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Abstract. Boundary value problems for elliptic equations of type Lu = F

in higher dimensions, can be reduced to fixed-point problems for a suitable

defined operator. This defined operator involves a fundamental solution of
the equation Lu = 0. We consider the case when the right-hand side depends

also on the function u itself and on its derivatives ∂ju for j = 1, . . . , n.

As L, we consider operators in the framework of Clifford analysis as the
generalized Cauchy-Riemann operator in Rn+1. To solve the equivalent fixed-

point problem, we apply the Contraction Mapping Principle and Schauder
type estimates.

1. Introduction

Clifford algebras can be defined as the quotient
R[X1, ..., Xn]

I
, where R[...] is

the ring of special polynomials in X1, ...,Xn (actually an R− algebra, see [5]) and
I is the ideal of R[X1, ..., Xn] spanned by polynomials of the form

X2
j + 1 or XiXj +XjXi . (1.1)

Considering the Euclidean space Rn+1 whose basis is e0 = 1, e1, ..., en and denot-
ing Xj by ej , j = 1, ..., n, the structure polynomials (1.1) imply the well-known
rules of the usual Clifford algebra An:

e2
j = −1, j = 1, ..., n, and eiej = −ejei for i 6= j.

We recall that the Cauchy-Riemann operatorD is defined by D = ∂0+
∑n
i=1 ei∂i

and a (continuously differentiable) Clifford-algebra-valued function is said to be
left monogenic if it satisfies the Cauchy-Riemann equation Du = 0.

Now we consider the equation:

Du = F (x, u, ∂1u, . . . , ∂nu), where ∂i =
∂

∂xi
. (1.2)

The solutions of this system are called generalized monogenic functions, provided
that the system is of elliptic type.

In this paper we show how boundary value problems for elliptic equations of
type Lu = F (x, u, ∂iu), i = 1, . . . , n in higher dimensions, can be reduced to fixed-
point problems for a suitable defined operator. This defined operator involves a
fundamental solution of the equation Lu = 0. In order to illustrate the method
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we consider as L, the generalized Cauchy-Riemann operator D. To solve the
equivalent fixed-point problem, we apply the Contraction Mapping Principle and
Schauder type estimates.

2. A Cauchy-Pompeiu Integral Formula

As we know the function

E(x, ξ) =
1

ωn+1
· x̄− ξ̄
|x− ξ|n+1

,

where ωn+1 is the surface measure of the unit sphere in Rn+1, is a fundamental
solution for the equation Du = 0 with singularity at ξ (see [3]).

Now we recall the Green Integral Formula for the Cauchy-Riemann operator.
Let Ω be a bounded domain in Rn+1 with sufficiently smooth boundary. Let u, v
Clifford-algebra-valued functions being continuously differentiable in Ω̄, then the
Green Integral Formula for the Cauchy-Riemann operator has the form∫

Ω

(
vD · u+ v ·Du

)
dx =

∫
∂Ω

v · dσ · u, (2.1)

where dσ =
∑n
j=0 ejNjdµ is the surface element with values in An and where in

turn (N0, N1, . . . , Nn) is the outer unit normal and dµ is the measure element on
the boundary. In order to apply that Green Integral Formula with u = E(x, ξ),
one has to omit the (isolated) singularity ξ. Define Ωε = Ω \ Ūε(ξ), where Uε(ξ) is
the ε-neighbourhood of ξ. Since E(x, ξ) has a weak singularity at ξ and carrying
out the limiting process ε → 0, we get the following Cauchy-Pompeiu Integral
Formula:

Theorem 2.1. Let Ω be a bounded domain in Rn+1 with sufficiently smooth bound-
ary and suppose v is a continuously differentiable function in Ω̄ with values in the
Clifford algebra An. Then for points ξ in Ω, we have

v(ξ) =

∫
∂Ω

v · dσ · E(x, ξ)−
∫

Ω

vD · E(x, ξ) · dx. (2.2)

Remark 2.2. In [8] there is a similar representation when the Green Integral For-
mula for the Cauchy-Riemann operator (2.1) is applied with v = E(x, ξ) instead
of u = E(x, ξ).

2.1. Distributional solution for the inhomogeneous equation Du = h.

A distributional solution of inhomogeneous equation Du = h is given by the
following theorem whose proof follows easily taking into account (2.2) and using
Fubini’s Theorem for weakly singular integral (see [10]).

Theorem 2.3. Let E(x, ξ) a fundamental solution of Du = 0 with singularity in
ξ and suppose that h is an integrable An-valued function in the bounded domain
Ω, then the function u defined by

u(x) =

∫
Ω

E(x, ξ) · h(ξ)dξ

is a distributional solution of inhomogeneous equation Du = h.
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2.2. Monogenic functions in the distributional sense.

An integrable function u is a monogenic function in the distributional sense if
it satisfies the following relation:∫

Ω

ϕD · udx = 0, for each test function ϕ.

it can be proved that a monogenic function in the distributional sense is contin-
uously differentiable and satisfies Du = 0 pointwise. We called this result Weyl
Lemma for monogenic functions. Its proof follows in a form analogous to that of
the complex case (see [10]).

3. Hölder spaces and Schauder estimates

Let Ω be a bounded domain in Rn+1. We denote by Cλ(Ω) the set of real
valued Hölder continuous functions in Ω with λ as Hölder exponent. Through the
functional

||f ||Cλ(Ω) = max

(
sup

Ω

|f |, sup
ζ1 6=ζ2

|f(ζ1)− f(ζ2)|
|ζ1 − ζ2|λ

)
(3.1)

we define a norm called the Hölder norm and so Cλ(Ω) with the Hölder norm is
a Banach space (see [10]). For An−valued functions u we define the Hölder norm
as

||u||Cλ(Ω) = max
A

{
||uA||Cλ(Ω)

}
.

Now we consider C1,λ(Ω) as a Banach space where the norm for any real valued
function f ∈ C1,λ(Ω) is defined as follow

||f ||C1,λ(Ω) := max

(
sup

Ω

|f |, sup
Ω

|∂if |, sup
ζ1 6=ζ2

|∂if(ζ1)− ∂if(ζ2)|
|ζ1 − ζ2|λ

)
. (3.2)

Then we define the norm || · ||1,λ de una función u(x) =
∑
A∈Γn

uA(x)eA with

values in An as the maximun of the || · ||1,λ-norms of its 2n real components, i.e.,

||u||C1,λ(Ω) = max
A

{
||uA||C1,λ(Ω)

}
.

Schauder estimates play a very important role in the theory of the existence
of solutions of linear and non-linear elliptic Partial Differential Equations. These
estimates guarantee that the Hölder bound for the solutions of Partial Differential
Equations is controlled, in general, by the Hölder norm of the boundary data (see
[2]).

Schauder’s Interior Estimates provide us the bounds for the up to second-order
derivatives of the solution and their Hölder continuities in any compact subset of
the domain, that is, for the solution of a boundary-value problem of the type{

Lu = F (·, u, ∂iu) in Ω
u = φ in ∂Ω

(3.3)

we have the following bound

||u||∗C2,λ(Ω) ≤ C
(
||F ||C0,λ(Ω) + ||u||C0(Ω)

)
. (3.4)
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The symbol * represents the weighted norm inside the domain that is at a positive
distance from the boundary and the Constant C depends on other constants such
as the exponent λ and the dimension of the space among others (see [4]).

In [2, 1] we found Schauder estimates for the Hölder continuity of the first
derivative of the solution up to the boundary which are given by

||u||C1,λ(Ω) ≤ C
(
||F ||C0,λ(Ω) + ||u||C0(Ω) + ||ϕ||C1,λ(∂Ω)

)
(3.5)

and if the solution satisfies a certain maximum principle, the middle term can be
dropped or it can be estimated by the Hölder norm of the boundary data.

4. Boundary value problems for monogenic functions

A monogenic function u =
∑
A uAeA solves Du = 0. Its real valued components

are solutions of ∆u = 0. As in the plane case, we can not arbitrarily prescribe all
components on ∂Ω.

For example in case n = 2 (Rn+1 = R3): Consider a monogenic function
u = u0 + u1e1 + u2e2 + u12e12 given in the closure of Ω, where Ω is a cylindrical
domain in x0- direction

Ω = {(x0, x1, x2) : Ψ1(x1, x2) < x0 < Ψ2(x1, x2), (x1, x2) ∈ Ω0},

where Ω0 is a simply connected domain in the x1, x2- plane. Then u is completely
determined if u1, u2 are arbitrarily given on the whole boundary, u12 is given on
the basis of the cylindrical domain:

S0 = {(x0, x1, x2) : x0 = Ψ1(x1, x2), (x1, x2) ∈ Ω0}

and u0(p0) = c, where p0 is an arbitrarily point of Ω and c is a constant.
To show that, we use the system Du = 0 and the fact that the all components

uA of u satisfy the Laplace equation (see [7]).
For arbitrary n, one has to consider domains which can be decomposed into µ-

dimensional fibres. These fibres are defined by so called distinguishing (1+n−µ)-
dimensional parts of the boundary (see [6]). Therefore, according with this de-
composition, the Cauchy-Riemann system can be decomposed into µ-dimensional
subsystems for particular components and these subsystems turn out to be com-
pletely integrable, so that the corresponding components can be calculated from
their values in the distinguishing part of the boundary.

5. Reduction of boundary value problems to fixed-point problems

Now we consider a boundary value problem that can be solved for monogenic
functions and define the operator

T [u](x) = uh + uc +

∫
Ω

E(x, ξ)F (ξ, u(ξ), ∂1u(ξ), . . . , ∂nu(ξ))dξ, (5.1)

where uh is a monogenic function solving the boundary value problem and uc is a
second monogenic function which compensates the boundary value of the integral
in (5.1) to zero.

For example, in case n = 2, we can take uh as the monogenic function solu-
tion of the boundary value problem given in section 4. On the other hand, we
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take uc as the monogenic function which compensates the boundary values of∫
Ω
E(x, ξ)F (ξ, u(ξ), ∂1u(ξ), . . . , ∂nu(ξ))dξ := IT , i.e.,

uci = −ITi on ∂Ω, i = 1, 2

uc12 = −IT12 on S0

uc0 = −IT0 (p0), p0 ∈ Ω.

The choice of the boundary values of uh and uc implies that T [u](x) satisfies the
given boundary conditions. Also, since Duh = 0 and Duc = 0, we get DT [u](x) =
F (x, u, ∂1u, . . . , ∂nu).

Therefore we have proved the following Theorem:

Theorem 5.1. A fixed point of the operator (5.1) is a solution of the boundary
value problem for the equation Du = F (x, u(x), ∂1u(x), . . . , ∂nu(x)).

The existence and uniqueness of this problem can be showed using the Con-
traction mapping principle. By the Contraction principle the Lipschitz condition
with respect to the functions uA and their derivatives on F is necessary. Since
the right hand side involves the first order derivatives of the desired function u,
a convenient underlying function space is the space of the Hölder continuously
differentiable functions. Also the monogenic functions uh and uc can be estimated
by Schauder estimates, which give the estimates in terms of the boundary values
in the Hölder spaces as we showed in section 3. Since there are derivatives ∂iu in
the integrand of IT , it es necessary to differentiate T (u(x)) with respect to the
xi, i = 0, 1, . . . , n. Therefore the following strongly singular integrals appear∫

Ω

(
∂xi(

x̄− ξ̄
|x− ξ|n+1

)
)
F (ξ, u(ξ), ∂1u(ξ), . . . , ∂nu(ξ))dξ.

Substituting F (ξ, u(ξ), ∂1u(ξ), . . . , ∂nu(ξ)) by F(ξ), this integral can be rewritten
as ∫

Ω

(
∂xi(

x̄− ξ̄
|x− ξ|n+1

)
)
(F(ξ)−F(x))dξ +

∫
Ω

∂xi(
x̄− ξ̄

|x− ξ|n+1
)dξF(x). (5.2)

Now assuming that the function u is Hölder continuously differentiable with the
exponent 0 < λ < 1 and taking into account the Lipschitz condition on F , the
first integral becomes weakly singular.

Next we consider the domain Ωε = Ω \ Ūε(ξ), where Uε(ξ) is the ball |x− ξ| ≤ ε,
then the Gauss Integral Theorem leads to∫

Ωε

∂xi(
x̄− ξ̄

|x− ξ|n+1
)dξ =

∫
∂Ω

x̄− ξ̄
|x− ξ|n+1

Njdµ+

∫
|x−ξ|=ε

x̄− ξ̄
|x− ξ|n+1

Njdµ,

where (N0, N1, . . . , Nn) is the outer unit normal and dµ is the measure element on
the boundary. Since |x̄− ξ̄| = ε and dµ = εndµ1, where dµ1 is the surface element
of the (n+ 1)−dimensional unit sphere, the second integral on the right hand side
does not depend on ε and then its limit exists as ε tends to 0. Therefore, the
second integral in (5.2) exists as a principal value and it can be represented by a
Cauchy type integral over the boundary ∂Ω.
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Note that the solution can be obtained by construction, using the method of
successive approximations, i.e., the solution is the limit of the sequence {un}∞n=0

defined by:

un+1(x) = u0(x) +

∫
Ω

E(x, ξ)F (ξ, un(ξ), ∂1un(ξ), . . . , ∂nun(ξ))dξ, (5.3)

where u0(x) = uh + uc.
We can solve boundary value problems in the framework of more general Clif-

ford algebras called parameter-depending Clifford algebras (see [7, 8, 9]) or we can
change the operator L for another different from the operator D. In both cases,
we need a fundamental solution of equation Lu = 0 to define the operator (5.1).
On the other hand, we must bear in mind that when estimating the correspond-
ing integral operator, strongly singular integrals appear which can be difficult to
handle.
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