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Abstract: In this paper, we suggest and analyze a new two-step iterative method for solving nonlinear equations
using the three-pint Gaussian quadrature formula. We prove that this new method has fifth-order convergence
under certain conditions. Several examples are given to illustrate the efficiency of the new iterative method and
its comparison with other similar methods. Our results can be considered as an alternative to Newton methods
and other similar methods.
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1. INTRODUCTION

In recent years, much attention has been given to develop several iterative methods for solving nonlinear equations.
These methods have been suggested by using Taylor’s series, decomposition, homotopy and quadrature formulas,
see [1-12]. It is well known that the quadrature rule plays an important and significant rule in the evaluation of
the integrals It has been shown [3, 5, 9, 10, 12] that these quadrature formulas can be used to develop some
iterative methods for solving nonlinear equations arising in the engineering and optimal control sciences. This
interaction among these different branches of applied sciences has played an important and significant role in
developing several iterative methods. Motivated and inspired by the recent research activities in this direction,
we suggest and analyze a new iterative method for solving nonlinear equations by using the three-point Gaussian
quadrature formula, see [11]. This method is an implicit-type method. To implement this, we use Newton
method as a predictor and the new method as a corrector. The resultant method can be considered a predictor-
corrector iterative method or two-step iterative method. It has been shown that this two-step iterative method is
of fifth-order convergence under certain conditions. A comparison between this new method and other similar
methods is given. Several examples are given to illustrate the efficiency and advantage of the suggested two-
step method. Our method can be considered as an alternative iterative method to recently suggested methods.

2. ITERATIVE METHOD

Let us take r be a simple zero of a sufficiently differentiable function. We consider the numerical solution of the
equation f(x) = 0. It is known that
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Using the three-point Gaussian quadrature rule [11], we have
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From (1) and (2), we have
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This fixed point formulation enables us to suggest the following implicit iterative method.

Algorithm 2.1: For a given x0, compute the approximate solution xn+1 by the iterative scheme.
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In order to implement this method, we use the predictor-corrector technique. For this purpose, we need the
following one-step method.

Algorithm 2.2 (Newton Method): For a given x0, compute the approximate solution xn+1 by the iterative
scheme.
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It is well known [1] that the Newton method has quadratic convergence.

Using the Newton method as a predictor, we suggest the following new iterative method, which is the main
motivation of this paper.

Algorithm 2.3: For a given x0, compute the approximate solution xn+1 by the iterative scheme.

Predictor step:
( )
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Corrector step: 1
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this is called the two-step method or predictor-corrector iterative method.

We now consider the convergence criteria of Algorithm 2.3 using essentially the technique of Noor [8,9]
and Cordero and Rorregrosa [3]..

Theorem 2.1: Let r � I be a simple zero of sufficiently differentiable function f : I � R � R for an open
interval I. If x0 is sufficiently close to r, then Algorithm 2.3 has third order convergence. Moreover, if f verifies
that f� (r) = 0 then Algorithm 2.3 has 5th order convergence.
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Proof. Let r be a simple zero of f. Since f is sufficiently differentiable, by expanding f(xn) and f� (xn) about
r, we get
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 and en = xn – r.

Now, from (5) and (6), we have
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Then from (3) and (7), we get
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this implies that
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From (8) and xn = en + r, we get
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From (8) and xn = en + r, we get
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From (8) and xn = en + r, we have
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Thus
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From (6), (9), (11), (13) and (15), we have
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Then from (4), (16) and en+1 = xn+1 – r, we obtain
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from which it follows that Algorithm 2.3 has a cubic convergence. We also note that, if c2 = 0, that is, if
f�(r) = 0, then Algorithm 2.2 has 5th order convergence

4. NUMERICAL EXAMPLES

We now present some examples to illustrate the efficiency of the new developed two-step iterative methods, see
Table 1. We compare the Newton method (NM), the method of Weerakoon and Fernando (HN[12]), the method
of Corderos and Torregrosa (WN[3]), method of Osban (ON[10]), method of Noor (NR2 [9]) and the Algorithm
2.2(NR1) introduced in this present paper. We use � = 10–15. The following stopping criteria is used for computer
programs:
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The examples are the same as in Corderos and Torregrosa [3].
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1
5 6cos( ) tan ( )f x x f x�� � �
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6
7 ( 1) 1f x� � �

As for the convergence criteria, it was required that the distance of two consecutive approximations � for the
zero was les than 10–15. Also displayed are the number of iterations to approximate the zero (IT), the approximate
zero xn and the value f(xn).

Table 1
Numerical Examples and Comparison

IT x
n

f(x
n
) �

f
1
, x

0 
= 1

NM 8 3.0000000000000000000000000000 0 1.79e-38

WN 6 3.0000000000000000000000000000 -3.10e-61 8.64e-21

ON 5 3.0000000000000000000000000000 1.00e-62 2.69e-16

HN 6 3.0000000000000000000000000000 0 4.34e-36

NR2 5 3.0000000000000000000000000000 1.00e-62 2.69e-16

NR1 5 3.0000000000000000000000000000 0 2.69e-16

f
2
, x

0 
= 0.5

NM 5 0 -2.44e-86 2.63e-29

WN 4 0 1.87e-53 3.83e-18

ON 4 0 0 3.88e-58

HN 4 0 8.29e-50 6.29e-17

NR2 4 0 0 4.93e-58

NR1 4 0 0 4.93e-58

f
2
, x

0 
= 1

NM 6 -4.9131804394348836888378206686 -2.05e-48 1.45e-24

WN 5 -4.9131804394348836888378206686 7.15e-57 2.78e-19

ON 5 -4.9131804394348836888378206686 0 1.67e-72

HN 4 -4.9131804394348836888378206686 -1.20e-63 2.66e-30

NR2 6 -4.9131804394348836888378206686 1.71e-62 4.79e-29

NR1 5 -4.9131804394348836888378206686 3.81e-29 1.57e-62

f
2
, x

0 
= 3

NM 6 2.0287578381104342235769711247 -1.79e-34 1.41e-17

WN 5 2.0287578381104342235769711247 2.27e-41 1.20e-63

ON 4 2.0287578381104342235769711247 1.07e-18 3.64e-55

HN 5 2.0287578381104342235769711247 1.20e-63 2.29e-28

NR2 4 2.0287578381104342235769711247 9.68e-56 6.88e-19

NR1 4 2.0287578381104342235769711247 6.86e-19 9.60e-56

f
3
, x

0 
= 0.5

NM 5 0 3.00e-64 3.78e-44

WN 4 0 0 1.51e-25

ON 4 0 0 7.07e-65

HN 4 0 0 1.41e-27

NR2 4 0 0 0

NR1 4 0 0 0
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IT x
n

f(x
n
) �

f
3
, x

0 
= 3

NM 14 1.4142135623730950488016887242 1.14e-16 3.82e-31

WN 10 1.4142135623730950488016887242 0 1.78e-22

ON 10 1.4142135623730950488016887242 0 1.78e-22

HN 9 1.4142135623730950488016887242 0 3.74e-39

NR2 10 1.4142135623730950488016887242 0 4.81e-38

NR1 10 1.4142135623730950488016887242 0 4.80e-38

f
4
, x

0 
= 0.5

NM 49 .0000000000000006729758308981 1.13e-31 6.73e-16

WN 32 .0000000000000006729758308981 7.00e-33 3.35e-16

ON 32 .0000000000000006729758308981 0 4.05e-38

HN 25 .0000000000000006729758308981 1.34e-32 6.94e-16

NR2 32 .0000000000000006729758308981 1.08e-32 4.16e-16

NR1 32 .0000000000000006729758308981 1.08e-32 4.16e-16

f
5
, x

0 
= 0.6

NM 5 .7390851332151606416553120877 8.78e-24 –2.85e-47

WN 4 .7390851332151606416553120877 0 2.23e-45

ON 4 .7390851332151606416553120877 1.08e-32 4.16e-16

HN 4 .7390851332151606416553120877 0 1.03e-42

NR2 4 .7390851332151606416553120877 0 4.45e-40

NR1 4 .7390851332151606416553120877 0 4.45e-40

f
5
, x

0 
= 2

NM 5 .7390851332151606416553120877 -8.45e-48 4.78e-24

WN 4 .7390851332151606416553120877 4.77e-51 5.72e-17

ON 4 .7390851332151606416553120877 0 4.44e-40

HN 4 .7390851332151606416553120877 -4.61e-47 9.36e-16

NR2 4 .7390851332151606416553120877 0 4.17e-35

NR1 4 .7390851332151606416553120877 0 4.00e-35

f
6
, x

0 
= 0.5

NM 5 0 0 1.06e-32

WN 4 0 1.21e-58 9.00e-20

ON 4 0 0 1.08e-32

HN 4 0 4.87e-55 1.43e-18

NR2 4 0 0 8.32e-62

NR1 4 0 0 8.39e-62

f
6
, x

0 
= 1.5

NM Fails – – –

WN Fails – – –

ON 5 0 0 2.63e-62

HN Fails – – –
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IT x
n

f(x
n
) �

NR2 4 0 5.58e-29

NR1 4 0 0 1.26e-51

f
6
, x

0 
= 1.7

NM Fails - - -

WN Fails - - -

ON 5 0 0 1.83e-60

HN Fails - - -

NR2 5 - - -

NR1 5 0 0 4.53e-45

f
7
, x

0 
= 1.7

NM 9 2 6.80e-33 2.13e-17

WN 8 2 0 2.27e-28

ON 7 2 0 5.71e-28

HN 5 2 9.15e-58 4.51e-20

NR2 7 2 0 1.03e-27

NR1 7 2 0 1.03e-27

f
7
, x

0 
= 1.5

NM 16 2 6.89e-30 6.78e-16

WN 468 2 -7.64e-59 1.17e-20

ON 172 2 0 7.88e-36

HN 8 2 2.60e-52 2.96e-18

NR2 183 2 0 3.19e-24

NR1 183 2 0 3.19e-24

f
8
, x

0 
= 0

NM 5 -.3421850529244582209950829677 1.95e-42 1.71e-21

WN 4 -.3421850529244582209950829677 1.59e-27 -1.00e-63

ON 4 -.3421850529244582209950829677 -1.00e-63 1.08e-35

HN 4 -.3421850529244582209950829677 0 9.30e-26

NR2 4 -.3421850529244582209950829677 0 1.11e-35

NR1 4 -.3421850529244582209950829677 0 1.11e-35

f
8
, x

0 
= -2

NM 6 -2.2100839440926608962059466053 1.02e-59 2.52e-30

WN 4 -2.2100839440926608962059466053 1.00e-63 1.24e-25

ON 4 -2.2100839440926608962059466053 1.00e-63 1.24e-25

HN 4 -2.2100839440926608962059466053 1.00e-63 2.10e-32

NR2 4 -2.2100839440926608962059466053 1.00e-63 1.24e-25

NR1 4 -2.2100839440926608962059466053 1.00e-63 1.24e-25

f
8
, x

0 
= 2.5

NM 5 2.7020613733260402218069499993 -8.76e-43 1.01e-21

WN 4 2.7020613733260402218069499993 1.29e-36 1.00e-63

ON 4 2.7020613733260402218069499993 1.00e-63 1.29e-36

HN 4 2.7020613733260402218069499993 1.00e-63 2.24e-34

NR2 4 2.7020613733260402218069499993 1.00e-63 1.29e-36

NR1 4 2.7020613733260402218069499993 1.00e-63 1.29e-36
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Form the table 1, we see that Algorithm 2.2 is comparable with other methods. It is clear from the table that for
the examples f6 and f7, Newton method, methods of Cordero et al [3] and Weerakoon and Fernando [12] fail,
while our methods find the approximate solutions. In view of this fact, one can consider our method as an
alternative to Newton method and the methods of [3,12] for solving nonlinear equations. Using the technique of
this paper, one can obtain a cubic convergent method for solving a system of nonlinear equations and this is an
interesting topic of future research.
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