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ACTION FUNCTIONALS FOR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH LÉVY NOISE

SHENGLAN YUAN AND JINQIAO DUAN*

Abstract. This article is about stochastic dynamical systems with small
non-Gaussian Lévy noise. We review the recent works on the large deviation
techniques that deal with the decay of probabilities of rare events on an
exponential scale. We focus on deriving the action functionals for dynamical
systems with Lévy processes of finite exponential moments. This is achieved
with help of the extended contraction principle, Legendre transform and Lévy
symbols. We also illustrate the results with an example.

1. Introduction

Stochastic effects are ubiquitous in complex systems from science and engineer-
ing [1]. Although random mechanisms may appear to be very small or very fast,
their long time impacts on the system evolution may be delicate or even profound
[13]. Mathematical modeling of complex systems under uncertainty often leads to
stochastic differential equations (SDEs), as seen in, for example, [2, 14, 18, 19].
Fluctuations appeared in these SDEs are often non-Gaussian rather than Gauss-
ian.

The long time large deviation behaviors of slow-fast systems have attracted a lot
of attention because of the various applications in statistical physics, biophysics,
geophysics, climate dynamics engineering, chemistry and financial mathematics
[3, 8, 11]. Large deviations for SDEs driven by Brownian motion are now well-
known [5, 10, 17], while certain large deviation results for SDEs with Lévy noise
are available more recently [4, 12].

Action functionals play an important role in understanding transitions in the
context of large deviations [9, 15, 16]. The main goal of this review article is to
derive the action functionals for the following SDE with a Lévy process

dXε
t = b(Xε

t−)dt+
√
εσ(Xε

t−)dBt + η(Xε
t−)dL

ε
t ,

where Lε
t := εL t

ε
is a scaled Lévy process with finite exponential moments.

We first show that the scaled Lévy process satisfies a large deviation principle,
and obtain its action functional. Then we construct continuous mappings to get an
exponentially good approximations. Finally, we derive the action functionals for
SDEs with Lévy noise by using extended contraction principle, Legendre transform

Received 2019-8-26; Accepted 2019-10-14; Communicated by guest editor George Yin.
2010 Mathematics Subject Classification. Primary 60F10; Secondary 65C30.
Key words and phrases. Action functionals, large deviations, stochastic differential equations,
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SOLUTION OF PROBLEMS FOR THE RELAXATION 

FILTRATION MODEL PROCEEDING UNDER LINEAR 

DARCY’S LAW USING MONTE-CARLO AND 

PROBABILISTIC-DIFFERENCE METHODS 

M.G. TASTANOV, A.A. UTEMISSOVA, F.F. MAIYER, R.S. YSMAGUL 

Abstract. In the work three-dimensional filtration problems are 
considered, namely, the problems: Dirichlet, Neumann an A mixed 
problem in a relaxation-compressible porous medium carried out 

under linear Darcy’s law. This indicates that the disturbance front 
instantly passes through the entire considered area, making it 
instantly a filtration area. All problems are mathematically posed 
correctly. The obtained results are used in the oil industry to 
determine the pressure at a particular point of the oil reservoir.  

1. Introduction  

Multidimensional problems for models of relaxation filtration in a relaxation-

compressible porous medium carried out under linear Darcy’s law have not 

been considered before. Moreover, these problems were not solved by Monte-

Carlo and probabilistic-difference methods. The physical formulation of the 

problem itself promotes (encourages) the use of probabilistic methods for 

solving these problems, since many physical processes, as well as their 

parameters in underground hydromechanics are random. For this reason, the 

relevance of solving the initial problems by Monte-Carlo and probabilistic-

difference methods is not in doubt. 

2.  Preliminary 

Following the work [1], we consider the main principles and equations of 

relaxation filtration and features of filtering with a finite velocity of the 

propagation disturbances. 

1. The equations of conservation of momentum of resistance forces and 

liquid mass 

The law of conservation of momentum of resistance forces has the form 

                               0
d

dV p dSV Sdt
  J n ,                                    (1) 

 

 

 

 

 

Global and Stochastic Analysis
Vol. 7 No. 1 (January-June, 2020)

87



M.G. TASTANOV, A.A. UTEMISSOVA, F.F. MAIYER, R.S. YSMAGUL12

and the law of conservation of the liquid mass is written in integral form 

                              0
d

m dV W dSnV Sdt
    ,                                (2) 

where t  – time, J  – impulse density of resistance forces, V  – arbitrary fixed 

in space volume, S  – surface limiting V, p  – pressure, 
nW  – projection of the 

filtration velocity W  to the normal n , m  – porosity,   – liquid density. The 

system of equations (1), (2) are open with respect to the quantities m ,  , p
, W , J . To closure these equations, it is necessary to introduce three 

constitutive relations taking into account the properties of liquids and rocks 

from which the porous skeleton is composed, i.e. to write the dependence m 

and ρ on pressure p as well as to express the impulse density of the forces J 

through the filtration velocity. 

2. The constitutive relations for the impulse of resistance forces and the 

liquid mass. Basic principles of linear relaxation filtration  

The force impulses J at some fixed point are due to the action of viscous 

forces in the interaction of a moving fluid with a fixed porous skeleton and, 

therefore, depends on the filtration velocity W at this point. The simplest 

relationship between the quantities J and W can be represented as 

 c
t


  



J
D W W  ,                               (3) 

where D  – density of the resistance force, c – constant. Using this dependence 

leads to the well-known nonlinear law of filtration of the form 

   grad p c  W W ,                           (4) 

Which at constant  c



W W  goes into Darcy’s low, where   – liquid 

viscosity,   – permeability coefficient. From relation (3), the following 

determining relation between W and D is obtained: 

  1
,

t
tp p W We d

W W W


    

 
    


    


W D D x .           (5) 

 

Here τp and τW are the non-negative relaxation time constants, respectively 

of pressure and filtration velocity. 
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13SOLUTION OF PROBLEMS FOR THE RELAXATION FILTRATION... 

Now we introduce the constitutive relation for the impulse of resistance 

forces taking into account the effects of relaxation, indicate the basic principles 

that are common to many sections of continuum mechanics.  

The principle of determinism – PD. The magnitude of the impulse of 

resistance forces J at some fixed point of the ground is determined by the 

entire history of movement up to the moment t. This means that J at a given 

moment of time it depends only on past and present movements and does not 

depend on future ones. 

The principle of local action – PLA. The value J at a given point is uniquely 

determined by the history of movement in an arbitrarily small neighborhood 

of this point. Thus, the PLA excludes the influence on the magnitude J of the 

history of the motion of particles lying far from the measurement point J. 

Note that this principle can mean, in essence, a refusal to transfer the 

history of motion by a substance (convection) due to its smallness. 

The principle of superposition – PS. The resulting displacement of the 

liquid ii
 W W  causes an impulse of resistance forces equal to the sum of the 

impulses of these forces caused by the component displacements, i.e. 

   ii
 J W J W . 

The principle formulated above is analogous to the Boltzmann’s 
superposition principle for viscoelastic materials and the Hobkinson’s 
superposition principle for electric circuits.  

The principle of fading memory – PFM. A decrease in the rate of change 

in the filtration velocity to zero determines the asymptotic tendency of 

dependence J on to the «equilibrium» Darcy’s law 

grad(p) = 𝐃𝐃 = ∂𝐉𝐉
∂t ~ − μ

𝑘𝑘𝐖𝐖                              (6) 

In practice, this principle establishes the existence of some characteristic 
relaxation time τ1; if T – the time of a significant change in the filtration 
velocity is much longer τ1, then relaxation can be neglected. In other words, 

the asymptotic equality (6) should hold for 

1

T




. Obviously, for Darcy's law 

itself 01  .  

3.  The mathematical formulation of the above principles 

For an arbitrary movement of a liquid with a filtration velocity  'tW that 

changes stepwise at a time moment 't   by an amount [W], the integral 

formula of the resulting impulse of resistance forces for isotropic media can be 

written as 
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        

     
   

       
0

, '
, ' '

'

'
0 , , ' '

'

( ')0 , , ' ',  
'

t

t

d t t
t F t F t t dt

dt

dF t t
F t t dt

d t t

dF tF t t t dt
d t t











     


  



  








W x
J x W

W x W x

W x W x
                   (7) 

where    0 lim
0 0

F F t
t


 

. 

Applying the symbolism of convolution algebra, differentiating (7) with 

respect to time t, using the determination of the generalized derivative with 

respect to time (point over a function), relation (7) can be briefly written as 

follows: 

F F
  

     J W W ,                              (8) 

where   – means the convolution operation,   – means the generalized 

derivative with respect to time.  

4.  Constitutive relation for the quantity mρ  

The rock and liquid are slightly compressible, i.e. dependence m and ρ on 

pressure with a high degree of accuracy can be described by linear relationships 

of the form  0 0m m p pe    and   10 0p pf     , where 0m  

and 0  – liquid density and porosity in undisturbed reservoir conditions, e  

– the compressibility coefficient of the porous medium and f  – liquid 

coefficient, each of e  and f  has an order of about 
5

10  I/at


. Then it is 

obvious that the constitutive relation for the quantity can be written with 

good accuracy in the form 

 0 0 0 0m m p p     
,                             (9) 

where 0me f     – reservoir elastic capacity coefficient. This 

dependence is widely used in the theory of «equilibrium» non-stationary 

filtration. Note that relation (9) has the disadvantage that it is based on the 

hypothesis of the instantaneous establishment of an «equilibrium» 

correspondence between mρ and p. The practice of piezometry of formation 

indicates that the hypothesis mentioned above is often violated, i.e. relation 

(9) is not realized. In this case, to describe the filtration in relaxation-

compressible media the constitutive relation of the form can be used 
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15SOLUTION OF PROBLEMS FOR THE RELAXATION FILTRATION... 

    

0 0

0 * 0 0
0

' ', ' exp ,
t

m p
e

m m m

m m

t t dtp p p p t

 

 
  

  

 

   
     

  
 x

        (10) 

where /0* m e p mf       – dynamic reservoir elastic capacity 

coefficient. By generalizing relation (10) similarly to (8), we obtain the 

constitutive relation in the form  

       

   

0 0 0 0
0

0 0

'
0 , ' '

'

                 ,

d t
m m p p p p t t dt

dt

p p p p

 


 


      

   

 x

           (11)

 
where   0t     at 0t  ,   0t   at 0t  . 

5.  A closed system of equations of linear relaxation filtration  

Linear relaxation filtration will be described by the law of conservation of 

momentum of resistance forces (1), the linearized law of conservation of mass 

of liquid (2), the constitutive relations for the impulse of resistance forces (7) 

and liquid mass (11), by the system of equations 

                                        
0

V S

d dV p dS
dt

  J n
, 

                                    
0n

V S

d m dV W dS
dt

    , 

     
         

0

( '), 0 , , ' '
'

dF tt F t t t dt
d t t



   
J x W x W x ,   

 

       0 0 0 0
0

'
0 , ' '

'
d t

m m p p p p t t dt
dt

 
 

      x
.  (12) 

Obviously, this system of equations is closed. 

In underground hydromechanics, it is generally to consider only pressure 

and filtration velocity; therefore, it is more convenient to exclude J and mρ 
from system (12). It is easy to verify that after such an exception we obtain 

the following system of equations closed with respect to the quantities p and 

W describing relaxation filtration in the region of continuity of pressure fields 

and filtration velocity 
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       

           
 

 
 

2

2
0

2'

2
0 0 00 0

0 0 ,
,

0 ' 0 ' ' , '1 ',
' ' ' '

t

F p t
p t

t

F d t dF t dF d t p t t
d dt

dt dt d d t t t



 


    



 
  



     
      

 

x
x

x

 

         
 0

, ' , '
grad , 0 '

' '
t dF t t t

p t F dt
t dt t t

  
  

  
W x W x

x
.      (13) 

Note that any linear relaxation filtration model is completely characterized 

by two functions of time F(t) and Ф(t), called relaxation kernels of the 

filtration law and liquid mass, respectively. 

6.  Examples  

6.1 Classical model of elastic filtration mode.  

The basis of the classical elastic filtration mode is Darcy's law (6) and a linear 

relationship between the change in the amount of liquid in the elementary 

volume and the pressure in it (9). These two relations correspond to relaxation 

kernels of the form  

   F t t t 



,      0t t   ,                     (14) 

where  t  – Heaviside function,  

   1  при  0,  1/2  при  0,  0  при  0t t t t    
. 

In this case, system (13) takes the form 

   ,
, 0

p t
p t

t



  


x

x
,       , grad ,t p t


 W x x ,          (15) 

where   – piezo conductivity coefficient of formation, 





 .  

6.2  The simplest model of filtration with a constant 
propagation velocity of disturbances.  

This model is determined by the following relaxation kernels. 

         ,      0F t t t t t


   


    .                   (16) 

System (13) is transformed to  
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     
2

, ,
, 02

p t p t
p t

t t
 
 

   
 

x x
x , 

     ,
, grad ,

t
t p t

t







  



W x
W x x .                  (17) 

The first equation in (17) is the telegraph equation. It is known that it 

describes the propagation disturbance, taking into account the discontinuity 

surface of the hydrodynamic parameters of the flow, which carries the 

disturbance into the rest region with a constant velocity equal to 0v





 .  

6.3 Darcy’s law filtration model in a relaxation-compressible 
porous medium.  

The following relaxation kernels correspond to this type of filtration flow. 

       ,      0

t
m p mF t t t t e te

m

  
    

 


   

    

       (18) 

The system has the form 

6.3.1      

    

    

,* ,02

' '
, ' exp , 0,02 0

*

p t m pe p p t
t m

t t dttme p p t p t
m m m

  

  

   
   


  



 
     

   

x
x

x x

 

   , grad ,t p t



 W x x .                           (19) 

or 

       , ,'
, , 0

p t p t
p t p tm m

t t t
  

 
    

  

          

x x
x x , 

   , grad ,t p t



 W x x ,                           (20) 
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where 
' *
m m


 


 . In special case of an incompressible liquid 0f   and 

0p   instead of system (19), we have 

6.3.2          , ' 1 ' '0, , ' exp 000

p p t t t dtt
p t p p t

m m m m


   

 
     

   

x
x x ,  

   , grad ,t p t



 W x x .                           (21) 

Instead of the integral form of the first equation in (21), the equivalent 

differential form is used 

     , ,
, 0

p t p t
p t m

t t
 

 
   

 

   

x x
x .             (22) 

Model (22) describes the filtration of an incompressible liquid in a 

relaxation-incompressible porous medium at 0p  , as well as in a fractured-

porous medium with infinitely small elastic capacity of cracks and block 

conductivity.  

6.4  Filtration model according to the simplest nonequilibrium 
law in an elastic porous medium.  

Here the relaxation kernels have the form: 

         1 exp ,      0
t

F t t t t tW p
p


    

 
      

                    

.  (23) 

System (13) is equated to the following form 

   
 

2
, ''

, 1 exp '20
'

p t ttp W
p t dt

t tp p

 


 

  
   

 

           

x
x , 

   , ''
grad , 1 exp '0 ( ')

t ttp W
p t dt

t tp p

 

  

  
   

 

           

W x
x .    (24) 
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We can rewrite system (24) in the equivalent differential form 

       2
, , ,

, 02
p t p t p t

p tW p
t t t

  
  

    
  

   

x x x
x , 

       , ,
, grad , 0

t p t
W t p tW p

t t


 



 
   

 

   

W x x
x x .      (25) 

7.  Solution of problems for the relaxation filtration model 
proceeding under linear Darcy’s law using Monte-Carlo and 

probabilistic-difference methods 

In a limited area 
3

R   with a boundary    and for  0,  t T , we consider 

for the first equation from (20) (Model 6.3.1, the equation for pressure  ,p tx

), i.e.  

       , ,'
, , 0

p t p t
p t p tm m

t t t
  

 
    

  

          

x x
x x ,    (26) 

where 
' *
m m


 


 , following problems: 

Problem 1 (Dirichlet problem). Find in a limited area 
3

R   with a 

boundary    and for  0,  t T  solution of equation (26) satisfying the initial 

data 

 , 0p t x  at 0t                                   (27) 

 ,
0

p t

t






x
 at 0t                    (28) 

and boundary condition 

   , ,1p t p tx x  at  0,  T x .               (29) 

Problem 2 (Newmann problem). Find in a limited area 
3

R   with a 

boundary    and for  0,  t T  solution of equation (26) satisfying the initial 

data (27), (28) and boundary condition 
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   ,
,2

p t
p t






x
x

n
 at  0,  T x ,       (30) 

where n  – inner normal to the boundary   . 

Problem 3 (mixed problem). Find in a limited area 
3

R   with a boundary 

   and for  0,  t T  solution of equation (26) satisfying the initial data (27), 

(28) and boundary condition 

     ,
, ,1 1 3

p t
p t p t 


 



x
x x

n
  npu    0,  T x ,       (31) 

where 1  and 1  – given fixed constants.  

Comment 1. Let the matching conditions be satisfied for problems 1 - 3. 

In the system of equations (20), the pressure  ,p tx  can be found from 

the first equation, then, after calculating  grad ,p tx , from the second equation 

of system (20), i.e. from    , grad ,t p t



 W x x , we find the vector of 

filtration velocity  , tW x . 

7.1 Solution of problem 1. 

Let the coefficients  , m , 'm  be constant positive values. The time 

interval  0,t T  is divided into N equal parts of the length τ. So t nn  , 

0,1, 2, ,n N , 0
T

N
   . Now, we write (26) in the form 

        2
, ,

, ( , ) , ' 2
p t p t

p t t p tm m
t t t

  
 

    
  

x x
x x x  
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and discretize only with respect to t by using the implicit scheme. As a result, 

accounting the value 'm , we obtain the equation on time layers tn

     

     

1 1
( ) ( )1

2 2

1 1
2

                                                               ' 2

n n n n
p p p x p xn

p m

n n n
p p p

m

 
 




 
 

    

 
 

         
   

x x
x

x x x

 

         1 1 1 1n n n n n
p ap bp c p dp
   

     x x x x x ,        (32) 

where 
   2 20m f m e p

a
       




, 
 4 0m f m e p

b
   

 


, 

2

mc

m



 




, 

 2 (2 )0m m e pf
d

       



,  

  2 mm e f      
. 

The algorithm of «random walk by spheres». 

It is clear that 0a  , since the parameters ,  ,  ,  ,  ,  ,  0m m e pf       are 

positive given values. We rewrite (32) as 

     1 1n n n
p ap f

 
  x x x ,                   (33) 

where        1 1n n n n
f bp c p dp

 
   x x x x  and attach to it the initial 

conditions 

 0
0,p  x x ,                   (34) 

   1 0

0,
p p




 

x x
x ,                     (35) 

which are difference analogues of the initial conditions (27) and (28), 

respectively.  

For this problem, the boundary conditions are transformed to 

   1 1
,1

n n
p p

 
 x x x .                          (36) 
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The boundary    and   , which corresponds to the Dirichlet condition, 

is called the absorbing boundary. It is known that the initial-boundary value 

problem (33) – (36) – the Dirichlet problem for the Helmholtz equation of time 

layers tn , is solved using the algorithm of «random walk by spheres» by Monte-

Carlo methods, i.e., the constructed ε – biased estimation of the solution 

 1np  x  using the «random walk by spheres» has a uniformly limited 

variance with respect to ε [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. 

Using the algorithms of «random walk by spheres» and «random walk by 

lattice» by the Monte-Carlo and the probabilistic-difference methods, we were 

able to estimate approximate and discrete solutions to all three considered 

multidimensional problems. 

The results obtained in this work can be used in the oil-producing industry, 

i.e. in practical measures on determining the pressure at a single point in the 

oil reservoir. And also, after determining the pressure, can be determined the 

filtration velocity. 

Conclusion 

The obtained theoretical results are of great practical use in the oil-producing 

industry. This is facilitated by those features of the Monte-Carlo methods, 

such as the ability to evaluate a solution at a particular point without involving 

solutions at other points and the dependence of the solution estimation on the 

geometry of the area, as well as the effectiveness of Monte-Carlo methods in 

solving multidimensional problems in comparison with «classical» numerical 

methods. 
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