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Abstract. The first boundary value problem (Dirichlet’s problem) for a sys-
tem of elliptic equations is considered. Under the assumption of the existence

of a solution, a special system of integral equations is written that connects

the values of the functions with their integrals over spheres and balls. Based
on the obtained system of integral equations, a probabilistic representation

of the solution of the system is obtained. A random process is constructed

that is consistent with the probability representation. On the trajectories of
a random process, an unbiased estimate of a solution with finite variance is

constructed. For the constructed estimate algorithms, numerical experiments

were carried out and their results are presented in the table. A similar sys-
tem was considered in paper [5]. In contrast to the computational algorithm

proposed in [5], in this paper, the equation number is modelled not equal

probability, but in according to the constant or variable coefficients cij of the
system under consideration. For the system equations of parabolic type were

constructed such kind of stochastic algorithms in [7].

1. The Description of the Problem

Let be D a bounded domain in R3 with a regular boundary Γ. Consider the
Dirichlet’s problem for the following system of elliptic equations:

−∆u1(x) + c11u1(x) = c12u2(x) + . . .+ c1nun(x) + f1(x),
−∆u2(x) + c22u2(x) = c21u1(x) + c23u3(x) + . . .+ c2nun(x) + f2(x),
...
−∆un(x) + cnnun(x) = cn1u1(x) + . . .+ c(n−1)nun−1(x) + fn(x),

(1)

for x ∈ D with boundary conditions:

ui(x) = ϕi(x), x ∈ Γ, i = 1, n. (2)

Here cii > 0, i = 1, n. Assume that the functions fi(x), ϕi(x) and for the
beginnig constant coefficients cij , (i, j = 1, n) such that there exists [3] the only

continuous solution to the problem ui(x) ∈ C(D)∩C2(D), (i = 1, n). We construct
a statistical algorithm for solving problem (1)-(2) at some arbitrary point x ∈ D.
To do this, we will use some well-known facts from the course of classical equations
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2 ABDUJABAR RASULOV AND GULNORA RAIMOVA

of mathematical physics and obtain an integral representation of the solution to
the problem.

2. Transformation of the system and obtaining a probabilistic
representation

As is known [5], the following representation is valid for solving the equation
−∆u(x) + c u(x) = f(x):

u(x) =
R
√
c

4πR2 sh (R
√
c)

∫
SR

u(y)dy +

∫
KR

sh [(R− |x− y|)
√
c]

4π|x− y|h (R
√
c)

f(y) dy. (3)

Here R = d(x) = min
y∈Γ
|x − y| is the distance from the point to the boundary, KR

is the ball of radius R centered at the point x, SR is the corresponding sphere.
The first integral in (3) is the integral over the surface of the sphere SR. So

since the surface area of the sphere is equal 4πR2, after the introduction of this
expression under the sign of the first integral, it becomes three-dimensional, repre-
senting a uniformly distribution on the sphere. In view of the foregoing, we rewrite
this expression as follows

u(x) = q
∫
SR

u(y)dω + (1− q)
∫
KR

p(x, y) f(y)
c dy, (4)

here we used the following notation: q = R
√
c

sh(R
√
c)

, ω is the uniform distribution

on SR, p(x, y) - transition density from x in y (x, y ∈ KR),

p(x, y) =
sh [(R− |x− y|)

√
c]

4π|x− y| (sh (R
√
c)−R

√
c)
.

Applying relation (4) to each of the equations, we obtain the following system
of integral equations:

u1(x) = q1

∫
SR

u1(y) dω+

+(1− q1)
∫
KR

p1(x, y) 1
c11

(c12u2(y) + · · ·+ c1nun(y) + f1(y)) dy

...
uk(x) = qk

∫
SR

uk(y) dω+

+(1− qk)
∫
KR

pk(x, y) 1
ckk

( ∑
i=1,n; i 6=k

ckiui(y) + fk(y)

)
...
un(x) = qn

∫
SR

un(y) dω+

+(1− qn)
∫
KR

pn(x, y) 1
cnn

(
cn1u1(y) + · · ·+ cn(n−1)un−1(y) + fn(y)

)
dy.

(5)

Here

qk =
R
√
ckk

sh
(
R
√
ckk
) , pk(x, y) =

sh
[
(R− |x− y|)√ckk

]
4π|x− y|

(
sh
(
R
√
ckk
)
−R√ckk

) .
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PROBABILISTIC MODELS FOR NUMERICAL SOLUTION OF BVP 3

When constructing estimates of the Monte Carlo method for solving systems of
integral equations:

ui(x) =

k∑
j=1

∫
Ω

kij(x, y)uj(y)dy + hi(x)

or in vector form U = KU + H, it is assumed that the spectral radius ρ(K) < 1
(see [6]).

Under this condition, the solution of the system of integral equations can be

represented in the form of a convergent Neumann series U =
∞∑
i

KiF . Let Kij

an integral operator with a kernel kij(x, y). The following theorem belongs to G.
Mikhailov.

Theorem 2.1. [6] If Kij are bounded operators, then

ρ(K) ≤ max
i
ρ(Kii) = ρ0.

If kij(x, t; y, τ) ≥ 0, then ρ(K) = ρ0.

According to this theorem 2.1, it suffices to show that ρ0 = max
i
ρ(Kii) < 1. Since

the spectral radius ρ(K) is determined by the relation ρ(K) = lim ‖Kn‖1/n =

inf ‖Kn‖1/n, then condition |K| < 1 is equivalent to the inequality ρ(K) < 1.
From representation (5) it follows that

Kiiu =
R
√
cii

4πR2sh
(
R
√
cii
) ∫
SR

u(y)dy.

From following representation

‖Kii‖ = sup
x∈D

∫
SR

∣∣∣∣∣ R
√
cii

4πR2 sh
(
R
√
cii
) ∣∣∣∣∣ dy = sup

x∈D
qi = sup

x∈D

R(x)
√
cii

shR
(
(x)
√
cii
) < 1,

we show that max
i
‖Kii‖ < 1. Further, in accordance with representation (5), a

random process in D is constructed and a simulation algorithm is proposed.

3. The construction of a random process, consistent with the
probabilistic representation

Define in D a random process as follows. We define A(x) the transition proba-
bility matrix:

A(x) =


α11 α12 · · · α1(n+1)

α21 α21 · · · α2(n+1)

· · · · · · · · · · · ·
αn1 αn2 · · · αn(n+1)

0 0 · · · 1

 ,

where

αii = qi, Mi =
∑

j=1,n;j 6=i

|cij |, αi(n+1) = (1− qi)/n, (i = 1, n),
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4 ABDUJABAR RASULOV AND GULNORA RAIMOVA

αij = (1− qi)
(n− 1)

n

|cij |
Mi

, (i, j = 1, n; i 6= j),

and transition density matrix P (x, y):

P (x, y) =


p11(x, y) p12(x, y) · · · p1(n+1)(x, y)
p21(x, y) p22(x, y) · · · p2(n+1)(x, y)
· · · · · · · · · · · ·

pn1(x, y) pn2(x, y) · · · pn(n+1)(x, y)
0 0 · · · 1

 ,

where pii(x, y) = ISR
(y) 1

4πR2 , (i = 1, n) is the transition density corresponding to
a uniform distribution on the sphere SR(x), pij(x, y) = IKR

(y)pi(x, y), i.e.

pij(x, y) = IKR
(y)

sh
[
(R− |x− y|)√cii

]
4π|x− y|

(
sh
(
R
√
cii
)
−R√cii

) , (j = 1, n; j 6= i).

Next, we fix the number of the equation i0 ∈ {1, 2, . . . , n} and the starting point
x0 = x. Let at the initial moment there is a particle at a point x0 = x. In one step,
a transition is performed ik → ik+1 in accordance with the matrix of transition
probabilities A(xk) and a transition xk → xk+1 in accordance with the P (xk, y)
matrix of transition probability densities, i.e. with probability αik,ik+1

(xk), the
particle also passes from a point xk to a point xk+1 having a distribution density
pikik+1

(xk, y). The probability of a process termination at a point xn is:

g(xn) =

{
1, xn ∈ Γ;
αin−1n(xn−1), xn ∈ D.

A random process defined in this way is a modified spherical process, i.e. the
next point is chosen with probability qi uniformly distributed on the sphere SR
with the maximum radius contained in D, or distributed with probability 1 − qi
in a ball KR with density pi(x, y). The trajectories of the spherical process with
probability 1 converges to the boundary of the domain (see, for example, [2]).

Next, we describe a method for modelling a transition with a transition density
pi(x, y). If the distribution density of the point xn+1 is equal pi(xn, y) to fixed xn,
then for modelling it is advisable to use the ”acceptance-rejection” method:
A) Modelled random variables α0, α1, α2 uniformly distributed over in (0; 1); Then
random variable ξ = − ln(α1α2)/

√
cii is determined;

B) If ξ > R, then the A) is repeated, otherwise, a random variable
ζ = α0 ξ exp(−√ciiξ) is selected;

C) If ζ ≥ ξ sh
[
(R− ξ)√cii

]
/sh

(
R
√
cii
)
, then go to A, otherwise xn+1 = ξ.

An estimation of the problem solution is constructed on the trajectories of the
random process described below.

4. Construction of unbiased and ε - biased estimates of the solution.

Let {(ik, xk)}k be the trajectory of a random process and

Θ0 = 1, Θn = Θn−1 × Vin−1in , (6)
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where Vij are defined as follows:

Vii = 1, Vij =
nMi sgn(cij)

(n− 1)cii
, Vi(n+1) =

n

cii
, (i, j = 1, n; i 6= j).

Let’s define a sequence of random variables on the trajectory of a random process
{ηn(i0, x0)}∞n=0:

ηn(i0, x0) = Θn × F (xn) = Θn ×
{
uj(xn), in = j, j 6= n+ 1;
fin−1(xn), in = n+ 1.

(7)

If there was a break at a time n, then we put

ηn+k(i0, x0) = ηn(i0, x0), (in+k, xn+k) = (in, xn), k = 1, 2, . . . .

Let <n – σ be an algebra generated by random variables {ωk}n−1
k=0 , {α0k}n−1

k=0 ,

{α1k}n−1
k=0 , {α2k}n−1

k=0 . The following theorem holds

Theorem 4.1. Sequence {ηn(i0, x0)}∞n=1 forms a martingale relative to <n. If
Mi < (n− 1)cii/n and max

x∈D
|fi(x)| ≤ c0, (c0 = const, i = 1, n), then {ηn(i0)} is a

uniformly integrable martingale.

Proof. By definition, {ηn(i0, x0)} <n is measurable.

E(ηn+1(i0, x0)/<n) = E (Θn+1 × F (xn+1)/<n) = E
(
ΘnVinin+1

F (xn+1)/<n
)

=

ΘnE
(
Vinin+1 × F (xn+1)

)
= Θn

(∑n
j=1 αinj

∫
KR

Vinjpinj(xn, y)uj(y)dy+

+αin(n+1)

∫
KR

Vin(n+1)pin(n+1)(xn, y)fin(y)dy
)

= ηn(i0, x0).

And so the sequence {ηn(i0, x0)} is a martingale. To prove the uniform in-
tegrability of ηn(i0, x0), it is sufficient to show that |ηn(i0, x0)| < ∞. Since
ui(x) ∈ C(D) ∩ C2(D) and D bounded area, then |ui(x)| ≤ const for x ∈ D,
i = 1, n. By virtue of the conditions of the theorem |Θn| ≤ 1, and hence
|ηn(i0, x0)| ≤ const. So the sequence {ηn(i0, x0)} is uniformly integrable. The
theorem is proved. �

Consider a slightly modified process with trajectories of shorter length and
estimates on it with an arbitrarily small offset. Take ε - small enough and consider
the inner ε- neighborhood of the boundary Γε. Let N1 is the moment of the
rupture process inside the region and Nε is the moment of first contact with Γε.
N = min{N1, Nε}- the time the process stops. Then the probability of breaking
the trajectory at the point will be equal to:

g(xn) =

{
1, if xn ∈ Γε;
αin−1n(xn−1), if xn ∈ D\Γε.

As is known, for spherical processes, the average number of EN transitions in
the sphere walk chain does not exceed ν(ε) [1]. For a wide class of boundaries
Γ, we obtain a logarithmic estimate EN ≤ C| ln(ε)|, which is known to hold for
convex regions.
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6 ABDUJABAR RASULOV AND GULNORA RAIMOVA

Theorem 4.2. Let ηn(i0) is a uniformly integrable martingale. Then ηN (i0, x0)
is an unbiased estimate for ui0(x0) with finite variance.

Proof. Since ηn(i0, x0) is a uniformly integrable martingale and N is a Markov
moment, then according to the Dub free-choice transformation theorem [8] for
the martingale ηn(i0, x0) get E ηN (i0, x0) = E η1(i0, x0). From the definition of
η1(i0, x0), it follows that Eη1(i0, x0) = ui0(x0). By virtue of the conditions of

theorem 4.1. E (ηN (i0, x0))
2
< ∞ is valid, and hence its variance is finite. The

theorem is proved. �

Next, from ηN (i0, x0), we construct a standard method of biased, but practically
implemented on a computer estimate η∗N (i0, x0). Let Ψi(x) = ϕi(x) for x ∈ Γ, x∗

is the nearest point of the Γ boundary to x. η∗N is obtained by replacing ui(xN )
in ηN (i0, x0) with Ψi(x

∗
N ).

5. Estimates of the solution of the Dirichlet problem for a system of
elliptic equations with variable coefficients

The constructed model can be generalized to the case of variable coefficients
cij = cij(x) and get similar statements. Let in equation (1) the coefficients cij
(i, j = 1, n; i 6= j) depend on x, i.e. cij = cij(x) and we consider the Dirichlet
problem for the following system of elliptic equations:


−∆u1(x) + c11u1(x) = c12(x)u2(x) + . . .+ c1n(x)un(x) + f1(x)
−∆u2(x) + c22u2(x) = c21(x)u1(x) + c23(x)u3(x) + . . .+ c2n(x)un(x) + f2(x)
...
−∆un(x) + cnnun(x) = cn1(x)u1(x) + . . .+ c(n−1)n(x)un−1(x) + fn(x)

for x ∈ D.
By analogy with (5), the probabilistic representation of the solution in this case

has the form (k = 1, n):

uk(x) = qk
∫
SR
uk(y)dω+

+(1− qk)
∫
KR

pk(x, y) 1
ckk

( ∑
i=1,n,i6=k

cki(y)ui(y) + fk(y)

)
dy.

(8)

Let us c∗ij ≥ max
x∈D
|cij(x)|. In estimates ηN (i0, x0), η∗N (i0, x0) coefficients cij is

replaced with cij(x).
In this case, the elements of the transition probability matrix A(x) are defined

as follows:

αii = qi, M∗i =
∑

j=1,n;j 6=i

c∗ij , αi(n+1) =
1− qi
n

, (i = 1, n),

αij = (1− qi)
n− 1

n

c∗ij
M∗i

, (i, , j = 1, n; i 6= j).
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Sequences of random variables {Θn} and {ηn(i0, x0)} are defined by formulas (6)-
(7) with the exception of:

Vij =
nM∗i cij

(n− 1)ciic∗ij
, (i, j = 1, n; i 6= j).

The following theorem holds

Theorem 5.1. A. The sequence {ηn(i0, x0)}∞n=1 forms a martingale relative to
<n. If M∗i < (n − 1)cii/n and max

x∈D
|fi(x)| ≤ c0, (c0 = const, i = 1, n), then

{ηn(i0, x0)} - evenly integrated martingale.
B. If N is the moment when the process stops, then ηN (i0, x0) is an unbiased
estimate for ui0(x0) with a finite variance.

Proof. The proof is similar to the proof of theorems 4.1 and 4.2. By defini-
tion, {ηn(i0, x0)} <n is measurable. E(ηn+1(i0, x0)/<n) = ηn(i0, x0). Further,
if the conditions of the theorem are met, it is easy to show |Θn| ≤ 1, and
hence |ηn(i0, x0)| ≤ const. This implies uniform integrability of the sequence
{ηn(i0, x0)}. Since ηn(i0, x0) is a uniformly integrable martingale and N is a
Markov moment, then according to the Dub free choice transformation theorem
[8] for the martingale {ηn(i0, x0)} we get EηN (i0, x0) = Eη1(i0, x0). From the
definition of η1(i0, x0), it follows that Eη1(i0, x0) = ui0(x0). By virtue of the con-
ditions of the theorem E(ηN (i0, x0))2 < ∞ and hence its variance is finite. The
theorem is proved. �

Next, ηN (i0, x0) is used to construct a standard biased but practically feasible
estimate of η∗N (i0, x0).

6. Computational experiment

The results of numerical experiments based on the proposed estimates of the so-
lution of the initial boundary value problem for system (1) for the case of constant
coefficients are presented below.

For each considered problem,the following cases were considered: the domain
Ω = D × [0, T ], where D is a ball of radius R centered at the origin and D is a
unit cube D = {(x1, x2, x3) : 0 ≤ x1, x2, x3 ≤ 1}. The results of the computational
experiment for the case of a system of three equations are shown in the table 1.

Conclusion. The results of a computational experiment show that the algo-
rithm can be used to build estimates that are effectively implemented on a com-
puter. In the course of calculations, a 99.7% confidence interval is estimated, i.e.
with a probability approximately equal to 0.997, the exact value of the solution
will be in the range (ξ̄ − 3σ, ξ̄ + 3σ). Since the exact solutions are known in the
selected examples, we can make sure that all estimates fall within the confidence
interval (see table 1).

Explanation of table 1.
D– the area where the problem is considered;
i0 is the number of equations;
x0– the point where the problem solution is located;
Uex(i0)– exact solution at x0: Uex(i0) = ui0(x0);
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8 ABDUJABAR RASULOV AND GULNORA RAIMOVA

Table 1. The results of the computational experiment.

D i0 x0 Uex(i0) ES err 3sig
ball 1 (0,25;0,25;0,25) 0,20449 0,20608 0,00159 0,01553
ball 2 (0,25;0,25;0,25) 0,00781 0,01455 0,00674 0,01337
ball 3 (0,25;0,25;0,25) 0,29535 0,29939 0,00404 0,01062
ball 4 (0,25;0,25;0,25) 0,63510 0,64508 0,00998 0,02511
cube 1 (0,3;0,55;0,75) 0,29987 0,29912 0,00075 0,01018
cube 2 (0,3;0,55;0,75) 0,06172 0,06160 0,00012 0,01369
cube 3 (0,3;0,55;0,75) 0,26508 0,26666 0,00158 0,01343
cube 4 (0,3;0,55;0,75) 0,14859 0,15038 0,01786 0,03649
ball 1 (-0,45;-0,36;0,41) -0,11683 -0,09660 0,02022 0,03842
ball 2 (-0,45;-0,36;0,41) 0,03319 0,04156 0,00837 0,03291
ball 3 (-0,45;-0,36;0,41) 0,28072 0,27690 0,00382 0,03127
shar 4 (-0,45;-0,36;0,41) 0,20110 0,20421 0,00312 0,03737
cube 1 (0,5;0,6;0,1) 0,27961 0,27977 0,00016 0,00776
cube 2 (0,5;0,6;0,1) 0,01500 0,01634 0,00134 0,00802
cube 3 (0,5;0,6;0,1) 0,29113 0,29240 0,00126 0,00784
cube 4 (0,5;0,6;0,1) 0,99604 0,98361 0,01242 0,02215

ES– Monte Carlo estimation, ES = ξ̄ = 1
Nt

(ξ1 + ξ2 + · · ·+ ξNt
), where ξ =

ηN∗(i0), ξi - independent implementations of the random evaluation of the solution
ξ;
err– difference between the exact solution and the estimate err = |ui0(x0)− ES|;
sig– statistical estimate of the value

√
V ar(ξ)/Nt, where V ar(ξ) is the variance

of the problem solution estimate;
3sig– confidence interval for estimation.
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