To closure these equations, it is necessary to introduce three
constitutive relations taking into account the properties of liquids and rocks
from which the porous skeleton is composed, i.e. to write the dependence m
and p on pressure p as well as to express the impulse density of the forces J
through the filtration velocity.

2.  The constitutive relations for the impulse of resistance forces and the
liquid mass. Basic principles of linear relaxation filtration

The force impulses J at some fixed point are due to the action of viscous
forces in the interaction of a moving fluid with a fixed porous skeleton and,
therefore, depends on the filtration velocity W at this point. The simplest
relationship between the quantities J and W can be represented as

0J
AR
ot

W|) W, (3)

where D — density of the resistance force, ¢ — constant. Using this dependence
leads to the well-known nonlinear law of filtration of the form

grad (p) =-c (|W|) W, (4)

u
W|)W = — goes into Darcy’s low, where 4 — liquid
K

Which at constant c(

viscosity, kK — permeability coefficient. From relation (3), the following

determining relation between W and D is obtained:
=t
k7 KTy Ty T 1
W=——pD+—p7£OOD(x,T)-e W ar. (5)

H Ty 7 Ty Ty

Here 1, and tw are the non-negative relaxation time constants, respectively
of pressure and filtration velocity.
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Now we introduce the constitutive relation for the impulse of resistance
forces taking into account the effects of relaxation, indicate the basic principles
that are common to many sections of continuum mechanics.

The principle of determinism — PD. The magnitude of the impulse of
resistance forces J at some fixed point of the ground is determined by the
entire history of movement up to the moment ¢ This means that Jat a given
moment of time it depends only on past and present movements and does not
depend on future ones.

The principle of local action — PLA. The value Jat a given point is uniquely
determined by the history of movement in an arbitrarily small neighborhood
of this point. Thus, the PLA excludes the influence on the magnitude J of the
history of the motion of particles lying far from the measurement point J.

Note that this principle can mean, in essence, a refusal to transfer the
history of motion by a substance (convection) due to its smallness.

The principle of superposition — PS. The resulting displacement of the
liquid w = SW,; causes an impulse of resistance forces equal to the sum of the
i

impulses of these forces caused by the component displacements, i.e.
3(w)=xa(w;)-
1
The principle formulated above is analogous to the Boltzmann’s

superposition principle for viscoelastic materials and the Hobkinson’s
superposition principle for electric circuits.

The principle of fading memory — PFM. A decrease in the rate of change
in the filtration velocity to zero determines the asymptotic tendency of

dependence J on to the «equilibrium ;| Darcy’s law

2
grad(p) =D = a—:~ — %W (6)

In practice, this principle establishes the existence of some characteristic
relaxation time t; if 7" — the time of a significant change in the filtration
velocity is much longer t;, then relaxation can be neglected. In other words,

the asymptotic equality (6) should hold for 7 o Obviously, for Darcy’s law

1
itself 7y = 0.
3. The mathematical formulation of the above principles

For an arbitrary movement of a liquid with a filtration velocity w(t ) that

changes stepwise at a time moment ¢'=¢ by an amount [W], the integral
formula of the resulting impulse of resistance forces for isotropic media can be
written as

89



M.G. TASTANOV, A.A. UTEMISSOVA, F.F. MAIYER, R.S. YSMAGUL

3(xt)=—F(1-)[W], _iF(t_f)%ze
—F(0)W(x,1)~ j dcjp((t’_‘tf‘)')

Y

T dF(t)

—F(O)W(x,t)—_([d(t_t‘)W(x,t—t')dt',

W(x,t')dt'=

(7)
where F(O) = t—liﬂn—}-OF(t).

Applying the symbolism of convolution algebra, differentiating (7) with
respect to time ¢, using the determination of the generalized derivative with
respect to time (point over a function), relation (7) can be briefly written as
follows:

[ ] [ ] [ ]
J=-F*W=-FxW, (8)
where * — means the convolution operation, e — means the generalized
derivative with respect to time.

4. Constitutive relation for the quantity mp
The rock and liquid are slightly compressible, i.e. dependence m and p on
pressure with a high degree of accuracy can be described by linear relationships
of the form m = mg + ﬂe(p - po) and p :po(l + ,Bf (p - po)), where m,

and p, — liquid density and porosity in undisturbed reservoir conditions, £,

— the compressibility coefficient of the porous medium and pg ro- liquid

=5
coefficient, each of g, and S r has an order of about 10 = I/at. Then it is

obvious that the constitutive relation for the quantity can be written with
good accuracy in the form

)

mp =nm,p, + poﬁ(p - po) (9)
where B = B, +mypB Fo- reservoir elastic capacity coefficient. This

dependence is widely used in the theory of «equilibrium, non-stationary
filtration. Note that relation (9) has the disadvantage that it is based on the
hypothesis of the instantaneous establishment of an «equilibrium,
correspondence between mp and p. The practice of piezometry of formation
indicates that the hypothesis mentioned above is often violated, i.e. relation
(9) is not realized. In this case, to describe the filtration in relaxation-
compressible media the constitutive relation of the form can be used

90



SOLUTION OF PROBLEMS FOR THE RELAXATION FILTRATION...

mp = ni, Py +
A=A, , t—t"\dt'
ol B(p=py)+=—LB.[(p—p))(x:t")exp| =—— | |,
y) A A
m 0 m m (10)
where Sy =myp rt B p /' 2,, — dynamic reservoir elastic capacity

coefficient. By generalizing relation (10) similarly to (8), we obtain the
constitutive relation in the form

TdD t'
mp —m,pP, = 17 Py +J dt(' p po( t')dt':
0
=®*(p=p,)=*(p-p,), (1)

where d):d)(t)a) at >0, CD(Z)zO at 1 <0.

5. A closed system of equations of linear relaxation filtration

Linear relaxation filtration will be described by the law of conservation of
momentum of resistance forces (1), the linearized law of conservation of mass
of liquid (2), the constitutive relations for the impulse of resistance forces (7)
and liquid mass (11), by the system of equations

d Y
EIJdV—lpnds_o
%JmpdV+ijndS=0'

4 S

dF(t")

J(x,t)=—F(0)W(x,1)— Id(t ) W (x,2—1')dt"”

1do(r) NP
mp —m,p, = @(O)(p - po) + J.—,(p - po)(X,t —t )dt
dt
0 (12)
Obviously, this system of equations is closed.

In underground hydromechanics, it is generally to consider only pressure
and filtration velocity; therefore, it is more convenient to exclude J and mp
from system (12). It is easy to verify that after such an exception we obtain
the following system of equations closed with respect to the quantities p and
W describing relaxation filtration in the region of continuity of pressure fields
and filtration velocity
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F(0)®(0) 62p(x,t)+
Po ar’
”[F(O)d(b(t')+®(0)dF(t') 1]-'dF(z-)dd)(t'—r)dTJazp(x,t—t')dt,
p, dt Py di' pyy dr d(t'-7) o(t-1')
OW(x) FdF(r)aW(xe—1) |
ot I dr' o(r—1")

Ap(x,t):

s
0

grad p(x,t)=—F(0)

0 (13)

Note that any linear relaxation filtration model is completely characterized

by two functions of time F(z) and ®(z), called relaxation kernels of the
filtration law and liquid mass, respectively.

6. Examples
6.1 Classical model of elastic filtration mode.
The basis of the classical elastic filtration mode is Darcy’s law (6) and a linear
relationship between the change in the amount of liquid in the elementary

volume and the pressure in it (9). These two relations correspond to relaxation
kernels of the form

RO "

where 77(1‘) — Heaviside function,

n(¢)={1 mpu >0, 1/2 mpu £=0, 0 pu ¢ <0}

In this case, system (13) takes the form

—8pgx,t) - xAp(x,)=0
! ; W(x,t)z—fgradp(x,t)’ (15)
u

K
where , — piezo conductivity coefficient of formation, y = —.

up

6.2 The simplest model of filtration with a constant
propagation velocity of disturbances.

This model is determined by the following relaxation kernels.

F(t):ﬁ(t+r)77(t), d)(t):poﬂry(t). (16)

K

System (13) is transformed to
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2
T ° p(zx,l‘) + ap(x,t) —;(Ap(x,t) =0,
ot ot
TW+W(x,t)=—Kgradp(x,t). (17)

ot Y7
The first equation in (17) is the telegraph equation. It is known that it
describes the propagation disturbance, taking into account the discontinuity
surface of the hydrodynamic parameters of the flow, which carries the

disturbance into the rest region with a constant velocity equal to v, = \/; .
T

6.3 Darcy’s law filtration model in a relaxation-compressible
porous medium.

The following relaxation kernels correspond to this type of filtration flow.

t
A, = A .

F()=Zofe). @()=po| p-—"Lpe " | e)  09)
K A
The system has the form

B+ Op\X, By Am— 4
ﬂ( t) o ol

6.3.1
&i_zl—p{)(p—po)(x,t')exp —t_t| i—;(Ap(x,t):O,
Bx Ay Am m
W(x,t) = —Egradp(x, t). (19)
or g
Kl I WL G0 ) IR BV /A S0 ) B
ot ot ot
W(x,t) = ffgradp(x, t), (20)

u
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where /1m =1

*
m — - In special case of an incompressible liquid A = 0 and

B

A, =0 instead of system (19), we have

p
6.3.2 XA,,(X,,)_(”_”O)(”') L{)(p 2o) (5.1")exp B
lm /1 j'm Am

W(x,t) = ——gradp( ) (21)

u

Instead of the integral form of the first equation in (21), the equivalent
differential form is used
0 p(x,t)

6P(X,l) oy p(X,t)+ ﬂvm =0. (22)
ot ot

Model (22) describes the filtration of an incompressible liquid in a
relaxation-incompressible porous medium at A p= 0, as well as in a fractured-

porous medium with infinitely small elastic capacity of cracks and block
conductivity.

6.4 Filtration model according to the simplest nonequilibrium
law in an elastic porous medium.

Here the relaxation kernels have the form:

F(t):ﬁ t+<z'sz'p) 1—exp 7L q(t) d)(t):poﬂﬂ(t)'

K Tp

System (13) is equated to the following form

— ' 2 o
o) =12 g ] | b))
“p “p a(z—r‘)
K Tp T Tw t' 6W( tft)
f—gradp(x,t)zgo 1- exp| —— —dt'.  (24)
)7 “p Tp o(t—-1t"
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We can rewrite system (24) in the equivalent differential form

sz(xJ)4_6p(Lt)_2A p(Xt)+z_ 6p(&t)
’ P

=0
2 )
ot ot ot

tw
6W(x,t) K 5P(X,1)
1W7+W(x,t)+—grad p(x,t)+rp7 =0. (25)
ot 7, ot
7. Solution of problems for the relaxation filtration model
proceeding under linear Darcy’s law using Monte-Carlo and
probabilistic-difference methods

3
In a limited area Q R~ with a boundary 6Q and for ¢ 5[0, T ] , we consider

for the first equation from (20) (Model 6.3.1, the equation for pressure p (x, t)

), ie.
i p(x,t)-&—l;nap(x’t) - 7A p(x,t)+lmmx,t) =0, (26)
ot ot ot
where }“;n =, —*, following problems:
B

Problem 1 (Dirichlet problem). Find in a limited area Q eR3 with a

boundary ¢Q and for ¢ 5[0, T ] solution of equation (26) satisfying the initial
data

p(x,t)z() at +=0 (27)
ix,t) =0at¢r=0 (28)
ot
and boundary condition
p(x,t):pl(x,t) at X@QX[O, T]. (29)

3
Problem 2 (Newmann problem). Find in a limited area Q R~ with a

boundary 6Q and for ¢ 5[0, T ] solution of equation (26) satisfying the initial
data (27), (28) and boundary condition
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n

:pz(x,t) at xa?Qx[O, T], (30)
where n — inner normal to the boundary Q.

3
Problem 3 (mixed problem). Find in a limited area Q R~ with a boundary

8Q and for ¢ G{O, T] solution of equation (26) satisfying the initial data (27),
(28) and boundary condition

alp(x,t)+ ﬂlMX’t) =p3 (x,t) npu x @Q x [0, T], (31)

on

where ¢ and p; — given fixed constants.

Comment 1. Let the matching conditions be satisfied for problems 1 - 3.

In the system of equations (20), the pressure p(x,t) can be found from
the first equation, then, after calculating grad p (x, t) , from the second equation

K
of system (20), i.e. from W(x,t) = 7—gradp(x, t), we find the vector of
y7,

filtration velocity W(X, t) .

7.1 Solution of problem 1.

Let the coefficients y, A A',, be constant positive values. The time

m )
interval ¢ E[O,T] is divided into /V equal parts of the length . So ¢, = nz,

T
n=0,1.2,...N, r =—>0.Now, we write (26) in the form
N

2
}(Ap(x,t)(x,t)+;(/1m:(Ap(xjt)):(apﬁx’t)+i' 0 Z(X,I)
t t ¢
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and discretize only with respect to ¢ by using the implicit scheme. As a result,
accounting the value A'

m» We obtain the equation on time layers ¢

n
n+l n n+l n
TRV . ()-2"()) [2"w-r"w
27 27
()2 ()0 ()
A 5

Apn+l (X) - apn+1 (X) " (X) . CApn—l (X) . dpn—l (X),

(32)
where . moﬁf (r + 21.”1)4— B, (r + 2&p) L 4(m0ﬂfim + ﬂelp) 7 . 7
o (% 21+ﬂm
d_moﬂf(ZAm_T)_Fﬂe(ZAP_T) So:Tl(ZT+ﬂ,m)(ﬂe+mﬂf)
(2

The algorithm of «random walk by spheres ..

It is clear that « > 0, since the parameters m, ﬂf, T, Ayys Bos }“p’ y are
positive given values. We rewrite (32) as

Apn+1 (x) B apn+1 (x) _ fn (x), (33)

where fn (x) = bpn (x) + cApn_l (x) + dpn_l (x) and attach to it the initial
conditions

(34)

ORI,

(35)

which are difference analogues of the initial conditions (27) and (28),

respectively.

For this problem, the boundary conditions are transformed to

)= (). x 0 (36)
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The boundary 6Q and 0Q, , which corresponds to the Dirichlet condition,

((;‘ )
is called the absorbing boundary. It is known that the initial-boundary value
problem (33) — (36) — the Dirichlet problem for the Helmholtz equation of time

layerst, , is solved using the algorithm of «random walk by spheres by Monte-

Carlo methods, i.e., the constructed € — biased estimation of the solution

pn—i_l (X) using the «random walk by spheres, has a uniformly limited

variance with respect to € [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].

Using the algorithms of «random walk by spheres, and «random walk by
lattice, by the Monte-Carlo and the probabilistic-difference methods, we were
able to estimate approximate and discrete solutions to all three considered
multidimensional problems.

The results obtained in this work can be used in the oil-producing industry,
i.e. in practical measures on determining the pressure at a single point in the
oil reservoir. And also, after determining the pressure, can be determined the
filtration velocity.

Conclusion

The obtained theoretical results are of great practical use in the oil-producing
industry. This is facilitated by those features of the Monte-Carlo methods,
such as the ability to evaluate a solution at a particular point without involving
solutions at other points and the dependence of the solution estimation on the
geometry of the area, as well as the effectiveness of Monte-Carlo methods in

solving multidimensional problems in comparison with «classical, numerical
methods.
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