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Abstract. This paper aims at highlighting and addressing the major issues

in applying metaheuristic algorithms (MAs) in parametric design of manufac-
turing processes. Findings from a comprehensive literature review on MAs

application in optimising manufacturing processes are presented, including

their comparisons and major concerns. The soft computing-based methodol-
ogy is proposed and applied on the laser cutting process, to depict its benefits

and performance of the four tested MAs: genetic algorithm (GA), simulated

annealing (SA), particle swarm optimisation (PSO) and teaching-learning
based optimisation (TLBO). These algorithms were benchmarked in terms

of solution accuracy, speed of convergence and sensitivity of the algorithm

to its own hyper- parameters tuning. The concluding remarks were drawn,
followed by recommendations for future activities and applications

1. Introduction

An engineering process is affected by three major types of parameters [1]: (i)
control parameters used to manage a process execution; (ii) signal factors have
a very high and direct effect on a process response, but they cannot be easily
identified for a vast majority of processes, (iii) noise factors negatively affect a
process performance, causing a process response deviation from the target value
that leads to a quality loss. The parametric process design aims at finding an op-
timal set of process control factors that produces the desired response mean value
and minimise the response variation, for all responses of a process, subjected to
several constraints. Due to an increased dynamicity, modern processes have be-
come very complex, involving a large number of parameters and responses, with
highly non-linearity and unknown interdependencies. To tackle such complexity,
the soft computing techniques play a major role in modelling and parametric op-
timisation of contemporary processes. The machine learning techniques, such as
regression modelling and artificial neural networks (ANNs) are typically used to
model the input-output process interdependences. Knowing the desired values of
process responses, a process need to be set in such a way to produce the desired
outputs with minimal variation, i.e. an optimal set of process control parameters
needs to be found. MAs are efficient in addressing this this task. Since novel
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processes in Industry 4.0 environment are controlled by multiple parameters, af-
fected by noise factors and producing multiple correlated responses, the parametric
process design nowadays is a very demanding task

2. Metaheuristic Algorithms

Metaheuristic algorithms (MAs) could be divided into two major group: (i)
point-based algorithms, such as SA algorithm, and (ii) evolutionary algorithms
(EAs) that are population-based metaheuristics motivated by natural evolution-
ary mechanisms, such as GA, PSO, ant colony optimisation (ACO), artificial bee
colony (ABC), etc.

In GA, an initial population is formed from n chromosomes whose objective
values are evaluated to find the best ones for the next iteration. A new population
is made using genetic operators: scaling, parent chromosome selection, crossover
of two parents, mutation and migration that defines how exactly offspring are
produced. Objectives of new chromosomes are evaluated, and procedure continues
until a halting condition is satisfied, e.g. a predefined number of iteration [2].

SA is a point-based MA, mimicking a natural phenomenon of thermodynamics
in a metal annealing. Starting with an initial point and temperature, SA arbitrary
generates a new point whose distance from the previous one is determined by an
annealing function and current temperature. After objective value assessment,
a point is adopted according to a probability of acceptance function, based on
a discrepancy between new and old objective, initial temperature and current
temperature (controlled by the temperature function). Once a specified number
of points is adopted, reannealing is applied, controlled by a reannealing interval.
The procedure continues until a stopping condition is achieved [3].

Swarm intelligence is a subset of EAs, and PSO is its main representative.
PSO is based on a social behaviour in a swarm, where each individual particle
is presented as a vector with position and velocity. After initialisation with an
initial swarm of n particles, particle positions and velocities are altered during a
movement, based on the best location of a particle (pbest) and of a swarm (gbest)
reached so far. A new velocity is determined based on the previous one, pbest and
gbest, and three major parameters: inertia weight (w), self-adjustment learning
factor (c1) and social learning factor (c2). A new particle position is computed
using the previous one and a new velocity. Once the objective function is evaluated
for all particles, the swarm is renewed and the procedure repeats until a completion
condition is met [4].

The main criticism of MAs is the necessity of a proper hyper-parameters se-
lection to avoid a premature convergence and to reach a global optimum in a
reasonable time [5]. This especially refers to the algorithm specific parameters.
Besides, point-based MAs, such as SA, could be very slow and might not embrace
a whole search space. In overall, since MAs do not reproduce identical results
even with the same settings, the algorithm hyper-parameters tuning is of pivotal
importance.

This issue has been resolved in some of the recently developed EAs, such as the
TLBO algorithm mimicking the teaching-learning process in a classroom. After
population (learners) and variables (subjects) initialisation, students are learning
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from the teacher. The learners grades (objective function) are assessed; the new
solutions, i.e. improved students, are adopted if they are better than the pre-
vious ones. Then, students are interacting with each other to further improve
their knowledge (grades), and then their grades are evaluated. Students with the
highest grades are kept in a population. This iterative process continues until the
termination condition is met. It is important to notice that there are no specific
parameters to be tuned, except for two parameters common for all MAs: popula-
tion size and number of iterations [6].

3. Metaheuristic Algorithms in Parametric Process Design

To tackle the complexity of modern processes, in recent years the parametric
design has been frequently addressed by the soft computing techniques, and, in
particular, the MAs that relay on the stochastic optimisation principles. This sec-
tion presents findings of the recent comprehensive literature reviews; a few hundred
of selected studies from highly reputable journals in soft computing, industrial and
manufacturing domains have been studied, focusing on the papers that reported
a benchmark of different algorithms applied to the same problem [7-8].

The analysis was organised into two main groups: (i) known analytical pro-
cess model; (ii) unknown process model. Optimisation of the modern, emerging
processes belongs to the latter case, where feed forward (FF) ANNs with error
back propagation (BP) were the most regularly utilised to map dependence be-
tween process parameters and outputs, followed by regression modelling (mainly
quadratic models were employed).

MA performances were assessed in terms of solution accuracy and convergence
speed, since these two criteria were mainly reported in the reviewed papers. The
following MAs were included since their benchmarks were noticed in three or more
studies: GA, SA PSO, ACO, ABC, Hoopoe Heuristic (HH), harmony search (HS),
scatter search (SS), TLBO and cuckoo search (CS). Certain conclusions could
be drawn from a larger sample of studies (more than ten studies) that reported
comparisons: PSO scored better than SA, GA and ABC for both criteria; SA
scored better than GA in terms of the solution quality. Some observations could
be listed based on a smaller number of comparisons (three to ten studies): TLBO
and CS seem to be the most successful algorithms in terms of solution accuracy
and, partly, convergence speed, followed by PSO that showed beneficial results in
comparison to the others (ACO, HH, HS, SS).

In overall, EAs were efficient in parametric design of manufacturing processes.
However, the following issues have been identified: (i) an incomplete understand-
ing of the parametric process design since majority of studies focused only on
a response mean value ignoring a response variability, which is a major concern
since variability is a main cause of real industrial problems; (ii) for multi-response
processes, development of a single objective function was mainly performed by
subjectively assigning weights to individual objectives; (iii) the Pareto front-based
algorithms are effective in dealing with two or maximum three objectives, but their
application on larger problems requires subjective dealing with trade-offs among
multiple fronts; (iv) effects of the MA own settings on the algorithm results have
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not been assessed, which is problematic viz. repeatability and scalability of the
algorithm results [8].

4. Intelligent, Soft Computing-Based Methodology for Parametric
Process Design

An intelligent methodology for parametric process design has been developed,
based on ANNs and MAs, used to map and optimise processes, respectively. The
designed experimentation is used to collect input (process parameters) output
(process responses) data, that are pre-processed as follows [9]. The responses are
expressed via the Taguchis quality loss function (QL) that adequately encloses
both the response mean and variability, and then normalised (NQL). Details of
the Taguchi parametric design could be found in [1]. The correlated NQLs are
transformed into independent components by means of principal component anal-
ysis (PCA). Using grey relational analysis (GRA), all independent components are
combined into a single measure based on their contributions from PCA. Details
of PCA could be found in [10], and of GRA in [11]. Hence, an integrated process
performance measure (PPM [0,1]) is developed in an entirely objective fashion (the
higher PPM, the better is the process). The process parameter effects on PPM
are calculated, and the parameter values that maximise PMP are adopted as a
potentially good solution.

The ANNs are employed to establish the relationship between the process pa-
rameters and PPM. To obtain the best model, ANNs activation function, learning
rate and momentum are carefully tuned, and diverse topologies (number of neu-
rones in a hidden layer) are tested. The best ANN is the one with minimal mean
square error (MSE) and maximal correlation between the network predictions and
the original data (R). The selected model is used as the objective function for MAs
to find the optimal process parameters that maximise PPM.

The four MAs are studied with diverse algorithm-specific settings. In GA, the
following parameters are used: initialisation with a potentially favourable option
(result of the pre-processing method); rank scaling; adaptive feasible mutation;
forward migration with fraction 0.2. Three types of selection (stochastic uniform,
roulette wheel, tournament) and crossover functions (single point, two points,
arithmetic) are tested. In total, nine GAs are generated for each problem. SA
algorithms are initialised with a possibly good solution; the other parameters
are varied: (i) initial temperature: 10, 100 and 500; (ii) temperature function:
exponential, fast and Boltzmann; (iii) annealing function: fast and Boltzmann;
(iv) reannealing interval: 10 and 100. Therefore, 36 SA algorithms are developed
for each use case. For PSO, both types of initialisation are analysed: random
and initialisation with a favourable solution; the other parameters are varied: (i)
inertia weight range: [0.1; 1.1], [0.4; 0.9], [0.5; 2.5], [1.0.; 5.0]; (ii) learning factors:
c1 = c2 = 0.1; c1 = c2 = 0.5; c1 = c2 = 2.0; c1 = c2 = 5, and c1 = 0.7, c2 =
1.5. In total, 16 randomly initialised PSOs and 16 PSOs with a potentially good
initialisation are generated for each case. The TLBO algorithm does not require
any specific settings.

For all algorithms, the population size equals 5n, where n is the number of
process control parameters. As stopping conditions, 2000 iterations or change in
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the objective function less than 10−9 over 100 iterations are adopted. For each
MA, the best algorithm is selected according to the maximal PPM value, and
its result is adopted as the optimal process parameters set. The algorithms are
benchmarked according to: (i) solution accuracy (PPM value and corresponding
process parameters set); (ii) speed of convergence (number of iterations needed to
reach optimum); (iii) sensitivity to the algorithm-specific settings (range of PPM
and of optimal process parameter values).

5. Case Study: Laser Cutting Process

An experiment was conducted to estimate the influence of control parameters
of the Nd:YAG laser cutting in processing Nimonic 263 sheets. The four process
parameters were considered as controllable variables, and they were studied at
three levels. Therefore, the experiment was designed using orthogonal array L9
containing nine trials, which were repeated twice. At the output, seven character-
istics were considered as responses: six responses need to be minimised, and the
remaining one is to be maximised. For each trail, responses were measured three
times (the sample size equals three). Details could be found in [12].

For each response, the response data presented in Table 1 are converted into
the respective QL values that were normalised (NQLs). The PCA was applied on
the NQLs to produce a set of uncorrelated components (Table 1):

Y1(k) = 0.459 · NQLKd(k) + 0.396 · NQLKt(k)−
−0.202 · NQLHV(k) + 0.315 ·NQLG(k) + 0.481 · NQLRa(k)+

+0.469 · NQLRms(k) + 0.200 · NQLPV(k)
· · · · · · · · · · · · · · ·

Y7(k) = −0.194 · NQLKd(k)− 0.228 · NQLKt(k)−
−0.103 · NQLHV(k) + 0.020 ·NQLG(k) + 0.818 · NQLRa(k)−

−0.443 · NQLRms(k)− 0.046 · NQLPV(k)

(1)

The GRA was applied over the above components to integrate them into the
process performance measure (PPM), i.e. the grey relational grade (Table 1),
in respect to their proportions of contribution from PCA: 0.561; 0.188; 0.112;
0.089; 0.03; 0.017; 0.003. The effects of process control parameters on the PPM
were calculated, and the parameter values that maximise PPM were suggested as a
potential solution from the space of discrete solutions considered in the experiment:
Np = 12; f = 3;P = 2100; v = 4000. In the optimisation stage, this set is used for
initialisation of GA, SA and PSO.

The feed-forward back-propagation ANNs were utilised to model the relation
between the process control parameters, at the input, and the PPM, at the out-
put. Among several topologies, the network with 14 neurones in a hidden layer
demonstrated the best performance: MSE equals 1.5 · 10−6; R equals 0.99 [12].

Such an excellent model served as the objective function for four MAs whose
results were benchmarked (Table 2). GA, SA and PSO were run with different own
hyper-parameter settings. Since TLBO does not have specific hyper-parameters,
it was run five times to assess its repeatability. The following conclusions could
be drawn:
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Table 1. A part of experimental design with controllable process parameters and
measured responses, and results of PCA and GRA [12]

• The maximal PPM value found by GA and SA algorithms is lower than the
one found by PSO and TLBO. Therefore, PSO and TLBO overperformed
the remaining two algorithms in terms of the solution accuracy.
• The GA, run with different hyper-parameters, showed the largest dis-

persion of PPM and optimal set, followed by SA. The PSO algorithm,
both randomly initialised and initialised with a potentially good solution,
showed very good robustness due to very narrow ranges of PPMs and the
optimal process parameter values. The TLBO algorithm is designed as a
robust one. Here, TLBO showed excellent repeatability, since it generated
identical results in five runs.
• The SA algorithm showed the slowest convergence, which could have been

expected since it performs a point-to-point search (i.e. it is not a popu-
lation-based algorithm), contrary to the remaining three algorithms. The
PSO initialised with a potentially good solution needed minimal number
of iteration to find the optimum, followed by GA and randomly initialised
PSO. The TLBO convergence rate was slightly lower than the GA and
PSO rate.

In overall, it could be seen that PSO demonstrated better accuracy and signif-
icantly better robustness and convergence rate than GA and SA. Seeding initial
swarm with a potentially favourable solution did not significantly affect the overall
algorithm performance, except of a small improvement in the convergence rate.
This proves that PSO is less affected by its own settings than GA and SA. The
TLBO algorithm showed remarkable repeatability, along with an implied robust-
ness. Its convergence is slightly slower but comparable to PSO. Figure 1 shows
the convergence along iterations for both versions of the PSO algorithm and for
the TLBO algorithm

6. Concluding Remarks

In a contemporary industrial environment, the soft computing techniques have
emerged as effective tools to address complexity of the parametric design of mod-
ern processes. The ANNs are typically applied to map the process whose empirical
model is unknown, based on which the MAs are applied to find the optimal pro-
cess parameters setting that delivers the required process responses. An extensive
literature analysis on the MAs effectiveness in optimising industrial processes in-
dicated that GA was the most frequently used MA, followed by SA and PSO, and
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Table 2. Summary of GA, SA and PSO results with diverse settings and TLBO
results

Fig.1. The algorithm convergence vs. iterations: a.) PSO with a random
initialisation; b.) PSO initialised with a potentially good solution; c.) TLBO

that PSO showed better performance that the other MAs except for the TLBO
and CS algorithms. The literature review also revealed several issues that were
presented in the paper.

The above issues are effectively resolved in the suggested soft computing-based
methodology. Comparison of the four MAs in the observed study indicated supe-
rior performance of the TLBO, followed by PSO. These results are aligned with
the findings from a comprehensive literature review. Based on these findings and
taking into account the embedded algorithm robustness and excellent repeatabil-
ity, the TLBO algorithm appears as a favourable toll, in terms of applicability
and effectiveness, for tackling similar optimisation problems. Besides, it has to be
noted that a shallow ANN performed an excellent process modelling using very
small data set, showing remarkable mapping accuracy. This is mainly due to pre-
processing method, implying data normalisation and standardisation prior to their
integration into a single measure in a fully objective manner.

Future research will include comparison with the CS algorithm and a few re-
cently developed EAs that show beneficial characteristics in terms of robustness.
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