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Abstract. The concept of modular lattices naturally exhibit the links be-

tween the theoretical aspects of discrete structures and corresponding appli-
cations. In this paper, we consider the complements in a modular lattice

with finite Goldie dimension (in short, FGD). We prove several proper-

ties and characterizations that involve θ-complement, θ-closed and relative
θ-complemented, weak θ-complemented, etc in a lattice. We provide the nec-

essary illustrations to justify the notions and generalizations in this paper.

1. Introduction

The notion of ‘essential submodule’ of a module over a ring is an analogy to the
concept of ‘dense subspace’ in a topological space [2]. A submodule L is essential in
a module M in case K ∩L ̸= (0), for each non-zero submodule K of M . However,
as we know, a lattice need not contain a zero element, and so essentiality concept
in a lattice with respect to an arbitrary element was introduced in [19]. Neverthe-
less, the concept of module over a ring is well interpreted in terms of the lattice
structure of its submodules. Grzeszczuk and Puczylowski [9] established the idea
of Goldie dimension from the module theory, to the modular lattices. They defined
an essential element in a lattice with the least element 0. The theory has become
significant and later many developments found in Calugareanu [6] wherein several
ideas from modules over rings were generalized to the lattice theory. Goldie [10]
introduced the concept of the Goldie dimension of modules over rings, and proved
a characterization for a module to have finite Goldie dimension. Bhavanari [3]
obtained several equivalent conditions in terms of descending chain conditions on
essential submodules. There are good connections between semiprime ideals and
uniform ideals of module over rings. Tapatee et.al [20, 21] studied relative essential
ideals and relative complements and in [23], the authors studied the partial order
aspects of modules over generalized rings. We refer to [19, 22] for the developments
in modular lattices. The notion complement plays an important role in modules,
specifically, as in [3, 21], to establish the dimension of a quotient submodule and
the dimension of sum of two submodules. Analogously, in a lattice with 0, the
notion pseudo-complement has been defined in [6], and some recent developments
can be seen in [7]. Saki and Kiani [18] studied the properties of complements
and pseudo-complements of finite modular lattices of subracks, and obtained some
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equivalent conditions. Rao and Beyene [16] have explored on irreducible elements
in almost semilattices. The semi-complement undirected graph of lattice modules
have been studied by Phadatare et.al [15].
In this paper, we consider a lattice (L,∧,∨) with the smallest element 0 and
whenever necessary we assume 1 to be the greatest element in L. For x, y ∈ L and
x ≤ y, the interval between x and y is denoted by [x, y] = {a ∈ L | x ≤ a ≤ y},
is a sublattice of L. If a ̸= 1 in L, then a is called proper. In a bounded lattice
an element a is called an atom (respectively, dual atom) if there is no x ∈ L such
that 0<x<a (respectively, a<x<1).
In this paper, we deal with the modular lattices and define θ-complement and weak
θ-complement which generalize both the notions pseudo-complement and comple-
ment in L. We prove several properties as generalizations of results in [6, 13],
wherein the lattice is upper continuous.

For comprehensive literature in lattice theory, we refer to [8].

The following definitions are from [1, 6].

A subset D of a poset is called upper directed, if each finite subset of D has an
upper bound in D. A complete lattice L is called upper continuous if a∧ (

∨
D) =∨

d∈D

(a ∧ d) holds for every a ∈ L and every upper directed subset D ⊆ L. L is

called modular if for any x, y, z ∈ L, x ≤ z implies (x ∨ y) ∧ z = x ∨ (y ∧ z).
If y ∈ L is maximal with respect to the property x ∧ y = 0, then y is called a
pseudo-complement of x in L. L is pseudo-complemented if for every x ∈ L, there
exists a pseudo-complement in L, and is relative pseudo-complemented, if each
sublattice of L is pseudo-complemented. In a lattice with 0 and 1, y ∈ L is called
a complement of x ∈ L if x ∧ y = 0 and x ∨ y = 1.

2. θ-complement

Throughout, let θ ∈ L be an arbitrary but fixed element, where L is a modular
lattice.

Definition 2.1. [19]

(1) θ ̸= a ∈ L is θ-essential if a ∧ x ̸= θ for every θ ̸= x ∈ L, we denote it as
a ≤e

θ L. The set of all θ-essential elements in L is denoted by Eθ(L).
(2) Let x ≤ y ∈ L. Then x is θ-essential in y if x ≤e

θ [θ, y]. In other words,
x∧ k ̸= θ for every k ∈ (θ, y], denoted by x ≤e

θ y. In this case, we call y as
θ-essential extension of x.

(3) a ∈ [x, y] is said to be θ-essential, if θ ∈ [x, y] and a ∧ b ̸= θ for every
θ ̸= b ∈ [x, y].

Evidently, if θ = 0, then the notion of ‘θ-essential’ coincides with the notion
‘essential’.

Example 2.2. Let L be the lattice given in Fig. 1. Now x ≰e L, for every 0 ̸= x ∈ L,
whereas x ≤e

θ=b L, for every θ ̸= x ∈ L.
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Figure 1

Example 2.3. [8] Consider the free distributive lattice L, on three generators given
in Fig. 2. Then we have the following.

0

a b c

d e f

g h i j

k l m

n o p

1

Figure 2

(1) e ≤e
θ=b p, whereas e ≰e p, since e ∧ b = 0 and b ̸= 0.

(2) i ≤e
θ=b p, whereas i ≰e p, since i ∧ b = 0 and b ̸= 0.

Definition 2.4. [6] A function ϕ : L1 → L2 between two lattices is called a lattice
homomorphism if ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) and ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y), for all
x, y ∈ L1.

Theorem 2.5. [6] If s, t ∈ L, then [t, (s ∨ t)] and [(s ∧ t), s] are isomorphic.

Lemma 2.6. Let f : L1 → L2 be an isomorphism and a ≤e
θ L1 implies f(a) ≤e

f(θ)

L2.

Proof. Let a ≤e
θ L1. Let b ∈ L2 such that f(a) ∧ b = f(θ). Then a ∧ f−1(b) = θ.

Since a ≤e
θ L1 and f−1(b) ∈ L, we get f−1(b) = θ. Therefore, b = f(θ). This

shows that f(a) ≤e
f(θ) L2. □

Unlike in case of module over rings, essentiality need not be closed under homo-
morphic images. Indeed, in a lattice, the image of a θ-essential element under a
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lattice homomorphism need not be θ-essential.
Consider the following example.

Example 2.7. Let L1 and L2 be two lattices given in Fig. 3. Let f : L1 → L2

be a lattice homomorphism defined by f(x) = x, for x ∈ {0, a, b} and f(c) = 0.
Clearly, for θ = 0, a ≤e

θ L1, but f(a) = a ≰e
f(θ)=0 L2.

1

c

a b

0

1

a b

0

Figure 3. L1 and L2

Notation 2.8. If a ≤e
θ c, and b ≤ c, then a ≤e

θ b.

Definition 2.9. [19] S = {ai | i ∈ I, where I is finite} ⊆ L \ {θ}, is said to be

θ-∨-independent if ai ∧
( ∨
j ̸=i

aj
)
= θ, for every i ∈ I.

Definition 2.10. For any a, b ∈ L, an element a is θ-closed in b, if a has no proper
θ-essential extension in b, we denote it by a ≤cl

θ b.

a ∨ s ∨ t

a ∨ ta ∨ s x1

a

Figure 4

Proposition 2.11. For θ < a < b < c in L, if a is θ-closed in b and b is θ-closed in
c, then a is θ-closed in c.

Proof. Suppose a ≤cl
θ b, b ≤cl

θ c, and a ≰cl
θ c. Then there exists x ∈ L such that

a < x ≤cl
θ c and a ≤e

θ x. Now x ∧ b ≤ x, implies a ≤e
θ x ∧ b. Since a ≤e

θ x ∧ b ≤ b
and a ≤cl

θ b, we get a = x ∧ b · · · (1).
If x ≤ b, then a = x, a contradiction. So, x ≰ b, and so b < b ∨ x ≤ c. Since,

b ≤cl
θ c, it follows that b ≰cl

θ b ∨ x, thus there exists s such that θ < s ≤ b ∨ x and
s ∧ b = θ. Now, a ≤e

θ x, s ∧ x ≤ x and a ∧ (s ∧ x) ≤ a ∧ s < b ∧ s = θ, implies
s ∧ x = θ · · · (2).
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If a = (s ∧ x) ∧ b, then

s = s ∧ (b ∨ x)

= [s ∧ (s ∧ x)] ∧ (b ∨ x)

= s ∧ [((s ∧ x) ∧ b) ∨ x], by modular law, x ≤ s ∨ x

= s ∧ (a ∨ x)

= s ∧ x

= θ,

a contradiction. Hence, a < (s∨ x)∧ b ≤ b. Since a ≤cl
θ b, we get a ≰cl

θ (s∨ x)∧ b,
thus there exists t such that θ < t ≤ (s ∨ x) ∧ b and a ∧ t = θ · · · (3).
Then from (1) it follows that x∧ t = x∧ (b∧ t) = a∧ t = θ. Thus, if s∧ (x∧ t) = θ,
then the (s, t, x) is θ-∨-independent, and thus t∧ (x∨s) = θ, a contradiction, since
θ < t ≤ x ∧ s. This shows that s′ = s ∧ (x ∨ t) ̸= θ.
Moreover, from (3) it follows,

x ∨ s′ = x ∨ (s ∧ (x ∨ t))

= (x ∨ s) ∧ (x ∨ t), by modular law, x ≤ x ∨ t

= x ∨ t

≥ t

So, we may replace s by s′ without changing the validity of (3).
Therefore, we may assume that θ < s ≤ x ∨ t and s ∧ b = θ · · · (4).
Now from (2) and (4), x∨s = x∨ t. Also since a∧ t ≤ b ≤ b and s∧ b = θ, we have
s ∧ (a ∧ t) = θ. Since a ∧ t = θ, and by modular law, {a, s, t} is θ-∨-independent.
Moreover, since a ≤ x and by (2), x ∧ (a ∨ s) = a ∨ (x ∧ s) = a ∨ θ = a. Similarly,
by using the equality x ∧ t = θ, yields x ∧ (a ∨ t) = a. Let x1 = x ∧ (a ∨ s ∨ t).
Next we claim that the elements a∨s, a∨t and x1 are the atoms of a lattice shown
in Fig. 4, with bottom a and top a ∨ s ∨ t. Clearly, by modular law and the fact
that {a, s, t} is θ-∨-independent, we get (a∨s)∧(a∨t) = a∨[s∧(a∨t)] = a∨θ = a.
Again by modular law, since a ≤ x1 ≤ x,

x1 ∧ (a ∨ s) = a ∨ (x1 ∧ s)

≤ a ∨ (x ∧ s)

= a ∨ (x ∧ t)

= x ∧ (a ∨ t)

= a.

Now x1 ∧ (a ∨ s) = a, since a ≤ a ∨ s and a ≤ x1. Clearly x1 ≤ (a ∨ s) ∨ (a ∨ t) =
a∨s∨t. Since x∨s = x∨t ≥ a∨s∨t, we get x1∨(a∨s) = (x∨a∨s)∧(a∨s∨t) = a∨s∨t.
Similarly, x1∨ (a∨ t) = a∨s∨ t. From a∧ t = θ and t > θ, it follows that a < a∨ t,
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thus a < x1. Now let x0 = x ∧ (s ∨ t). Since a ≤ x and by modularity, we get

x0 ∨ a = [x ∧ (s ∨ t)] ∨ a

= x ∧ (a ∨ s ∨ t)

= x1

≥ a > θ.

Thus x0 ∨ a > θ, hence x0 > θ.
Whereas,

a ∧ x0 = a ∧ x ∧ (s ∨ t)

= a ∧ (s ∨ t), as a ≤ x

= θ,

a contradiction to the assumption that a ≤e
θ x.

□

The converse of the Proposition 2.11 not necessarily true.

Example 2.12. Let L be the lattice given in Fig. 2. Then for θ = 0, d ≤cl
θ l,

d ≤cl
θ h, but h ≰cl

θ l, as h ∧ x ̸= 0, for all x ∈ [0, l].

The following definition is a generalization of pseudo-complement defined in [6].

Definition 2.13. c ∈ L is called a θ-complement of b in L if c is maximal with
respect to b ∧ c = θ. Further, L is θ-complemented if every x ∈ L has at least one
θ-complement.

Example 2.14. Let L = (D30,≤), the elements are positive divisors of 30, given in
the Fig. 5. Write x ≤ y ⇔ x divides y, x∨y = l.c.m{x, y} and x∧y = g.c.d{x, y}.
Then, d is a (θ = b)-complement of f , but d is not a pseudo-complement of f ,

1

d e f

a b c

0

Figure 5

since d ∧ f = b ̸= 0.

Definition 2.15. L is called relative θ-complemented if for every x ∈ L, [θ, x] is
θ-complemented. Further, x ∈ L is called a weak θ-complement if there exists
x′ ∈ L such that x ∧ x′ = θ and x ∨ x′ = 1. L is called weak θ-complemented if
every x ∈ L has at least one weak θ-complement in L.

Example 2.16. Let L be the non-modular lattice given in Fig. 6, of all subgroups
of the group D8, the dihedral group of order 8. Then, f is a (θ = c)-complement
of g, but f is not a pseudo-complement of g, since f ∧ g = c ̸= 0.
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Figure 6

Example 2.17. Consider the Lattice L1 given in Fig. 3. Here, for (θ = c), L1 is
θ-complemented, relative θ-complemented and weak θ-complemented. But L1 is
not pseudo-complemented or complemented, since x∧y ̸= 0, for any 0 ̸= x, y ∈ L1.

Lemma 2.18. Let θ ≤ a ≤ p ≤ b be elements in L with 1, and r a weak θ-
complement of p in L. Then q = (a∨ r)∧ b = a∨ (r ∧ b), a weak θ-complement of
p in [a, b].

Proof. Since r is weak θ-complement of p in L, we have r ∧ p = θ and r ∨ p = 1.
Now,

p ∨ q = p ∨ a ∨ (r ∧ b)

= p ∨ (r ∧ b)

= (p ∨ r) ∧ b, since p ≤ b and by modular law

= 1 ∧ b

= b

and

p ∧ q = q ∧ p

= (a ∨ r) ∧ b ∧ p

= (a ∨ r) ∧ p

= a ∨ (r ∧ p), since a ≤ p and by modular law

= a ∨ θ

= a.

Therefore, q is a weak θ-complement of p in [a, b]. □

Corollary 2.19. A weak θ-complemented lattice is relative θ-complemented.

Proof. Follows from Lemma 2.18. □

Definition 2.20. L is called θ-inductive, if every sublattice [x, y] of L satisfies the
condition that: for any chain {bi}i∈I in L and for any a ∈ [x, y] with a∧bi = θ, for

all i ∈ I, imply a ∧ (
∨
i∈I

bi) = θ. If θ = 0, θ-inductive coincides with the inductive

defined in [6], and if L is upper continuous, then it is θ-inductive.
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Notation 2.21. Every inductive lattice is θ-inductive. In a lattice of finite length,
both inductive and θ-inductive exists. However, we may have an infinite lattice,
which is θ-inductive but not inductive. Consider the infinite lattice L = (Z,≤).
Since the lattice has no least element, it is not inductive, whereas, L is (θ = 1)-
inductive.

For any θ-inductive lattice L and θ ≤ a ∈ L, the set S = {x ∈ L : a ∧ x =
θ, b ≤ x} has a maximal element by Zorn’s lemma, which will be a θ-complement
of a in L. Precisely, we state the following Lemma.

Lemma 2.22. Let L be θ-inductive lattice. Then every θ ≤ a ∈ L has a θ-
complement in L.

Corollary 2.23. If L is upper continuous, then every θ < a ∈ L, has a θ-complement
in L.

Proof. Follows from Lemma 2.22. □

Lemma 2.24. Let 1 ∈ L, and a, b ∈ L. Then b is a θ-complement of a if and only
if a ∧ b = θ and a ∨ b ≤e

θ [b, 1].

Proof. Let b be a θ-complement of a in L. Clearly, b ∧ a = θ, and for any d ∈ L,
b < d implies d ∧ a ̸= θ. In particular, d ∈ [b, 1], d ̸= b implies d ̸= θ. Then by
modular law and since d∧a ≤ d ≰ b, we have θ ≤ b < b∨(d∧a) = (a∨b)∧d. Hence
(a ∨ b) ∧ d ̸= θ, shows that a ∨ b ≤e

θ [b, 1]. Conversely, suppose that a ∧ b = θ and
a∨b ≤e

θ [b, 1]. Then, for every d ∈ [b, 1], d ̸= b, we have b < (a∨b)∧d = b∨ (a∧d).
That is, a ∧ b = θ, and for every b < d, we have a ∧ d ≰ b. This implies a ∧ d ̸= θ.

□

Corollary 2.25. Let 1 ∈ L and b be a θ-complement of a ∈ L, then a ∧ b = θ and
a ∨ b ≤e

θ L.

Proof. Let b be a θ-complement of a in L. Then by Lemma 2.24, we have a∧b = θ
and a ∨ b ≤e

θ [b, 1]. Then clearly, θ ≤ b. To show, a ∨ b ≤e
θ L, take d ∈ L.

Case (i): If θ ̸= d ≤ b, then (a ∨ b) ∧ d = d ̸= θ. Therefore, a ∨ b ≤e
θ L.

Case (ii): If d ≰ b, then clearly d ≰ θ. Now b ≤ b ∨ d ∈ [b, 1], and by Lemma 2.24
and by modular law, we have θ ≤ b ̸= (a ∨ b) ∧ (b ∨ d) = ((a ∨ b) ∧ d) ∨ b, shows
that a ∨ b ≤e

θ L. □

Lemma 2.26. Let L be upper continuous and b be a θ-complement of a in L. If
c ∈ L is maximal such that a ≤ c, b ∧ c = θ, then c is maximal with respect to
a ≤e

θ c.

Proof. Let K = {y ∈ L : a ≤ y, b ∧ y = θ}. Since a ∈ K, K ̸= ∅. By Zorn’s
lemma, K has a maximal element, say c. To show a ≤e

θ c, let x ∈ [θ, c] such that
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a ∧ x = θ. Now,

a ∧ (b ∨ x) = (a ∧ c) ∧ (b ∨ x)

= a ∧ (c ∧ (b ∨ x))

= a ∧ ((c ∧ b) ∨ x), since x ≤ c, by modularity

= a ∧ (θ ∨ x)

= a ∧ x

= θ.

Since b is θ-complement of a, we have b ∨ x = b implies x ≤ b. So, x = x ∧ b ≤
c ∧ b = θ, implies x ≤ θ. Therefore, x = θ. For the maximality, let a ≤ c′, and
a ≤e

θ c′ such that c ≤ c′. Then by hypothesis, we have b ∧ c′ ̸= θ. Therefore,
a ∧ (b ∧ c′) ̸= θ. But a ∧ (b ∧ c′) = (a ∧ b) ∧ c′ = θ ∧ c′ = θ, a contradiction. □

Lemma 2.27. Let θ < a ∈ L, where L is upper continuous. Then a is θ-closed if
and only if a is a θ-complement.

Proof. Suppose a is a θ-complement of b in L. In a contrary, assume that a ≤e
θ c,

for some c ∈ L. Since a ≤ c, by maximality of a, we have b ∧ c ̸= θ. Moreover,
since a ≤e

θ c and b ∧ c ∈ [θ, c], we have a ∧ (b ∧ c) ̸= θ, whereas, a ∧ (b ∧ c) =
(a ∧ b) ∧ c = θ ∧ c = θ, a contradiction. Conversely, since L is upper continuous,
and θ < a ∈ L, by Corollary 2.23, we have a has a θ-complement, say b′. That is,
b′ is maximal such that b′ ∧ a = θ. Now to show, a is θ-complement of b′, let c be
maximal with respect to a ≤ c and b′ ∧ c = θ. Then by Lemma 2.26, c is maximal
with respect to a ≤e

θ c. But since a is θ-closed in L, we get a = c. Therefore, a is
θ-complement of b′. □

Proposition 2.28. Let L be θ-complemented. For any b, c ∈ L, if b ∧ c = θ,
b ∨ c ≤e

θ L, and c is θ-essentially closed, then c is a θ-complement of b.

Proof. Let b ∧ c = θ, b ∨ c ≤e
θ L and c is θ-essentially closed. In view of Lemma

2.24, it is enough to show b∨c ≤e
θ [c, 1]. In a contrary, suppose that (b∨c)∧d = θ,

for θ ̸= d ∈ [c, 1]. Now, (b ∨ c) ∧ d = θ ≤ c and c ≤ (b ∨ c) ∧ d. Therefore,
(b ∨ c) ∧ d = c. Since c is θ-closed, there exists x ∈ L such that θ < x < d, and
c ∧ x = θ. Then,

θ = c ∧ x

= ((b ∨ c) ∧ d) ∧ x

= (b ∨ c) ∧ (d ∧ x)

= (b ∨ c) ∧ x,

a contradiction to (b ∨ c) ≤e
θ L. □

Notation 2.29. If a ∧ b = θ and (a ∨ b) ∧ c = θ, then a ∧ (b ∨ c) = θ.
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Proof. Let a ∧ b = θ and (a ∨ b) ∧ c = θ. Then,

a ∧ (b ∨ c) ≤ (a ∨ b) ∧ (b ∨ c)

= ((a ∨ b) ∧ c) ∨ b, by modular law

= θ ∨ b

= b.

Hence a ∧ (b ∨ c) ≤ a ∧ b = θ. Also, θ ≤ a, θ ≤ b ≤ (b ∨ c), imply θ ≤ a ∧ (b ∨ c).
Therefore, a ∧ (b ∨ c) = θ. □

Proposition 2.30. Let c, b be θ-complements of b, a respectively in L such that
a ≤ c. Then

(1) b is a θ-complement of c in L; and b ∨ c ≤e
θ [b, 1];

(2) a ≤e
θ c.

Proof. (1) Suppose b is maximal with respect to b ∧ a = θ. Let d ∈ L and
θ ≤ b < d such that c ∧ d = θ. Then a ∧ d ≤ c ∧ d = θ. Also, since
θ ≤ a ∧ d, we get a ∧ d = θ, a contradiction to the maximality of b. Thus,
b is θ-complement of c in L. Now, by Lemma 2.24, we get b ∨ c ≤e

θ [b, 1].

(2) To show, a ≤e
θ c, let a∧d = θ, where d ∈ [θ, c]. Now, (a∨d)∧b ≤ c∧b = θ.

Also, θ ≤ a ≤ (a∨d), θ ≤ b, implies θ ≤ (a∨d)∧b. Therefore, (a∨d)∧b = θ.
Then by Note 2.29, we have a ∧ (d ∨ b) = θ. Now, by maximality of b, we
get d ∨ b = b. Therefore, d ≤ b and d ≤ b ∧ c = θ, shows that d = θ.

□

Proposition 2.31. Let b be a θ-complement of a in L. If θ < c ≤e
θ L, then

b ∨ c ≤e
θ [b, 1].

Proof. Let d ∈ [b, 1] such that (b∨ c)∧d = θ. Then clearly, (b∨ c)∧d = θ ≤ b, and
b ≤ (b∨c)∧d, implies (b∨c)∧d = b. Now, by modular law b = (b∨c)∧d = b∨(c∧d),
and so c ∧ d ≤ b. Then, a ∧ (c ∧ d) ≤ a ∧ b = θ. Also, θ ≤ a, θ ≤ c ≤ (c ∧ d)
implies c∧ (a∧ d) = a∧ (c∧ d) = θ. Since, c ≤e

θ L, we get a∧ d = θ. Then by the
maximality of b, we get d = b = θ, and shows b ∨ c ≤e

θ [b, 1]. □

Lemma 2.32. Let 1 ∈ L, b < a in L and a ≤e
θ [b, 1]. Then a∧ c ≤e

θ [b∧ c, c], for all
c ∈ L.

Proof. Suppose (a∧ c)∧x = θ, where x ∈ [b∧ c, c]. Now, taking the join with b on
both side we get [a∧ (c∧x)]∨ b = θ∨ b = θ, since θ ∈ [b, 1]. By modular law, since
b < a, we have a∧ [(c∧ x)∨ b] = θ. Since a ≤e

θ [b, 1] and (c∧ x)∨ b ∈ [b, 1], we get
(c ∧ x) ∨ b = θ. Since x ≤ c, x ∨ b = θ, and hence x ≤ θ. Also, θ ≤ x. Therefore,
x = θ, as desired. □

Lemma 2.33. [19] Let θ < b < a be in L. Then, a ≤e
θ L and b ≤e

θ [θ, a] if and only
if b ≤e

θ L.

Notation 2.34. Let x, y be elements of L. If x ∨ y ≤e
θ L, then x ∨ y ∈ [θ, 1].

Lemma 2.35. Let 1 ∈ L. If L is θ-complemented, then for every a ∈ L, [θ, a] is
also θ-complemented.
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Proof. Suppose L is θ-complemented. Let x ∈ [θ, a] ⊆ L. By Corollary 2.25, there
exists y ∈ L such that x ∧ y = θ and x ∨ y ≤e

θ L. Then by Note 2.34, we have
x ∨ y ≤e

θ [θ, 1]. Now, a ∧ (x ∧ y) = a ∧ θ = θ, implies x ∧ (y ∧ a) = θ. Then, by
Lemma 2.32, (x ∨ y) ∧ a ≤e

θ [(θ ∧ a), 1 ∧ a] = [θ, a]. Since x ≤ a, by modular law
we get x ∨ (y ∧ a) ≤e

θ [θ, a]. Therefore, [θ, a] is complemented. □

Proposition 2.36. If [θ, a] is θ-complemented in L, for some a ≤e
θ L, then L is also

θ-complemented.

Proof. Let [θ, a] be θ-complemented. For x ∈ L, x∧a ∈ [θ, a] has a θ-complement in
[θ, a], say y. Then by Corollary 2.25, we have y∧(x∧a) = θ, and y∨(x∧a) ≤e

θ [θ, a].
By Lemma 2.33, y ∨ (x ∧ a) ≤e

θ L. Now to show y ∨ x ≤e
θ L, let z ∈ L such

that (y ∨ x) ∧ b = θ. Then, [(y ∨ x) ∧ a] ∧ b ≤ (y ∨ x) ∧ b = θ. Also, since
θ ≤ b, θ ≤ [y ∨ (x ∧ a)], implies θ ≤ [y ∨ (x ∧ a)] ∧ b. Hence, [y ∨ (x ∧ a)] ∧ b = θ.
Since y∨(x∧a) ≤e

θ L, we get b = θ. Thus y∨x ≤e
θ L, shows that y is θ-complement

of x in L. □

Proposition 2.37. Let L is θ-complemented and 1 ∈ L. If a is a θ-complement in
L, then [a, 1] is also θ-complemented.

Proof. Suppose a is a θ-complement of b in L. Then, by Lemma 2.24, we have
a ∧ b = θ, and a ∨ b ≤e

θ [a, 1], and by Lemma 2.35, [θ, b] is also θ-complemented.
Now, [a, a ∨ b] ∼= [a ∧ b, b] = [θ, b], is θ-complemented. That is, [a, a ∨ b] is θ-
complemented. Therefore by Proposition 2.36, [a, 1] is θ-complemented. □

Theorem 2.38. If b is a θ-complement of a in L and θ < c ≤e
θ L, then b is a

θ-complement of a ∧ c in L.

Proof. Let b be a θ-complement of a in L. Then a∧ b = θ and a∨ b ≤e
θ L. Clearly,

(a∧c)∧b = θ. Now let d = a∨b and u = (a∧c)∨b. To show u ≤e
θ L, let u∧y = θ,

for some y ∈ L. Let x = y ∧ d. Now, u∧ x = u∧ (y ∧ d) = (u∧ y)∧ d = θ ∧ d = θ.
Since b ≤ u by modular law, u ∧ (b ∨ x) = b ∨ (u ∧ x)b ∨ θ = b, and

θ = a ∧ b

= a ∧ [u ∧ (b ∨ x)]

= a ∧ [(a ∧ c) ∨ b] ∧ (b ∨ x).

Now since a ∧ c ≤ a and by modularity we get θ = [(a ∧ c) ∨ (a ∧ b)] ∧ (b ∨ x) =
(a ∧ c) ∧ (b ∨ x). Since c ≤e

θ L, we get a ∧ (b ∨ x) = θ. Then,

b = b ∨ θ

= b ∨ [a ∧ (b ∨ x)]

= (b ∨ x) ∧ (b ∨ a), by modular law, b ≤ b ∨ x

= b ∨ x,

which implies x ≤ b. Now θ = u∧x ≥ b∧x = x. Also, θ ≤ x, implies x = θ. Since
d ≤e

θ L, we get y = θ. Thus, b is θ-complement of a ∧ c in L.
□
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Conclusions

We have defined the module theoretical concepts such as θ-complement, θ-closed
and relative θ-complemented in a lattice. In a modular lattice, we have proved
characterizations involving θ-complements with necessary illustrations. The re-
sults can be extended to study the dual aspects like supplements, superfluous
and radicals etc. in a lattice. Possibly, one can study the concepts in hyperlat-
tices, as the authors explored several hyperstructural aspects of lattices in [17, 14].
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