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Abstract. This paper intends to analyse the impact of thermal radiation

on the Casson fluid flow between uniformly porous parallel plates of different

permeability in the presence of the magnetic field using a semi-analytical
approach. The fundamental equations of fluid flow are reduced into non-

linear ODEs with boundary conditions using similarity transformation and

solved using Homotopy Perturbation Method (HPM). The velocity profile
and temporal distribution curve for distinct values of M , Rd, Pr, Ri, Ec,

and β are displayed in the figures. The impacts of these physical parameters

on coefficient of skin friction and heat transfer rate are also analysed using
HPM. It is observed that for the mixed suction, rise in radiation impact

suppresses the thermal border thickness, resulting decrement in the temporal
distribution, whereas an opposite trend is observed for mixed injection case.

Further, this research provides valuable insights for industries working with

nuclear reactors and magnetic material transmissions.

1. Introduction

Magnetohydrodynamics (MHD), is one of the most interesting and challenging
fields in fluid flows. The concept of MHD, along with the radiation impact, has
extensive applications in nuclear fusion reactors, electromagnetic pumps and gen-
erators, metallurgy, oil and gas industries, the study of plasma, and many more.
Due to its broad scope in engineering and technological problems, MHD and radia-
tion impact on the fluid flow through a media of different permeability has received
good responses from the researchers. Permeability is one of the most critical pa-
rameters to study and characterise permeable channels. The term “permeability”
pertains to the inherent ability of a given material to allow the passage or flow
of fluid particles through it, indicating the degree of porosity of the material’s
structure. This property is often measured and quantified in terms of the rate
at which a particular fluid can permeate the material under specific conditions.
The concept of permeability plays a vital role in various fields, such as engineer-
ing, geology, chemistry, etc. The permeability of a material is determined by the
structure and composition along with the properties of the fluid passing through
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it. In general, materials that are more porous or have larger spaces between their
particles tend to have higher permeability. Understanding the concept of perme-
ability is crucial for designing and evaluating systems that involve fluid flow, such
as oil wells, water filtration systems, and underground aquifers. Moreover, the
applications also depend on the fluid under consideration.

A class of non-Newtonian fluids known as Casson fluids has a wide range of
applications in food industries to thicken and stabilize food products, in petroleum
industries to enhance oil recovery, in pharmaceutical industries for drug delivery
systems, the medical field for blood flow stimulation and study cerebral spinal
fluid dynamics. A. S. Berman [3] initiated the investigation of a two-dimensional
laminar flow of a Newtonian fluid through a uniformly porous channel. J. R. Sellars
[22] and R. M. Terrill [25] extended this work to obtain solutions for small and large
Reynolds numbers. Further, S. W. Yuan [27] studied for large negative Reynolds
numbers. R. M. Terrill and G. M. Shrestha [26] extended the study of laminar
flow through uniformly porous channels to plates of different permeability and
obtained the solution numerically. Further, N. M. Bujurke et al. [5] extended the
concept to obtain the solution using long series analysis. Several other researchers
have also contributed to the study of flows in porous media [9, 19].

Heat transmission in an MHD fluid between two insulated parallel infinite plates
was investigated by H. A. Attia and N. A. Kotb [1]. S. Ganesh and S. Krishnambal
[6] studied the impact of MHD on the flow of a viscous fluid between two parallel
plates and obtained a solution for smaller values of Reynolds number using a
numerical method. Sampath Kumar V.S. et al. [21] investigated the MHD impact
on the flow between two plates, of which the bottom plate is porous with injection
and suction impact. Many more researchers have contributed to the study of MHD
flow in recent years [10, 7].

A. Raptis [16] studied the impact of radiation on a two-dimensional steady
free convection flow between two infinite porous plates. H. Sithole et al. [23]
numerically simulated the flow of couple stress nano-fluid through a porous media
in the presence of a magnetic field to analyse the impacts of chemical reaction and
thermal radiation. Further, N. B. Naduvinamani and U. Shankar [15] investigated
the MHD and radiative impacts on the unsteady squeezing flow of a Casson fluid
between two parallel plates. Several other researchers have examined the impact
of radiation on different models [13, 14, 10, 24].

Due to non-linearity in the models, the solution using known analytical tech-
niques is impossible. However, numerical methods with certain limitations obtain
an approximate solution to such a class of problems. To overcome the difficul-
ties encountered in numerical methods, a new class of techniques known as semi-
analytical methods was brought into the picture. HPM was first proposed by J.
H. He [11, 12] in 1998. Further, numerous researchers have also utilized HPM to
resolve various wave-like, differential, and integral equations [4, 2, 17, 8].

The current article intends to employ a semi-analytical method, specifically
HPM, to analyse the combined impacts of radiation and MHD on the flow of
Casson fluid between two parallel plates of different permeability. Accurate results
are obtained using the method for this geometry. Also, the method has advantages
in comparison to other mathematical techniques. Further, it is crucial to note that
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a single computer program is capable of yielding solutions for a large expansions
rather than a single term. Additionally, the method is so stable that it reveals
the analytic structure of the solution function [18, 20]. It is evident that HPM is
capable of yielding results with a negligible amount of labour in computation.

2. Mathematical Formulation

Let two uniformly porous plates of different permeability be placed at a distance
h apart. Consider a two-dimensional flow of an incompressible MHD Casson fluid
with the impact of radiation in a channel with the velocity vector q between the
plates as in Figure (1). The Reynolds number Ri = (Vih)/ν for |Vi|≥ |Vj |, where
ν is the kinematic viscosity.

Figure 1. Geometry of the flow

The fluid flow equations for a steady incompressible laminar flow are given by

∇.q = 0 (2.1)

(q.∇)q = −∇.P

ρ
+ ν

(
1 +

1

β

)
∇2.q − σ

ρ
B2

0u (2.2)

q.(∇T ) =
1

ρCP

(
k0∇2T −∇.qrad + µ

(
1 +

1

β

)
(∇× q)2

)
. (2.3)

In the above set of equations, u and v are the velocity components along x and
y directions respectively. The density and coefficient of viscosity of the fluid are
denoted respectively by ρ and µ. The notations σ and B0 are used to represent
the fluid electrical conductivity and applied magnetic field on the system. The
temperature of the system, thermal conductivity and specific heat of the fluid are
respectively denoted by T , k0 and CP . An expression for radiative heat flux, qrad,
is obtained by Rosseland’s approximation as

qrad =
4σ∗

3k∗
∂T 4

∂y
. (2.4)
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By Taylor’s series about T1,

T 4 ∼= 4T 3
1 T − 3T 4

1 .

Let η given by η =
y

h
, be a non-dimensional variable introduced in (2.1) - (2.3).

Let V1 and V2 be the constant velocities at which the fluid is sucked or injected
for a two dimensional flow at the bottom and top plates respectively. The boundary
conditions are

v(x, 0) = V1, v(x, h) = V2 (2.5)

u(x, 0) = 0, u(x, h) = 0 (2.6)

T =

{
T1 for η = 0

T2 for η = 1.
(2.7)

Two different cases arise in solving this problem, that is |V2|≥ |V1| and |V1|≥
|V2|. The problem to be solved in the case of suction and injection for |V2|≥ |V1|
can be reduced to problem for |V1|≥ |V2|. Whereas in case of mixed flow, both
|V2|≥ |V1| and |V1|≥ |V2| are to be solved separately. Berman [3] assumed the
existence of stream function for a two dimensional incompressible flow is as follows

Ψ(x, η) =

[
hU(0)

ai
− Vix

]
F (η). (2.8)

Let ai = (−1)i
(
1− Vj

Vi

)
for i, j ∈ {1, 2}, such that

u(x, η) =

(
1

h

)(
∂Ψ

∂η

)
(2.9)

v(x, η) = −
(
∂Ψ

∂x

)
, (2.10)

satisfy the continuity equation (2.1). Hence,

u(x, η) =

[
U(0)

ai
− Vix

h

]
dF

dη
(2.11)

v(η) = ViF (η). (2.12)

The scalar equation is obtained by substituting the stream function and velocity
in (2.2). (

1 +
1

β

)
dF 4

d4η
−Ri

[
F
dF 3

d3η
− dF

dη

dF 2

d2η

]
−M2 dF

2

d2η
= 0, (2.13)

with boundary conditions,

(1) For |V2|≥ |V1|
F (0) = 1− a2, F (1) = 1 (2.14)

dF (0)

dη
= 0,

dF (1)

dη
= 0. (2.15)
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(2) For |V1|≥ |V2|

dF (0)

dη
= 0,

dF (1)

dη
= 0 (2.16)

F (0) = 1, F (1) = 1 + a1. (2.17)

The boundary conditions (2.14) - (2.17) imply that for the case of suction −2 ≤
a1 ≤ −1 and 1 ≤ a2 ≤ 2, whereas in the mixed case −1 ≤ a1 ≤ 0 and 0 ≤ a2 ≤ 1.

By using the transformation

θ =
T − T1

T2 − T1
, (2.18)

the energy equation is transformed into(
1 +

4

3
Rd

)
dθ2

d2η
−RiPrF

dθ

dη
+ PrEc

(
1 +

1

β

)(
dF 2

d2η

)2

= 0, (2.19)

with boundary conditions

θ(1) = 1, θ(0) = 0. (2.20)

Where Rd is the radiation parameter, M magnetic parameter, Ec Eckert number
and Pr Prandtl number are defined as below:

M = B0h

√
σ

µ
, Pr =

CPµ

k0
,

Ec =
1

CP (T2 − T1)

[
U(0)

ai
− Vix

h

]2
, Rd =

4σ∗T 3
1

k0k∗
.

As the obtained differential equations (2.13 and 2.19) with boundary conditions
(2.14 - 2.17 and 2.20) are non-linear, the exact solution cannot be obtained by the
known methods, however approximate solutions are obtained through numerical
methods. To over come the difficulties involved in numerical methods and to obtain
a more approximate solution, researchers came up with the idea of semi-analytical
methods. The considered model is approached with HPM and an approximate
analytic solution obtained by this method is presented here.

3. Method of solution

The considered problem is solved using HPM [11]. Generally in HPM, a non-
linear differential equation is expressed in terms of sum of linear and non-linear
terms. Further, by using the concept of homotopy in topological spaces, one can
construct a homopoty equation. Assuming the solution of the homotopy equation
in terms of power series and comparing the coefficients of different powers of the
parameter, and solving the obtained set of differential equations, a set of solution
is obtained as prescribed in the perturbation methodology.
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In the considered problem, two non-linear differential equations of different
orders are obtained. Hence, HPM for system of equations employed is to analyse
this model is as follows:

Let A1 and A2 be the differential operators operated on an unknown function,
f(η). Let f1(η) and f2(η) be the two known functions in the equation. Then the
considered problem can be expressed as

Ai[f(η)]− fi(η) = 0. (3.1)

Generally, in HPM, Ai can be expressed as

Ai = Li +Ri, (3.2)

where Li denotes the linear parts and the remaining part of the differential oper-
ators are given by Ri.

The homotopy equation for (3.1) can be constructed with a wise choice of Li

from the governing equations in the following manner

Hi(ξi, p) = (1− p)[Li(ξi, p)− Li(v0(η))] + p[Ai(ξi, p)− fi(ξ)] = 0, (3.3)

where v0 is the initial guess to (3.1) and i = 1, 2.
Assuming,

ξi(η, p) =

∞∑
n=0

pnfn(η). (3.4)

For p = 1, (3.4) is the solution to the considered problem.
The zeroth, first and second order solutions obtained by solving the equation using
the above mentioned scheme are as given below:

For mixed injection:
(3.5)F0 = 1 + 3a1η

2 − 2a1η
3.

(3.6)
F1 =

1

140(1 + β)
[7a1M

2η2β − 70a1R1η
2β − 32a21R1η

2β − 28a1M
2η3β

+ 140a1R1η
3β + 54a21R1η

3β + 35a1M
2η4β − 70a1R1η

4β

− 14a1M
2η5β − 42a21R1η

5β + 28a21R1η
6β − 8a1R1η

7β].

F2 =
−1

646800(1 + β)2
a1(−1 + η)2η2(77M4(3 + 4η − 30η2 + 20η3)

+154M2R1(35(−1−4η+4η2)+a1(−25−41η+23η2+48η3−25η4+10η5))

+R2
1(32340(−1 + 2η) + 770a1(−18 + 56η + 49η2 − 42η3 + 21η4)

+a21(761+7380η+13999η2−8950η3+2905η4+504η5+1568η6−448η7)))β2.

(3.7)

(3.8)θ0 = η.

(3.9)
θ1 =

3Pr

20(3 + 4Rd)β
[− 120a21Ecη − 120a21Ecβη + 10R1βη + 3a1R1βη

+ 360a21Ecη2 + 360a21Ecβη2 − 10R1βη
2 − 480a212Ecη3 − 480a21Ecβη3

+ 240a21Ecη4 + 240a21Ecββ4 − 5a1R1βη
4 + 2a1R1βη

5].
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θ2 =
1

8400(3 + 4Rd)2β(1 + β)
[− 45360a21EcPr2R1η + 3240a13EcPr2R1η

− 60480a21EcPrR1βη − 30240a13EcPrR1βη − 90720a21EcPr2R1βη

+ 6480a13EcPr2R1βη + 6300Pr2R2
1βη + 2520a1Pr2R2

1βη − 24a21Pr2R2
1βη

− 80640a21EcPrR1Rdβη − 40320a13EcPrR1Rdβη − 60480a21EcPrR1β
2η

− 30240a31EcPrR1β
2η − 9a1M2PrR1β

2η − 45360a21EcPr2R1β
2η

+ 3240a31EcPr2R1β
2η + 630a1PrR2

1β
2η + 312a21PrR2

1β
2η + 6300Pr2R2

1β
2η

+ 2520a1Pr2R2
1β

2η − 24a21Pr2R2
1β

2η − 80640a21EcPrR1Rdβ2η

− 40320a31EcPrR1Rdβ2η − 12a1M
2PrR1Rdβ2η + 840a1PrR2

1Rdβ2η

+ 416a21PrR2
1Rdβ2η + 226800a21EcPr2R1η

2 − 45360a21EcM2Prβη

+ 453600a21EcPrR1βη
2 + 207360a31EcPrR1βη + 453600a21EcPr2R1βη

2

− 18900Pr2R2
1βη

2 − 5670a1Pr2R2
1βη

2 − 604800a21EcM2PrRdβη2

+604800a21EcPrR1Rdβη2+276480a21EcPrR1Rdβη2−45360a21EcM2Prβ2η2

+ 453600a21EcPr2R1β
2η2 + 207360a31EcPrR1β

2η2 + ...].

(3.10)

For mixed suction:

(3.11)F0 = 1− a2(−1 + η)2(1 + 2η).

(3.12)
F1 =

−1

140(1 + β)
a2(−1 + η)2η2(7M2(−1 + 2η)

+ 2R2(35 + a2(−19 + 5η − 6η2 + 4η3)))β.

(3.13)F2 =
−1

646800(1 + β)2
a2(−1 + η)2ηa2(77M4(3 + 4η − 30η2 + 20η3)

+154M2R2(−1−4η+4η2)+a2(10+99η−117η2+48η3−25η4+10η5)

+R2
2(32340(−1 + 2η) + 770a2(66− 112η + 49η2 − 42η3 + 21η4)

+a22(−17719+28940η−23731η2+23390η3−13265η4+504η5+1568η6−448η7)))β2.

(3.14)θ0 = η.

θ1 =
3Pr

20(3 + 4Rd)β
[− 120a22Ecη − 120a22Ecη + 10R2βη − 7a2R2βη

+ 360a22Ecη2 + 360a22Ecβη2 − 10R2βη
2 + 10a2R2βη

2 − 480a22Ecη3

− 480a22Ecβη3 + 240a22Ecη4 + 240a22Ecβη4 − 5a2R2βη
4 + 2a2R2βη

5].

(3.15)
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θ2 =
1

8400(3 + 4Rd)2β(1 + β)
[− 45360a22EcPr2R2η + 48600a32EcPr2R2η

− 60480a22EcPrR2βη + 30240a32EcPrR2βη − 90720a22EcPr2R2βη

+97200a32EcPr2R2βη+6300Pr2R2
2βη−10080a2Pr2R2

2βη+3756a22Pr2R2
2βη

− 80640a22EcPrR2Rdβη + 40320a32EcPrR2Rdβη − 60480a22EcPrR2β
2η

+ 30240a32EcPrR2β
2η − 9a2M

2PrR2β
2η − 45360a22EcPr2R2β

2η

+ 48600a32EcPr2R2β
2η+ 630a2PrR2

2β
2η− 318a22PrR2

2β
2η+ 6300Pr2R2

2β
3η

− 10080a2Pr2R2
2β

2η + 3756a22Pr2R2
2β

2η − 80640a22EcPrR2Rdβ2η

+ 40320a32EcPrR2Rdβ2η − 12a2M
2PrR2Rdβ2η + 840a2PrR2

2Rdβ2η

− 424a22PrR2
2Rdβ2η + 226800a22EcPr2R2η

2 − 226800a32EcPr2R2η
2

− 45360a22EcM2Prβη2 + 453600a22EcPrR2βη
2 − 246240a32EcPrR2βη

2

+ 453600a22EcPr2R2βη
2 − 453600a32EcPr2R2βη

2 − 18900Pr2R2
2βη

2

+ 32130a2Pr2R2
2βη

2 − 13230a22Pr2R2
2βη

2 − 60480a22EcM2PrRdβη2

+ 604800a22EcPrR2Rdβη2 − 328320a32EcPrR2Rdβη2

− 45360a22EcM2Prβ2η2 + 453600a22EcPrR2β
2η2 + ...].

(3.16)

4. Results and Discussion

In this study, the influence of MHD and thermal radiation on the flow of Casson
fluid between parallel plates with different permeability is analysed. By employ-
ing HPM, the velocity field, and temporal distribution for distinct ranges of the
physical parameter are studied and presented in Figure (2) - Figure (19). Figures
(2 - 4) graphically represent the impact of R2,M and β on the velocity profile
for the case of mixed suction and Figure (5 - 7) for mixed injection case. Figures
(8 - 13) represent graphically the impact of various parameters on the temporal
curve for the case of mixed suction, whereas Figures (14 - 19) in mixed injection
case. Tables (1 and 2) display respectively the numerical values of coefficient of
skin friction and heat transfer rate on the plates, F ′′(0) and θ′(0) representing the
coefficients skin friction and rate of heat transfer at the bottom plate and F ′′(1)
and θ′(1) at the top plate respectively.

Figure (2) illustrates the influence of R2 on the flow velocity for the case of
mixed suction. It is clear that, as R2 increases, the F ′(η) increases in the range
0 ≤ η ≤ 0.5 and further decreases in the other half. Whereas, a reverse trend is
observed in the case of mixed injection, as shown in Figure (5). Figure (3) displays
the impact of M on F ′(η) for |V2|≥ |V1|. It is observed that F ′(η) increases as
M increases in the range 0 ≤ η ≤ 0.3 and 0.7 ≤ η ≤ 1, and decreases between
0.3 ≤ η ≤ 0.7. Whereas for |V1|≥ |V2|, Figure (6) displays an opposite trend for
increasing M . For |V2|≥ |V1|, Figure (4) shows the influence of β on F ′(η). It
is observed that the rise in β causes a decrement in F ′(η) for 0 ≤ η ≤ 0.55 and
increases after 0.55 till 1. It is observed that the velocity profile shows an opposite
trend for |V1|≥ |V2| as in Figure (7).
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The impact of R2 on the temporal profile is portrayed in Figure (8). Rise in
R2 decreases θ(η) in the entire domain, that is, in the range 0 ≤ η ≤ 1. Figure
(9) displays the effect of M on the temporal distribution of the fluid flow. It is
observed that θ(η) declines as M increases in the range 0 ≤ η ≤ 1. Figure (10)
depicts the impact of β on the temporal distribution. An increase in β causes a
decrease in θ(η) for 0 ≤ η ≤ 1. Figure (11) exhibits the impact of the Rd on the
temperature curve. It is clear that an increase in Rd causes a decrease in θ(η).
The impact of the Pr on the temperature field is displayed in Figure (12). It is
observed that an increase in θ(η) is indicated by an increase in Pr. Figure (13)
displays the impact of Eckert number on the temporal curve where an increase in
Ec causes an increase in θ(η).

For |V1|≥ |V2|, increasing the R1 resulted in increasing θ(η) as displayed in
Figure(14). Figure (15) exhibits the influence of the M on the temperature curve.
It is clear that an increase in M causes a decrease in θ(η). The impact of β on
the temporal field is displayed in Figure (16). It is observed that a decrease in
θ(η) is indicated by an increase in β. Figure (17) displays the effect of Rd on the
temporal curve where an increase in Rd causes an increase in θ(η). It is evident
from Figure (18) that an increase in Pr causes a decrease in θ(η). The impact
of Ec on the temperature field is displayed in Figure (19). It is evident that an
increase in Ec is accompanied by an increase in θ(η).

It is evident from Tables (1 and 2), increasing the Ri causes a decrease in the
magnitude of skin friction at the bottom plate and an increase at the top plate
|V2|≥ |V1|, the same trend is observed for |V1|≥ |V2| also. It is also evident that
an increment in magnetic parameter and radiation parameter is accompanied by
an increase in magnitude at both plates.

Figure 2. Velocity
profile for differ-
ent R2 when a2 =
0.51425,M = 3, β = 0.1

Figure 3. Velocity
profile for differ-
ent M when a2 =
0.51425, R2 = 5, β = 0.1
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Figure 4. Velocity
profile for differ-
ent β when a2 =
0.51425, R2 = 5,M = 3

Figure 5. Veloc-
ity profile for dif-
ferent R1 when
a1 = −0.20820,M =
3, β = 0.1

Figure 6. Veloc-
ity profile for dif-
ferent M when
a1 = −0.20820, R1 =
5, β = 0.1

Figure 7. Ve-
locity profile for
different β when
a1 = −0.20820, R1 =
5,M = 1

Figure 8. Tem-
perature profile for
different R2 when
a2 = 0.51425, Rd =
0.2, β = 0.1, P r =
0.3,M = 3, Ec = 0.2

Figure 9. Tem-
perature profile for
different M when
a2 = 0.51425, Rd =
0.2, P r = 0.3, β =
0.1, R = 5, Ec = 0.2
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Figure 10. Tempera-
ture profile for differ-
ent β when a2 =
0.51425, Rd = 0.2, P r =
0.3, R2 = 5,M =
3, Ec = 0.2

Figure 11. Tempera-
ture profile for differ-
ent Rd when a2 =
0.51425, R2 = 1, β =
0.1, P r = 0.3,M =
1, Ec = 0.2

Figure 12. Tempera-
ture profile for differ-
ent Pr when a2 =
0.51425, Rd = 0.2, R2 =
1, β = 0.1,M = 1, Ec =
0.2

Figure 13. Tempera-
ture profile for differ-
ent Ec when a2 =
0.51425, Rd = 0.2, β =
0.1, P r = 0.3,M =
1, R2 = 1

Figure 14. Tempera-
ture profile for differ-
ent R1 when a1 =
−0.20820, Rd = 0.2, β =
0.1, P r = 0.3,M =
3, Ec = 0.2

Figure 15. Tem-
perature profile for
different M when
a1 = −0.20820, Rd =
0.2, P r = 0.3, β =
0.1, R1 = 5, Ec = 0.2
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Figure 16. Tem-
perature profile for
different β when
a1 = −0.20820, Rd =
0.2, P r = 0.3, R1 =
5,M = 3, Ec = 0.2

Figure 17. Tempera-
ture profile for differ-
ent Rd when a1 =
−0.20820, R1 = 1, β =
0.1, P r = 0.3,M =
1, Ec = 0.2

Figure 18. Tem-
perature profile for
different Pr when
a1 = −0.20820, Rd =
0.2, R1 = 1, β =
0.1, Ec = 0.2,M = 1

Figure 19. Tempera-
ture profile for differ-
ent Ec when a1 =
−0.20820, Rd = 0.2, β =
0.1, P r = 0.3,M =
1, R1 = 1.

Table 1. Skin friction coefficients

R β M = 0.1
a1 = −0.20820 a2 = 0.51425
F ′′(0) F ′′(1) F ′′(0) F ′′(1)

1 0.1 -1.23225 1.26613 3.05199 -3.12164

5 -1.16747 1.33613 2.92070 -3.27268

10 -1.09335 1.42886 2.76342 -3.47690

1 0.3 -1.20678 1.29263 3.00101 -3.17852

5 -1.05652 1.48113 2.68207 -3.59419

10 -0.90946 1.74769 2.33008 -4.21724

R β M = 3

1 0.1 -1.24938 1.28280 3.09430 -3.16302

5 -1.18534 1.35178 2.96504 -3.31224

10 -1.11192 1.44307 2.81009 -3.51371

1 0.3 -1.25060 1.33367 3.10939 -3.28107

5 -1.10385 1.51507 2.80200 -3.68303

10 -0.95818 1.77101 2.46085 -4.28124
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Table 2. Heat transfer rate for M = 0.5, Ec = 0.1, P r = 0.3

R β Rd = 0.1

a1 = −0.2082 a2 = 0.51425

θ′(0) θ′(1) θ′(0) θ′(1)

1 0.1 0.95407 1.03902 1.36967 0.63753

5 0.56921 1.57560 1.04259 1.12699

10 0.28698 2.39020 0.73125 1.94074

1 0.3 0.90939 1.08590 1.09318 0.92509

5 0.52872 1.62755 0.78328 1.44052

10 0.24565 2.45399 0.49695 2.27169

R β Rd = 0.3

1 0.1 0.96233 1.03121 1.29982 0.70783

5 0.63387 1.45290 1.03091 1.09453

10 0.35802 2.08289 0.75948 1.71124

1 0.3 0.925953 1.06902 1.07547 0.939414

5 0.60013 1.49424 0.81834 1.34230

10 0.32748 2.13096 0.56511 1.96777

5. Conclusion

The current study emphasises on the Casson fluid flow between parallel plates of
different permeability considering influence of applied magnetic field and thermal
radiation theoretically. HPM is employed to obtain results for distinct values of
the physical parameters involved. The following can be inferred from the results
obtained:

• The velocity curve for mixed suction and mixed injection show opposite
trend with increase M , β and R.

• The temperature profile is found to be declining as the parameters R,
M and β increase in both mixed injection and mixed suction, whereas
increases for increase in Eckert number.

• The temporal distribution for mixed suction and mixed injection show
opposite behaviour with increase in Rd and Pr.

• The magnitude of coefficient of skin friction enhances with increasing M
at both the plates.

• The magnitude of heat transmission rate enhances with increasing Rd at
the lower plate, whereas declines at the top plate.

• The numerical values for rate of heat transfer are found to decay with
increasing β at the lower plate, whereas rising at the top plate.

• The values of the skin friction coefficient and heat transfer decays with
rising R at the lower plate, whereas enhances at the top plate.
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