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Abstract. Stochastic multi-objective optimisation has been considered to

be significant because of its direct relationship to real-world issues. This
work analyses the multi-choice multi-objective transportation problem (MC-

MOTP), in which supply an demand parameters are random variables with

no preconceived values, and at least one of the objectives has many goal lev-
els to be achieved. In the present work, firstly, to find the specific solution,

present problem is transformed to an equivalent deterministic problem using

chance-constrained programming approach. Secondly, multi-choice, multi-
objective transportation problem (MCMOTP) can be reduced to a multi-

objective transportation problem (MOTP) by implementing transformation
method by means of binary variables. The reduced problem can be resolved

using goal programming by choose from a variety of aspiration levels one to

pursue each goal. This research demonstrates that an effective solution to the
stochastic multi-objective programming problem was reached by application

of two-phase approach. To explain the proposed methodology, a numerical

example is provided.

Keywords: Multichoice multi-objective transportation problem, Chance con-
strained programming, Binary variables, Goal programming, Stochastic multi ob-
jective programming problem.

1. Introduction:

A specific kind of linear programming problem known as ”transportation prob-
lem” (TP) deals with distribution of just one commodity from different supply
sources to different demand points in a way that reduces the overall cost of trans-
portation. Parameters of TP are the amounts that are needed at demand points
and amounts that are available at the supply points. These parameters are not
completely known and/or are not always predictable. The lack of accurate data
contributes to these misconceptions. In the recent past, the stochastic program-
ming model has taken into consideration normal, log-normal, and other random
variables.

Kantorovich (1960) was the first person to investigate the transportation model
and provided an incomplete approach for finding the answer. In 1941, Hitchcock
took a first look at the issue of reducing those costs associated with distributing
objects from several producers to multiple consumers. He created a process for
solving the TPs that is very similar to Dantzig’s primal simplex approach (1963).
When random variables, as opposed to a deterministic scale, describe any or all of
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the optimisation problem’s parameters, this is known as stochastic programming.
sources and destinations, which change according to the kind and character of
the problem, are the definition of random variables. In stochastic optimisation,
decision-making issues occur when some of the model’s optimisation coefficients are
either unknown or unfixed. The values are arbitrary in these circumstances. Multi-
objective stochastic optimisation techniques have grown in significant popularity in
recent times, especially in the fields of technology, transportation, manufacturing,
economics, and military applications.

The concepts and techniques for introducing stochastic variations to a mathe-
matical programming problem are at the core of stochastic programming [23]. The
parameters in a large number of realistic mathematical programming problems are
understood as random variables. ”Stochastic programming” is name given to the
area of mathematical programming that focuses on the theory and techniques for
solving conditional extremum problems when there is insufficient knowledge about
the random parameters. The majority of applied mathematics problems can be
classified into either of the following classes[24]:

1. Descriptive problems: such involve processing information about the event
under investigation using mathematical techniques, with some rules of an
event being adopted by others.

2. Optimization Problems where, Optimal solution is selected from a group
of workable solutions.

In addition to the division mentioned above, deterministic, and stochastic prob-
lems can be further subdivided into applied mathematics problems. The stochastic
problem has led to the development of numerous methods in mathematics. How-
ever, for a very long period, only descriptive problem categories were solved using
probabilistic approaches. The last forty years have seen research on mathematical
development of stochastic programming. It has been effectively applied to many
kinds of management science real-world issues[26]. Converting the problem’s prob-
abilistic nature into an equivalent deterministic scenario is the fundamental con-
cept behind all stochastic programming techniques[25]. According to Goicoechea
et al.[13], three techniques for stochastic programming are developed. The two
primary techniques are as follows:

a) Chance-constrained programming, proposed by Charnes and Cooper[7],
Which has a finite probability of violation and can be applied to solve
problems;

b) Two-stage programming, proposed by Dantzig and Infanger[8], which ex-
cludes the violation of any constraints.

Stochastic models have been applied when dealing with the probabilistic uncer-
tainty in parameters for several years. A cutting-plane approach was presented by
Abbas and Bellahcene[1]to resolve the stochastic integer linear programme with
several objectives. Azaron et al[3] and Goh et al[12] looked at the use of stochas-
tic models in supply chain network risk management. A fuzzy solution strategy
for a multi-objective stochastic integer programming problem was discussed by
Sakawa and Matsui[23]. In their suggested study, they took the basic recourse
model into account. Han et al[15] investigated the multi-stage stochastic mixed
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integer programming model with interval parameters. The research presented an
application to inter-basin water in Mathematical Modelling of Engineering Prob-
lems (2021), and took into account probabilistic restrictions to deal with the
uncertainty. Körpeoğlu and colleagues[19] examined the problem of production
scheduling. They used a multi-stage stochastic programming technique deal with
scheduling problem. The stochastic programming approach has several uses in the
domains of inventory management, production scheduling, and logistics have been
discussed by Birge and Louveaux[4]. Under the value-at-risk criteria, Wang and
Watada[30] discusses two-step fuzzy stochastic programming. The challenge may
have multiple objectives, some of which may be in opposition to one another. For
instance, reducing both the cost and the duration of shipping could be the goal. In
this case, the two objectives are going in the same direction—minimization—but
there is a cost. For instance, shipment by automobile may be less expensive than
transporting them by air, but it will require a lot more time. In order to assist
the decision maker (DM), goal programming is thus offered to define a multi-
aspiration-level goal-programming transportation problem providing the aspira-
tion levels of at least one target several options. The problem of transportation
becomes a stochastic multi-aspiration-level goal-programming approach when ran-
dom variation also affects the supply and demand factors. A multichoice stochastic
transportation problem (MCSTP) model has been investigated by Mahapatra[20],
where there is an extreme value dispersion in supply and demand dimensions of
the constraints. Cost coefficients of different objective function are multichoice in
nature. To ensure lowest possible transportation costs, the ideal system would cal-
culate the quantity of units to be delivered while satisfying the needs of both the
source and the destination. The present work aims to address the problem from a
different perspective by including the concept of goal programming. This will make
it possible the model to handle multiple conflicting objectives and establish several
aspirations levels for specific goals. With an extreme value distribution, the most
recent model transforms into stochastic multi-aspiration-level goal-programming
approach based on TP. There are m sources and n destinations when it comes
to transportation problems.Let Ck

ijof the kth objective function could represent

the unit of trans potation cost for transporting the unit from ith(i = 1, 2, 3 . . .m)
origin to jth(j = 1, 2, 3 . . . n)destination, xij is the quantity shipped from the ith

origin to jth destination, ai is supply available at origin i and bj is destination
j .In such a situation, all these parameters of all constraints are define as ran-
dom variable. For a solution close to these uncertainties, a stochastic problem
can be created by assuming that random variables have a specified distribution
rather than fixed values. To implement the disjoint chance-constrained approach
to change the constraints from probabilistic to deterministic, an extreme value dis-
tribution will be assumed in this case. When it is necessary to have a distribution
that limits a sample of independent random variables to either their maximum or
minimum with identical distributions, the extreme value distribution is selected.
The extreme value distribution type I[10] probability density function looks like
this: Gole programming is a multi-objective optimisation technique that is based
on liner programming and is used when there are frequently conflicts between
the distinct objectives. Each of these variables has an objective or target value
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that must be achieved. Significant variations from this configuration of desired
values are subsequently reduced using a successful function. Depending on the
requirements of the DM or the goal programming type that is used, it might be
either a vector or a weighted sum. DM’s objectives and their nature defines the
kind of goal programming approach that is used. The original goal programming
formulations allow for the prioritisation of reducing deviations of the more sig-
nificant elements by ranking the unwanted deviations according to importance.
Lexicographical or non-Archimedean goal programming is the term for this. We
will present a novel solution to the transportation problem in this paper, where
supply and demand parameter are extreme value-distributed random variables.
We can reduce the shipping time, the risk of delivering the items, and the time
it takes to arrive, compared to minimising the cost coefficient for the transporta-
tion problem. An additionally feature is that each target can have more than one
aspiration level. The task now transforms from a multi-objective, multi-choice
stochastic transportation problem. In order to get above this challenge, we will
first convert the probabilistic restriction into a deterministic one using a stochas-
tic technique. Second, the aspiration level for each target is chosen from a range
of levels using a standard transformation composed from binary variables. After
that, the reduced problem turns into a MOTP, which goal programming will be
implemented to solve.

2. Mathematical Model:

First, the standard transportation problem is taken into considerations. The
description of the transportation model is as follows if xij stands for the quantity
transported from the source to the destination.

min z =
∑
i,j

Cijxij (2.1)

Find xij i = 1, 2, 3, , , ,m; j = 1, 2, 3 . . . n,
Subject to

n∑
j=1

xij ≤ ai, ∀i (2.2)

m∑
j=1

xij ≥ bi, ∀j (2.3)

∑
i

ai =
∑
j

bj , (2.4)

xij ≥ 0, ∀i, j (2.5)

where xij is the amount delivered, ai is the amount of supply at source i, bj
is the amount of demand at destination j, and Cij is the transportation cost per
unit and xij is amount delivered[29].
We are now looking at the following mathematical model for a stochastic trans-
portation problem with an extreme value distribution.
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Lexmin {nipi} ,
s.t

fi(x) + ni − pi = g1, g2, ..., gq. q = 1, 2, ..., k (2.6)

P

 n∑
j=1

xij ≤ ai

 ≥ 1− µi, i = 1, 2, . . . ,m; 0 ≤ µi ≤ 1 (2.7)

P

 m∑
j=1

xij ≥ bj

 ≥ 1− ρj , , j = 1, 2, . . . ,m; 0 ≤ ρj ≤ 1 (2.8)

xij ≥ 0, ni, pi ≥ 0∑
i

ai =
∑
j

bj , (2.9)

Where fi (x) is the linear function of ith goal, gi is the aspiration levels of the
ith goal, xij is the quantity of supply at source i, bj is the amount of demand and
destination j, ni is the negative deviation variable, and pi is the positive deviation
variable. On the right side of the supply and demand limitations, there are three
random situations were taken into consideration while transforming the proba-
bilistic constraint into a deterministic constraint using Mahapatra’s Disjoint[8],
Chance-constrained Method.

(1) The extreme value distribution is only followed by ai, i = 1, 2, . . . ,m
(2) The extreme value distribution is only followed by bj , j = 1, 2, . . . , n
(3) bj , j = 1, 2, . . . , n and ai, i = 1, 2, . . . ,m both indicate an extreme value

distribution.

2.1. The extreme value distribution is only followed by ai, i = 1,2, . . . ,m.
According to this assumption, ai, i = 1, 2, . . .m is an independent random variable
with an extreme value distribution, while γi, δi and τi represent the location, scale,
and form perimeters, respectively, with θi, 0 ≤ µi ≤ 1 providing as the aspiration
level. I remember the initial restrictions from the

P

 n∑
j=1

xij ≤ ai

 ≥ 1− µi, i = 1, 2, . . . ,m; 0 ≤ µi ≤ 1 (2.10)

Or

P

 n∑
j=1

xij ≥ ai

 ≥ 1− µi, i = 1, 2, . . . ,m; (2.11)

The probability density function for ai, i = 1, 2, . . .m is given by

f (ai) =
τi
δi

(
ai − γi

δi

)τi−1

e
−
[(

ai−γi
δi

)τi
]
; ai ≥ γi, γi ∈ R and δi ≥ 0, τi ≥ 0.

(2.12)
Therefore, the probabilistic constraints can be expressed as∫ ∑n

j=1 xij

γi

f (ai) d (ai) ≤µi (2.13)
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The above integration can be expressed as∫ ∑n
j=1 xij

γi

τi
δi

(
ai − γi

δi

)τi−1

e
−
[(

ai−γi
δi

)τi
]
d (ai) ≤µi (2.14)

Let us assume (
ai − γi

δi

)τi

= ω (2.15)

The above integration can be expressed as

∫ (∑n
j=1

xij−γi
δi

)τi

0

e−zd (z) ≤ µi (2.16)

It can be integrated as;

[
e−z
](∑n

j=1

xij−γi
δi

)τi

0 ≤ µi (2.17)

On rearrange

e
−
(∑n

j=1

xij−γi
δi

)τi

≥ 1− µi (2.18)

Tacking logarithm both sides, I have

−

 n∑
j=1

xij − γi
δi

τi

≥ [ln (1− µi)] (2.19)

After simply and rearrange, I get

n∑
j=1

xij ≤ γi ≤ δi[ln{−ln(1− µi)}] (2.20)

Therefore, the final probabilistic constraints can be converted into deterministic
liner constraints in the following ways;

n∑
j=1

xij ≤ γi ≤ δi[ln{−ln(1− µi)}] (2.21)

Thus, I have obtained a multichoice deterministic model

Min; Z =

m∑
i=1

n∑
j=1

{C1
ijC

2
ij , . . . , C

p
ij}, p = 1, 2, 3, . . . p (2.22)

Subject to
n∑

j=1

xij ≤ γi ≤ δi[ln{− ln(1− µi)}] (2.23)

m∑
i=1

xij ≥ bi, j = 1, 2, 3, . . . n (2.24)

xij ≥ 0, ∀ i and j
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Where
n∑

j=1

γi − δi{− ln (1− µi)}
1

τi
≥

m∑
j=1

bj (feasibility condition ) (2.25)

2.2. The extreme value distribution is only followed by bj , j = 1,2, . . . , n.
It is generally accepted that bj , j = 1, 2, . . . , n are independent random variable
this has an extreme value distribution with γj , 0 ≤ γj ≤ 1 as the aspiration level
and γ′

jδ
′
j , τ

′
j , and γj , 0 ≤ γj ≤ 1 as the location, scale, and shape parameters,

respectively.I reformulate the constraints of Model 1 (2.4) as

P

 m∑
j=1

xij ≥ bj

 ≥ 1− ρj , j = 1, 2, . . . ,m (2.26)

The probability distribution function of bj , j = 1, 2, . . . , n is given by

f (bj) =
τ ′j
δ′j

(
bj − γ′

j

δ′j

)τ ′
j−1

e
−
[(

ai−γ′
j

δ′
j

)τ′
j

]
; bj ≥ γ′

j , γ
′
j ∈ Randδ′j ≥ 0, τ ′j ≥ 0.

(2.27)
Hence the probabilistic constraints can be present as∫ ∑n

j=1 xij

γ′
j

f ( bj) d ( bj) ≥ 1− φj (2.28)

In a similar manner, a deterministic liner constraint may be created from the
probabilistic constraints (2.4) as,

m∑
j=1

xij ≥ γ′
j − δ′j [ln{− ln (φj)}] (2.29)

As a result, I have the following multi-choice deterministic model:

Min; Z =

m∑
i=1

n∑
j=1

C1
ijC

2
ij , . . . , C

p
ij , p = 1, 2, 3, . . . p. (2.30)

Subject to

n∑
j=1

xij ≤ ai, i = 1, 2, 3, . . .m (2.31)

m∑
j=1

xij ≥ γ′
j − δ′j [ln{− ln (φj)}] (2.32)

xij ≥ 0, ∀ i and j

Where

m∑
j=1

ai ≥
m∑
j=1

γ′
j − δ′j [ln{− ln (φj)}] (feasibility condition) (2.33)
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2.3. bj , j = 1, 2, . . . n and ai, i = 1, 2, . . .m both indicate an extreme value
distribution.
Here, both ai, i = 1, 2, . . .m and bj , j = 1, 2, . . . n follows extreme value distribu-
tion. Model 1 may be modified to: Model 4:

Min; Z =

m∑
i=1

n∑
j=1

C1
ijC

2
ij , . . . , C

p
ij , p = 1, 2, 3, . . . p (2.34)

Subject to

m∑
j=1

xij ≤ γj ≤ δj [ln{− ln (φj)}] (2.35)

m∑
j=1

xij ≥ γ′
j − δ′j [ln{− ln (φj)}] (2.36)

xij ≥ 0. ∀ i and j

Where

n∑
j=1

γj − δj [ln{− ln (φj)}] ≥
m∑
j=1

γ′
j − δ′j [ln{− ln (φj)}] (feasibility condition)

(2.37)

3. Conversion of the Goal restriction with-aspiration levels into an
equivalent form

Having several aspiration levels and a goal constraint to consider

fi (x) + ni − pi = g1,g2,...,gq,, (3.1)

In multichoice programming, a binary variable is a fundamental idea for selecting
a single option from a group of multiple choices. I have developed the intended
model in this research by utilising the auxiliary constraints that hold the binary

variables. The function ln(p)
ln(2) , where p indicate number of choices, determines how

many binary variables are present for each choice[6]. An additional constraint is
not required to design an over-purpose model for p = 2, 4, or8. For the building
of our model, just one auxiliary constraint related to binary variables is required
for p = 3, 7, or11. Two auxiliary constraints are required when p = 6or10, respec-
tively. Three auxiliary restrictions are required when p = 5or9, respectively. There
are four auxiliary constraints required when p equals 12. I get various models of
my suggested problem and solve each model based on the total number of options
or objectives. Let x = zizj , where x satisfy the subsequent inequality,

(zi + zj − 2) + 1 ≤ x ≤ (2− zi − zj) + 1 (3.2)

x ≤ zi, (3.3)

x ≤ zj (3.4)
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x ≥ 0 (3.5)

The inequalities are identified:

(1) If zi = zj = 1 then x = 1 from (2.39)
(2) If zizj = 0 then x = 0 from (2.40 to 2.42)

Therefore, the novel goal restriction will be

fi (x) + ni − pi =

n∑
j=1

gijSij (B) (3.6)

Here the binary serial number’s function is represented by Sij (B). This is an ex-
treme value distribution model goal programming problem that is stochastic and
includes multiple stages.

Lexmin {nipi}
s.t

fi (x) + ni − pi =
∑n

j=1 gijSij (B)∑n
j=1 xij ≤ γi ≤ δi[ln{−ln(1− µi)}]∑m
j=1 xij ≥ γ′

j + δ′j [ln{− ln (φj)}]
xij ≥ 0, ∀ i and j

Where
n∑

j=1

γi − δi[ln{−ln(1− µi)}] ≥
m∑
j=1

γ′
j − δ′j [ln{− ln (φj)}] (3.7)

4. Case Study:

The multi-choice stochastic transportation problem (TP) is represented numer-
ically in example, where cost coefficients of objective have multiple options, and
the supply and demand are represented by binary variables. I’ll give an example
of tea TP here for showing how the approach is applied. Tea is one of the re-
freshments that gives people in human society more energy. As a result, one of the
most important challenges in the transportation of tea is how to do it economically
from the bottom of the hills to the various locations. In Darjeeling, West Bengal,
India, at the base of the hills, a reputable Tea is transported by a tea supply firm
(Darjeeling Black Tea and Darjeeling Green Tea are internationally recognised for
their quality and fragrance) from three supply points—Simulbari, Makaibari, and
Happyvalley— via 12 routes to the four destination hubs in India: Delhi, Mumbai,
Rajasthan, Kolkata. The primary goals are to maximise profit relative to market
price at various marketplaces and decrease transportation costs. The total cost of
shipping a single unit (25 kg) of tea from its source to its destination is broken
down into multiple-choice factors. The problem is not frequently solved if the
multi-choice programming technique is not used. The price rates for the transport
expenses in each route are attached below due to increases in the tax on road
collecting and fuel prices.
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The following objectives are being pursued by the tea transportation supply
company: reducing transportation costs and time invested in transportation are
the first two. The goals are 30,00 to 37,00 Units and 120 or 130 Hours, respectively.
Table 1 takes into account the cost coefficient Cij and transportation time cost tij
from each source to each destination. A stochastic multi-aspiration level goal pro-
gramming goal TP technique has been considered established on variability of the
factor given above, where in the supply and demand parameters are distributed
according to an extreme value. Specified probability levels and the supply’s shape
and scale characteristics are listed in Table 2, and the demand’s form and scale
parameters are listed in Table 3, along with designated probability levels.

Table 1. The transportation cost coefficient (Cij) and time cost
(tij) for each source to each destination

No. Route xij Transportation time cost tij (hours) Cost coefficient Cij

1 (1,1): x11 17 26
2 (1,2): x12 20 30
3 (1,3): x13 25 35
4 (1,4): x14 29 39
5 (2,1): x21 21 32
6 (2,2): x22 23 33
7 (2,3): x23 14 20
8 (2,4): x24 22 31
9 (3,1): x31 29 39
10 (3,2): x32 17 29
11 (3,3): x33 30 42
12 (3,4): x34 33 46

Table 2. Location and scale parameter values with a′is SPL

Shape Parameter Scale Parameter SPL (µ)
γ1 = 250 δ1 = 5.8 µ1 = 0.092
γ2 = 200 δ2 = 6.4 µ2 = 0.087
γ3 = 150 δ3 = 7.2 µ3 = 0.074
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Table 3. : Location value and scale parameter using b′is SPL

Shape Parameter Scale Parameter SPL (ϕ)
γ′
1 = 200 δ′1 = 6.2 ϕ1 = 0.081

γ′
2 = 150 δ′2 = 6.7 ϕ2 = 0.098

γ′
3 = 120 δ′3 = 7.8 ϕ3 = 0.074

γ′
4 = 100 δ′3 = 8.2 ϕ3 = 0.93

Lex min{p1p2}
s.t

3∑
i=1

4∑
j=1

xij + fi(x) + ni − pi = 120z1 + 130z1

3∑
i=1

4∑
j=1

xij + fi(x) + ni − pi = 30000z2 + 35000z2

4∑
i=1

x1j ≤ 256.974

4∑
i=1

x2j ≤ 209.324

4∑
i=1

x3j ≤ 159.078

3∑
j=1

xi1 ≥ 207.857

3∑
j=1

xi2 ≥ 157.844

3∑
j=1

xi3 ≥ 129.035

3∑
j=1

xi4 ≥ 109.68

xij , nq, dq ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4, q = 1, 2, zk = 0 or 1, k = 1, 2.
Checking the feasibility condition is satisfied

n∑
j=1

(γi − δi[ln (− ln (1− µi))]) = 621.258 ≥
m∑
j=1

(γ′
j − δ′j [ln (− ln (ϕj))]) = 598.98

(4.1)
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Next, using GAMS (Software), the deterministic liner mix integer issue is solved,
and the optimum solution is

x12 = 341.851
x13 = 554.254
x14 = 465.128
x22 = 925.842
x23 = 358.685

p1 = 0
p2 = 0

n1 = 245.056
n2 = 356.086

Where z1 = 0, and z2 = 0.

There are zero remaining decision variables. The outcomes showed that goal
1’s aspiration level was exactly reached by transportation time costs, with a zero
positive deviation and aspersion level of 130 hours. Goal 2’s aspiration level was
precisely reached by transportation costs, with a zero positive deviation and aspi-
ration level of 3500 units.

5. Conclusion:

This paper investigates an issue with stochastic supply and demand parameters
that express an extreme value distribution. I have employed three distinct strate-
gies, including the chance-constrained programming approach, to convert random
variable problem into an equivalent deterministic problem to determine individual
solution. Secondly, applying binary variables that reduce the MCMOTP into a
MOTP, for every goal, choose one aspiration level from a range of levels. Each

choice’s binary variables are determined by the function ln(p)
ln(2) , where p indicate

total number of choices. Following the introduction, a mixed integer program-
ming problem is created by converting the auxiliary and additional constraints
into terms of binary variables with multi-choice parameters, and finally, to get an
optimal solution, we have used the goal programming approach. We can reduce
the delivery time, the risk of sending the items, and so on compared to minimising
the cost coefficient for the transformation problem. At the end of the I have come
to the conclusion that the developed model is very applicable to TP in real life,
and that by solving the model, the decision maker has added more information
to help them make the best choice. Further investigation is required to compare
the performance of the models using multi-objective strategies like the fuzzy pro-
gramming method, weighting method, and ϵ -constant method.
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