
RELIABILITY MODELLING ON FINITE CAPACITY M/PH/1

QUEUEING SYSTEM WITH BREAKDOWN AND RECOVERY

POLICIES

S.R. SRUTHI AND P.R.JAYASHREE

Abstract. In this paper, the Reliability, Availability and Maintainability
(RAM) analysis of the finite capacity M/PH/1, optional service queueing

model are studied in this paper. The arrival process of the machines are

according to Poisson process with parameter λ with two phases of service, es-
sential and optional services. Apart from the Phase-type distribution the en-

vironmental states such as working and working-breakdown for the queueing

systems are also considered in this paper. The Ordinary-Differential Differ-
ence Equations for the queueing system with working and working-breakdown

policies are formed. The transient probabilities are obtained from the system

of equations for the special case of N = 4 which are solved by using numerical
method. The RAM model for M/PH/1 has been analysed numerically and

shown graphically for the special case. The Reliability measures like MTBF,
MTTR are also analysed for the model. Sensitivity Analysis is carried out

for different parametric values, to find the changes in the Reliability (R(t)),

Availability (A(t)) and Maintainability (M(t)) of the system.

1. Introduction

The most widely used subject, Stochastic process otherwise known as the Ran-
dom process is nothing but the mathematical study of random variables which are
usually interpreted by representing the numerical values of a system for randomly
varying time. The Stochastic process is classified into two categories with respect
to time, which are referred as the Discreate-time and Continuous time Stochastic
process. Markov chain model is a part of the stochastic model is used for measur-
ing Continuous-time stochastic process. Christian R. Shelton, Gianfranco Ciardo
[3] has given a detail study on Structured Continuous-time Markov Process.

The CTMC is most commonly used in Queueing theory with Phase-type dis-
tributions. The Queueing models with optional phase service system has been
used by researchers to solve industrial problems and to improve their grade of
service. In Optional Phase service queueing system, each customer is served in
two phases out of which some are essential phases whereas, others are optional
phases which are provided to the customer based on their own choice. The most
common distributions which are used for phase-type are exponential and Poisson
distributions. S. Mocanu, C. Commault [7] formulates Sparse representations of
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phase-type distributions are studied as an extension of the monocyclic distribu-
tions. He has proved that if the phase-type distribution is triangular it is possible
to find an upper triangular markovian representation for this distribution. Tian,
N. and Zhang, Z. G. [12]have studied the performance measures of the multi-server
queueing system with multiple exponential vacations. Madan [6] had analysed an
M/G/1 model with optional service where the server provides essential service
first, to all the arriving customers and then optional service is provided to the
customers who are in need additional service.

Reliability, Availability and Maintainability (RAM) is an important metric that
are used to measure the performance of the system and are also considered to be
a good starting point to improve the system. Hence, researchers will put huge
efforts to study the performance modelling and availability analysis on various
industrial systems. Aggarwal, et. al. [1], applied the concept of fuzzy in system
Reliability in order to analyse the failure and repair rates in the subsystems of the
sugar plant problem. An Overview of reliability, availability, maintainability and
supportability (RAMS) engineering are provided by the authors Saraswat and G.S.
Yadava [10].This paper provides details regarding the current information along
with the past information in the RAMS engineering research and industry.

Sensitivity Analysis is also known as ‘what-if’ analysis is used to find the effect
of a set of independent variables on a set of dependent variables under specific
conditions. This type of analysis can be used for analysing any activity or system
within certain boundaries. Neetu Singh [8] deals with sensitivity Analysis of a
Markovian Queue along with Threshold policies and additional servers. It has
been found in this model that, the optimal threshold policy for the Markovian
queueing model is obtained by having additional servers along with the permanent
server.

Based on the literatures reviewed, not much work has been done on the Relia-
bility analysis of Phase-type queuing system with working and working-breakdown
states. Thus, the goal of this paper is to investigate the Reliability (R(t)), Avail-
ability (A(t)) and Maintainability (M(t)) analysis of the finite capacity M/PH/1
optional service queueing system with working and working-breakdown states. The
Differential-Difference equations has been formed for the general case. As a spe-
cial case of N = 4 the equations are solved with by using numerical method. The
Reliability,Availability and Maintainability of the model is illustrated numerically
and shown graphically. The Sensitivity Analysis has been carried out for different
parametric values in analysing the robustness of the Phase-type Queueing model.

2. Description of the System

In this paper, a time-dependent, finite capacity M/PH/1 queueing model with
working and working-breakdown states are considered. The mean arrival time
of the machines are calculated according to the Poisson process with constant
parameter λ There are two Phases of Service, in which the first service is an
essential phase whereas the second service service is an optional phase which are
exponentially distributed with four service rates (i.e., µ1, µ11, µ2 and µ21). With
probability p the machine goes through the First Essential Service before it departs,
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and if there is a need for additional service the machine goes through an optional
service facility with probability q = 1− p.

The Assumptions and Notations used for this model are given below.

2.1. Assumptions.

• The machines arrive independently according to the Poisson process with
a constant parameter.
• There are two service phases, which follows a First Come First Service

(FCFS) discipline.
• Once the service is completed in the system it is inspected. With prob-

ability p the service is found to be satisfactory in the machines during
inspection and the machine departs. Whereas with probability q = 1− p,
the machine needs some additional service before it departs.
• When the system is not empty (i.e., there should be at least one machine)

breakdown occurs at the service facility which is exponentially distributed.
When the system is in breakdown state the service is performed at a slower
rate.
• Whenever breakdown occurs in the system it is immediately recovered in

the recovery state which is also exponentially distributed. Once the system
recovers it performs its activity at a normal service rate.
• All inter-arrival, Phase type optional services, working state and the

working-breakdown state are independent of each other.

2.2. Notations. The notations that are used in this paper are as follows:

N(t) : Number of machines in the system at time t
PH : Phase type distribution
S(t) : Environmental state at any instant of time t which is given by:

S(t) =

{
0, if the server is in the working environment state for Phase 1 & 2

1, if the server is in the working breakdown state for Phase 1 & 2

λ : Arrival rate
µ1 : First Phase of service for working state
µ2 : First phase of service for working-breakdown state (µ1 < µ2)
µ11 : Optional phase of service for working state
µ21 : Optional phase of service for working-breakdown state (µ11 < µ21)
α1 : Failure rate for First phase of service
α2 : Failure rate for Second phase of service (α1 < α2).
β1 : Recovery rate for First phase of service
β2 : Recovery rate for Second phase of service (β1 < β2).

P0,0,0(t) = Probability that there are no machines in the system.

Pn,i,j(t) = Probability that there isn (n ≥ 1) machines in the ith phase of the
system with jth state

The state transition diagram for the finite capacity Markovian Phase-Type
queueing model is shown in Figure 1
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4 S.R. SRUTHI AND P.R.JAYASHREE

Figure 1. State Transition Diagram for finite capacity Phase-
Type Markovian queueing model

3. Governing Equations

The differential-difference equations for the finite Phase-type queueing system
under the working and working-breakdown states are given below:

Working State

dP0,0,0(t)

dt
= µ1pP1,1,0(t) + µ11P1,2,0(t)− λP0,0,0(t), n = 0 (3.1)

dPn,1,0(t)

dt
= λPn−1,1,0(t) + µ1pPn+1,1,0(t) + β1Pn,1,1(t)

− (λ+ µ1p+ µ1q + α1)Pn,1,0(t), n ≥ 1 (3.2)

dPn,2,0(t)

dt
= λPn−1,2,0(t) + µ1qPn,1,0(t) + β2Pn,2,1(t)

− (λ+ µ11 + α2)Pn,2,0(t), n ≥ 1 (3.3)
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dPN,1,0(t)

dt
= λPN−1,1,0(t) + β1PN,1,1(t)

− (µ1p+ µ1q + α1)PN,1,0(t), n = N (3.4)

dPN,2,0(t)

dt
= λPN−1,2,0(t) + µ1qPN,1,0(t) + β2PN,2,1(t)

− (µ11 + α2)PN,2,0(t), n = N (3.5)

Working-Breakdown State

dP0,0,1(t)

dt
= µ2pP1,1,1(t) + µ21P1,2,1(t)− (λ+ β1)P0,0,1(t), n = 0 (3.6)

dPn,1,1(t)

dt
= λPn−1,1,1(t) + µ2pPn+1,1,1(t) + α1Pn,1,0(t)

− (λ+ µ2p+ µ2q + β1)Pn,1,1(t), n ≥ 1 (3.7)

dPn,2,1(t)

dt
= λPn−1,2,1(t) + µ2qPn,1,1(t) + α2Pn,2,0(t)

− (λ+ µ21 + β2)Pn,2,1(t), n ≥ 1 (3.8)

dPN,1,1(t)

dt
= λPN−1,1,1(t) + α1PN,1,0(t)

− (µ2p+ µ2q + β1)PN,1,1(t), n = N (3.9)

dPN,2,1(t)

dt
= λPN−1,2,1(t) + µ2qPN,1,1(t) + α2PN,2,0(t)

− (µ21 + β2)PN,2,1(t), n = N (3.10)

without loss of generality the initial state conditions are given by
P0,0,0(0) = 0, Pn,i,j(0) = 0, ∀ n = 1, 2, . . . , N ; i = 1, 2; j = 0, 1

The above equations can be solved for transient case by using Fourth-Order Runge
Kutta numerical method.

The system reliability at time t is calculated as follows:

R(t) =

N∑
n=0

2∑
i=1

1∑
j=0

Pn,i,j (3.11)

The system Availability at time t is calculated by considering up all the working
states as follows:

A(t) =

N∑
n=0

2∑
i=1

1∑
j=0

Pn,i,j (3.12)

The system Maintainability at time t is calculated by considering working-
breakdown state which is calculated as follows:

M(t) =

N∑
n=0

2∑
i=1

1∑
j=0

Pn,i,j (3.13)
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The metrics such as MTBF (Mean time between failures) and MTTR (Mean
Time Till Recovery) are calculated as follows:

MTBF =
1

(α1 + α2)
(3.14)

MTTR =
1

(β1 + β2)
(3.15)

3.1. Special Case. As a special case for N = 4 for the finite capacity Phase-
Type optional queueing system, the system of differential equations of the model
is obtained as

Working State

dP0,0,0(t)

dt
= µ1pP1,1,0(t) + µ11P1,2,0(t)− λP0,0,0(t) (3.16)

dP1,1,0(t)

dt
= λP0,0,0(t) + µ1pP2,1,0(t) + β1P1,1,1(t)

− (λ+ µ1p+ µ1q + α1)P1,1,0(t) (3.17)

dP2,1,0(t)

dt
= λP1,1,0(t) + µ1pP3,1,0(t) + β1P2,1,1(t)

− (λ+ µ1p+ µ1q + α1)P2,1,0(t) (3.18)

dP3,1,0(t)

dt
= λP2,1,0(t) + µ1pP4,1,0(t) + β1P3,1,1(t)

− (λ+ µ1p+ µ1q + α1)P3,1,0(t) (3.19)

dP4,1,0(t)

dt
= λP3,1,0(t) + β1P4,1,1(t)

− (µ1p+ µ1q + α1)P4,1,0(t) (3.20)

dP1,2,0(t)

dt
= µ1qP1,1,0(t) + β2P1,2,1(t)

− (λ+ µ11 + α2)P1,2,0(t) (3.21)

dP2,2,0(t)

dt
= λP1,2,0(t) + µ1pP2,1,0(t) + β2P2,2,1(t)

− (λ+ µ11 + α2)P2,2,0(t) (3.22)

dP3,2,0(t)

dt
= λP2,2,0(t) + µ1qP3,1,0(t) + β2P3,2,1(t)

− (λ+ µ11 + α2)P3,2,0(t) (3.23)

dP4,2,0(t)

dt
= λP3,2,0(t) + µ1qP3,1,0(t) + β2P4,2,1(t)

− (µ11 + α2)P4,2,0(t) (3.24)
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Working-Breakdown State

dP0,0,1(t)

dt
= µ2pP1,1,1(t) + µ21P1,2,1(t)− (λ+ β1)P0,0,1(t) (3.25)

dP1,1,1(t)

dt
= λP0,1,1(t) + µ2pP2,1,1(t) + α1P1,1,0(t)

− (λ+ µ2p+ µ2q + β1)P1,1,1(t) + µ21P2,2,1 (3.26)

dP2,1,1(t)

dt
= λP1,1,1(t) + µ2pP3,1,1(t) + α1P2,1,0(t)

− (λ+ µ2p+ µ2q + β1)P2,1,1(t) + µ21P3,2,1 (3.27)

dP3,1,1(t)

dt
= λP2,1,1(t) + µ2pP4,1,1(t) + α1P3,1,0(t)

− (λ+ µ2p+ µ2q + β1)P3,1,1(t) + µ21P4,2,1 (3.28)

dP4,1,1(t)

dt
= λP3,1,1(t) + α1P4,1,0(t)

− (µ2p+ µ2q + β1)P4,1,1(t) (3.29)

dP1,2,1(t)

dt
= µ2qP1,2,0(t) + α2P1,2,0(t)

− (λ+ µ21 + β2)P1,2,1(t) (3.30)

dP2,2,1(t)

dt
= λP1,2,1(t) + µ2qP2,1,1(t) + α2P2,2,0(t)

− (λ+ µ21 + β2)P2,2,1(t) (3.31)

dP3,2,1(t)

dt
= λP2,2,1(t) + µ2qP3,1,1(t) + α2P3,2,0(t)

− (λ+ µ21 + β2)P3,2,1(t) (3.32)

dP4,2,1(t)

dt
= λP3,2,1(t) + µ2qP4,1,1(t) + α2P4,2,0(t)

− (µ21 + β2)P4,2,1(t) (3.33)

4. Numerical Illustration

The main focus of this paper, is to analyse RAM using the transient behaviour
of the Markovian Phase-type finite capacity queueing model. Considering the time
range from t = 0 to t = 200 (in hours), and the parameter values as λ = 0.04,
µ1 = 0.07, µ2 = 0.04, µ11 = 0.02, µ21 = 0.015, α1 = 0.04, α2 = 0.02, β1 = 0.03,
β2 = 0.01 and p = 0.7. The system of equations (3.16)-(3.33) are solved for time-
dependent probabilities Pn(t), for n customers using Fourth-Order Runge-Kutta
method.

The probability curves that are displayed in Figure 2, shows the time dependent
total system size probability distribution Pn(t) of the total number of machines in
the system.
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8 S.R. SRUTHI AND P.R.JAYASHREE

Figure 2. Probability Curves

Figure 3, depicts the Reliability of the Phase-Type Queueing system and it is
found that,the reliability of the system decreases with increase in time and the
system reliability after 200 hours is found to be 12%.

Figure
3. Relliability
of Phase-type
Queueing system

Figure
4. Availability
of Phase-type
Queueing system

Figure 4, represents the Availability of the system for the Phase-Type Queueing
model. It is proved that as time increases the Availability of the system decreases.
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Figure 5. Maintainability of Phase-type Queueing system

Figure 5, Illustrates the maintainability of the system with respect to time for
the Phase -Type queueing model. It is shown that Maintainability of the Queueing
system increases with respect to time, until 47 hours and starts decreasing. the
M(t) decreases and at 200 operating hours it is found out to be 23%. The values
of MTBF and MTTR are found to be 17 hours/failure and 25 hours/recovery
respectively.
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10 S.R. SRUTHI AND P.R.JAYASHREE

5. Sensitivity Analysis

The Sensitivity Analysis is carried out for Phase-type queueing system for differ-
ent parametric values. Figure 6, 7 and 8 shows the variation in R(t), A(t) and M(t)
for different sets of Failure rate values (α1 and α2). By fixing the other parameters,
we observe that for increasing values of α1(0.05, 0.06, 0.07) and α2(0.03, 0.04, 0.05)
Reliability and Availability decreases. After 100 operating hours the Availabil-
ity for different failure rates becomes constant. Maintainability increases at the
beginning and as time increases it decreases.

Figure
6. Sensitivity
Analysis for Failure
Rate values of
Reliability

Figure
7. Sensitivity
Analysis for Failure
Rate values of
Availability

In figure 9 and 10, illustrates the variation in R(t) and M(t) for different sets of
β1 = (0.04, 0.05, 0.06) and β2 = (0.02, 0.03, 0.04). By fixing the other parameters
such as λ, µ1, µ2, µ11, µ21, α1, α2, p as constant, it is observed that for increasing
values of β1 and β2, Reliability increases. Figure 10 shows the variation in M(t)
for different sets of β1 and β2, it is observed that for increasing values of β1 and
β2, Maintainability decreases.

Table 1 shows the changes in RAM for different values of Failure rate and the
Service rate. It is seen that as the values of the Failure rate increases keeping
the service rate constant there is a decrease in Reliability and Availability values
whereas the value of the Maintainability increases.

Table 2 displays the changes in RAM for different values of Arrival rates and
the Service rates. It is clearly visible that as arrival rate increases keeping the
Service rate constant the Reliability and Availability decreases but Maintainability
increases.
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Figure 8. Sensitivity Analysis for Failure Rate values of Maintainability

Figure
9. Sensitivity
Analysis for Recov-
ery Rate values of
Reliability

Figure
10. Sensitivity
Analysis for Recov-
ery Rate values of
Maintainability

Table 3 depicts the changes in RAM for different values of Failure rates and
Arrival rates. It is proven that there are variations in Failure rate and Arrival
rates values. It is seen that as Failure rate increases Reliability and Availability
decreases whereas Maintainability increases.
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12 S.R. SRUTHI AND P.R.JAYASHREE

Table 4 shows the changes in RAM for different values of Arrival rate and
Recovery rate. It is found out that for different values of Failure rate with respect
to Recovery rate, Reliability decreases whereas Maintainability also decreases.

Table 5 shows the comparison between Working state Service rates and the
Recovery rates for different values has been calculated for N=4. It is predicted
that for different Recovery rates and Service rates the Reliability decreases, and
Maintainability increases.
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6. Conclusion

The Reliability, Availability and Maintainability (RAM) analysis of the time-
dependent finite capacity Markovian Phase-Type queueing system with breakdown
and recovery policies are studied in this paper. By using the differential-difference
equations the transient system is obtained for the general case. As a special
case N = 4 is formulated and are solved by using Fourth-Order Runge-Kutta
numerical method. The Reliability, Availability and Maintainability are illustrated
numerically and shown graphically. It is found that as time increases Reliability,
Availability decreases but Maintainability initially increases after time period it
decreases. The other metrics such as MTBF and MTTR were also calculated. By
using Sensitivity Analysis, the Reliability, Availability and Maintainability graphs
are obtained for different sets of values for Failure and Recovery rates. It is also
carried out to find the values of R(t), A(t) and M(t) for different sets of parameter
values.
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