
ORDERED GENERALIZED φ−CONTRACTION IN ORDERED

FUZZY METRIC SPACES WITH AN APPLICATION IN

DYNAMIC PROGRAMMING

MANISH JAIN1, ANITA TOMAR2, MEENA JOSHI3, AND KENAN TAS4

Abstract. The common fixed point for ordered generalized φ−contraction

in the environment of an ordered fuzzy metric space is determined under min-
imum possible conditions. A result in ordered metric space is also obtained.

The work is supported with a suitable example. Further, as an application,

the utility of the present work is shown by solving functional equations in
dynamic programming, which are beneficial in mathematical optimization as

well as computer programming.

1. Introduction

The notion of fuzzy metric spaces was innovated by Kramosil and Michalek in
1975 and that was later improved by George and Veeramani [7] to obtain Haus-
dorff topology on these spaces. Recently, in the same framework, Aage et al. [1]
innovated φ−contractive mappings, with φ being the altering distance function fa-
miliarised by Choudhury and Das [5]. On another point of note, Ran and Reurings
[13] developed a Banach contraction principle exploiting the ordered set which was
further generalized by Nieto and Rodŕıguez-López [11]. Afterward, fixed point re-
sults have been explored by numerous researchers in various frameworks enriched
with a partial ordering.
In the current paper, we determine the common fixed point for an ordered gen-
eralized φ−contraction in ordered fuzzy metric spaces utilizing the notion of al-
tering distance (Choudhury and Das [5]). Present work accords with George and
Veeramani [7] and complements the contemporary work of Aage et al. [1] in the
environment of ordered fuzzy metric setting. Further, it broadens the work of
Nieto and Rodŕıguez-López [11] by extending it to an ordered fuzzy metric space.

2. Preliminaries

Next, we state some already existing notions and definitions useful in our work.
Suppose that R, R+

0 , N, and R+ symbolize the set of real numbers, non-negative
real numbers, natural numbers, and positive real numbers, respectively.

Definition 2.1. [15] A fuzzy set U in Y is a function with domain Y and range
[0, 1].
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Definition 2.2. [14] A binary operation ∗ : [0, 1]2 −→ [0, 1] is a continuous
t−norm if ([0, 1], ∗) is a topological abelian monoid with unit 1 so that a∗b ≤ c∗d,
whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0, 1].

Definition 2.3. [7] The 3-tuple (Y,M, ∗) is called a fuzzy metric space if Y is an
arbitrary set, ∗ is a continuous t−norm andM is a fuzzy set on Y2×R+ satisfying
the subsequent postulates:

(FM-1) M(x, y, t) > 0;
(FM-2) M(x, y, t) = 1 iff x = y;
(FM-3) M(x, y, t) =M(y, x, t) > 0;
(FM-4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);
(FM-5) M(x, y, t) : R+

0 −→ [0, 1] is continuous, x, y, z ∈ Y and s, t > 0.

Definition 2.4. [7] Let (Y,M, ∗) be a fuzzy metric space and t > 0. A sequence
{xn} in Y is

(i) convergent to a point x ∈ Y if limn→∞M(xn, x, t) = 1;
(ii) Cauchy sequence if limn→∞M(xn+p, xn, t) = 1 and p > 0.

Definition 2.5. [7] A fuzzy metric space (Y,M,∗) is complete iff each Cauchy
sequence in Y is convergent.

Lemma 2.6. [6] Let (Y,M,∗) be a fuzzy metric space. Then M(x, y, .) is non-
decreasing, x, y ∈ Y.

Definition 2.7. [8] LetA and B be self-mappings on a fuzzy metric space (Y,M, ∗).
Then, A and B are weakly compatible if Az = Bz implies that ABz = BAz.

Khan et al. [9] innovated the subsequent function to determine a fixed point
by altering the distances between them.

Definition 2.8. [9] An altering distance function is a function ψ : R+ → R+

satisfying:

(ψ1) ψ is continuous and non-decreasing;
(ψ2) ψ(t) = 0 iff t = 0.

Choudhury and Das [5] extended the above notion in complete Menger spaces
under the following notion:

Definition 2.9. [5] A function φ : R+ → R+ is a Φ−function if subsequent
postulates hold:

(i) φ(t) = 0 iff t = 0;
(ii) φ(t)→∞ as t→∞ and φ(t) is increasing;
(iii) φ is left continuous in R+

0 ;
(iv) φ is continuous at 0.

Very recently, Aage et al. [1] obtained fixed points for the following φ−contractive
mappings.

Definition 2.10. [1] A self-mapping A : Y → Y of a fuzzy metric space (Y,M, ∗)
is called φ−contractive if M(Ax,Ay, φ(t)) ≥ M(x, y, φ( tk )), 0 < k < 1, x, y ∈
Y, t > 0 and φ is a φ−function.
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3. Main Results

We would be needing subsequent Lemma 3.1 to demonstrate the uniqueness
of coincidence and common fixed point of an ordered generalized φ−contractive
mapping.

Lemma 3.1. Let (Y,M, ∗) be a fuzzy metric space and φ : R+ → R+ be a
φ−function. If M(x, y, φ(t)) ≥ M(x, y, φ( tk )), x, y ∈ Y, k ∈ (0, 1), t > 0 then
x = y.

Proof. Since φ is strictly increasing and k ∈ (0, 1), utilizing the principle of math-
ematical induction, we obtain M(x, y, φ(t)) ≥ M(x, y, φ( tk )) ≥ . . .M(x, y, φ( t

kn )).
As n→∞, we obtain M(x, y, φ(t)) ≥ 1, i.e., x = y. �

We first define an ordered generalized φ−contraction and then use the notion
to establish the common fixed-point.

Definition 3.2. A pair (A, g) of self-mappings in a fuzzy metric space (Y,M, ∗)
equipped with a partial order � is an ordered generalized φ−contraction if the
following holds:

M(Ax,Ay, φ(t)) ≥ min{M(gx, gy, φ(
t

k
)),M(gx,Ax, φ(

t

k
)),M(gy,Ay, φ(

t

k
)),

M(gx,Ay, 2φ(
t

k
)) ∗M(gy,Ax, 2φ(

t

k
))},

(3.1)

x, y ∈ Y, gx � gy, k ∈ (0, 1), φ : R+ −→ R+ is a Φ−function and t > 0.

For g =identity mapping, in inequality (3.1), we derive:

Definition 3.3. A self-mapping A in a fuzzy metric space (Y,M, ∗) equipped
with a partial order � is an ordered generalized φ−contraction, if the following
holds:

M(Ax,Ay, φ(t)) ≥ min{M(x, y, φ(
t

k
)),M(x,Ax, φ(

t

k
)),M(y,Ay, φ(

t

k
)),

M(x,Ay, 2φ(
t

k
)) ∗M(y,Ax, 2φ(

t

k
))},

(3.2)

x, y ∈ Y, k ∈ (0, 1), x � y, φ : R+ −→ R+ is a Φ−function, and t > 0.

Theorem 3.4. Let (Y,M, ∗) be a fuzzy metric space equipped with a partial order
� and a continuous t−norm satisfying a ∗ a ≥ a, for every a ∈ [0, 1]. Suppose
that A and g be the self-mappings on Y so that A is g−monotonically increasing,
A(Y) ⊆ g(Y), any one of A(Y) or g(Y) is complete, and a pair (A, g) is an ordered
generalized φ−contraction. If {gxn} ⊆ Y is a non-decreasing sequence converging
to gx ∈ g(Y), then gxn � gx and gx � ggx, n ∈ N. Moreover, if Ax0 � gx0, x0 ∈ Y,
then A and g have a coincidence point.

Proof. Suppose x0 ∈ Y, so that Ax0 � gx0. Since, A(Y) ⊆ g(Y), we have some x1 ∈
Y so that Ax0 = gx1 = x0 (say). Then, gx1 � gx0. Now, since A is g−monotonically
increasing, we get Ax1 � Ax0. Since A(Y) ⊆ g(Y), we have some x2 ∈ Y so that
Ax1 = gx2 = y1 (say). Now, we have y1 � y0. On repeatedly applying this
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process, we may obtain the sequence {yn} defined as: yn = Axn = gxn+1, such that
yn+1 = gxn+2 � gxn+1 = yn, n ∈ N ∪ {0}. If yn = yn+1, then gxn+1 = Axn+1, i.e.,
xn+1 is a coincidence point of A and g. Thus, the result holds trivially.
Let yn 6= yn+1. We first assert that {yn} is a Cauchy sequence. Let t > 0 and
0 < δ < 1. Utilizing properties of the Φ−function, we have s > 0 so that t > φ(s).
Since, gxn+1 � gxn, n ∈ N, by inequality (3.1) and using Lemma 2.6,

M(yn,yn+1, t) ≥M(yn, yn+1, φ(s))

=M(gxn+1, gxn+2, φ(s))

=M(Axn,Axn+1, φ(s))

≥ min{M(gxn, gxn+1, φ(
s

k
)),M(gxn,Axn, φ(

s

k
)),M(gxn+1,Axn+1, φ(

s

k
)),

M(gxn,Axn+1, 2φ(
s

k
)) ∗M(gxn+1,Axn, 2φ(

s

k
))}

= min{M(yn−1, yn, φ(
s

k
)),M(yn−1, yn, φ(

s

k
)),M(yn, yn+1, φ(

s

k
)),

M(yn−1, yn+1, 2φ(
s

k
)) ∗M(yn, yn, 2φ(

s

k
))}

≥ min{M(yn−1, yn, φ(
s

k
)),M(yn, yn+1, φ(

s

k
)),

M(yn−1, yn, φ(
s

k
)) ∗M(yn, yn+1, φ(

s

k
))}

= min{M(yn−1, yn, φ(
s

k
)),M(yn, yn+1, φ(

s

k
))}

=Mn say.

We claim that Mn = M(yn−1, yn, φ( sk )), if not, then Mn = M(yn, yn+1, φ( sk )).
Next, using the previous, we attain that
M(yn, yn+1, φ(s)) ≥ Mn = M(yn, yn+1, φ( sk )), which on applying Lemma 3.1 ,
yields a contradiction to the assumption that yn 6= yn+1, n ∈ N. Thus, we get
M(yn, yn+1, t) ≥ M(yn, yn+1, φ(s)) ≥ M(yn−1, yn, φ( sk )), which on repeatedly
using this process, implies that

M(yn, yn+1, t) ≥M(yn, yn+1, φ(s))

≥M(yn−1, yn, φ(
s

k
)) ≥ · · · ≥ M(y0, y1, φ(

s

kn
)),

i.e.,

M(yn−1, yn, t) ≥M(y0, y1, φ(
s

kn
)), n ∈ N. (3.3)

Let m ≥ n, m,n ∈ N. Now, using Lemma 2.6 and mathematical induction, we
obtain

M(yn, ym, (m− n)t) ≥ min{M(yn, yn+1, t), . . . ,M(ym−1, ym, t)}. (3.4)

Using (3.3) in (3.4), we obtain

M(yn, ym, (m− n)t) ≥ min{M(y0, y1, φ(
s

kn
)), . . . ,M(y0, y1, φ(

s

km−1
))}. (3.5)

Also, using Lemma 2.6 and increasing property of φ, we get

min{M(y0, y1, φ(
s

kn
)), . . . ,M(y0, y1, φ(

s

km−1
))} =M(y0, y1, φ(

s

kn
)).

60
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Now, (3.5) becomes

M(yn, ym, (m− n)t) ≥M(y0, y1, φ(
s

kn
)). (3.6)

Also, using property (ii) of φ, we can get the existence of some n0 ∈ N, such that

M(y0, y1, φ(
s

kn
)) > 1− δ, for n ≥ n0. (3.7)

Using (3.6) and (3.7), for every m ≥ n ≥ n0, we get

M(yn, ym, (m− n)t) > 1− δ. (3.8)

Since, 0 < δ < 1 are chosen arbitrarily, we have that {yn} is a Cauchy sequence.
Without loss of generality, suppose g(Y) is a complete subspace of Y, we have
some x ∈ Y, so that

lim
n→∞

yn−1 = lim
n→∞

gxn = lim
n→∞

Axn−1 = gx = z (say). (3.9)

For t > 0, there exists s > 0 so that t > φ(s). Now, for s > 0 and 0 < δ < 1, we
have some n1 ∈ N, so that

M(yn−1, z, φ(
s

k
)) > 1− δ, for all n ≥ n1. (3.10)

Let p = max{n0, n1}, then inequalities (3.8) and (3.10) holds for all n ≥ p. Also,
{gxn} ⊆ Y is an increasing sequence converging to gx in g(Y), then by assumption,
gxn � gx, n ∈ N. Using inequalities (3.1), (3.3), (3.8) - (3.10), and Lemma 2.6, for
n ≥ p, we attain

M(Ax, yn, t) ≥M(Ax, yn, φ(s))

=M(Ax,Axn, φ(s))

≥ min{M(gx, gxn, φ(
s

k
)),M(gx,Ax, φ(

s

k
)),M(gxn,Axn, φ(

s

k
)),

M(gx,Axn, 2φ(
s

k
)) ∗M(gxn,Ax, 2φ(

s

k
))}

≥ min{M(gx, yn−1, φ(
s

k
)),M(gx,Ax, φ(

s

k
)),M(yn−1, yn, φ(

s

k
)),

M(gx,Ax, φ(
s

k
))}

= min{M(gx, yn−1, φ(
s

k
)),M(yn−1, yn, φ(

s

k
)),M(gx,Ax, φ(

s

k
))}

= min{M(z, yn−1, φ(
s

k
)),M(yn−1, yn, φ(

s

k
)),M(gx,Ax, φ(

s

k
))}

≥ min{1− δ, 1− δ,M(gx,Ax, φ(
s

k
))}.

Since, 0 < δ < 1 is arbitrary, we obtain M(Ax, yn, φ(s)) ≥ M(gx,Ax, φ( sk )).
As n → ∞, M(gx,Ax, φ(s)) ≥ M(gx,Ax, φ( sk )). Using Lemma 3.1, we attain
Ax = gx. The uniqueness of a coincidence point follows immediately utilizing
Lemma 3.1. �

Theorem 3.5. If self-mappings A and g are also weakly compatible in Theorem
3.4, then A and g have a unique common fixed point in Y.

61



6 MANISH JAIN, ANITA TOMAR, MEENA JOSHI, AND KENAN TAS

Proof. In Theorem 3.4, we obtained some x ∈ Y such that inequality (3.9) holds
and Ax = gx = z. Since A and g are weakly compatible, we obtain Agx = gAx, i.e.,
Az = gz.
First, we claim that Az = z. Since {gxn} ⊆ Y is an increasing sequence converging
to gx in g(Y), then by given assumption, gxn � gx, n ∈ N and gx � ggx, so that
gx � gz. Then, using inequality (3.1) and Lemma 2.6, we attain

M(Az, z, t) ≥M(Az, z, φ(s))

=M(Az,Ax, φ(s))

≥ min{M(gz, gx, φ(
s

k
)),M(gz,Az, φ(

s

k
)),M(gx,Ax, φ(

s

k
)),

M(gz,Ax, 2φ(
s

k
)) ∗M(gx,Az, 2φ(

s

k
))}

= min{M(Az, z, φ(
s

k
)), 1, 1,M(gz, z, 2φ(

s

k
)) ∗M(z,Az, 2φ(

s

k
))}

= min{M(Az, z, φ(
s

k
)), 1}

=M(Az, z, φ(
s

k
)),

i.e., M(Az, z, φ(s)) ≥ M(Az, z, φ( sk )). Then, using Lemma 3.1, we obtain Az = z.
Hence, Az = z = gz. The uniqueness of a common fixed point of A and g imme-
diately follows on utilizing Lemma 3.1. �

The following example is given to appreciate the effectiveness of Theorems 3.4
and 3.5 and to validate the results proved herein.

Example 3.6. Let Y = [0, 18 )∪{14} and partial ordering � is the natural ordering

≤ of the real numbers. Define M(x, y, t) = t
t+|x−y| , x, y ∈ Y and t > 0. Let

x ∗ y = min{x, y}, x, y ∈ [0, 1]. Then (Y,M, ∗) is a non-complete fuzzy metric
space equipped with a partial order “ � ”. Define two self-mappings A : Y → Y
and g : Y → Y respectively as:

g(x) =


x
2 , x ∈ [0, 1

16 ]

x, x ∈ ( 1
16 ,

1
8 )

1
4 , x = 1

4

and Ax =

{
x
8 , x ∈ [0, 18 )
1
64 , x = 1

4

.

Noticeably, g and A are non-commuting, since g(A( 1
15 )) 6= A(g( 1

15 )), A(Y) ⊆ g(Y)
and A(Y) is complete. Also, the mappings A and g are weakly compatible. We
claim that the mapping A is g−monotonically increasing. For, let x1, x2 ∈ Y such
that g(x1) > g(x2), then we have the subsequent possibilities:

Case (i) If x1, x2 ∈ [0, 1/16], then g(x1) > g(x2) implies that x1
2 > x2

2 , which yields
that x1

8 > x2
8 , i.e., Ax1 > Ax2.

Case (ii) If x1 ∈ (1/16, 1/8), x2 ∈ [0, 1/16], then, clearly x1 > x2 which yields that
x1
8 > x2

8 , i.e., Ax1 > Ax2.

Case (iii) If x1, x2 ∈ (1/16, 1/8), then gx1 > gx2 implies that x1 > x2, which yields
that x1

8 > x2
8 , i.e., Ax1 > Ax2.
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Case (iv) If x1 = 1
4 , x2 ∈ [0, 1/8), then gx1 > gx2 implies that 1

4 > gx2 in both
the cases whether x2 ∈ [0, 1/16] or x2 ∈ (1/16, 1/8), which yields that
Ax1 = 1

64 >
x2
8 = Ax2.

This shows that A is g−monotonically increasing.
Define the function φ : R+ −→ R+ as φ(t) = t

2 , t ∈ R+. Then, φ is a Φ−function.
Also,
t

t+U ≥ min{ t
t+P ,

t
t+Q ,

t
t+R ,

t
t+S ,

t
t+T } iff U ≤ max{P,Q,R,S, T },

U ,P,Q,R,S, T ≥ 0, t > 0.
Consider k = 1

2 ∈ (0, 1). Now, the inequality (3.1)

M(Ax,Ay, φ(t)) ≥ min{M(gx, gy, φ(
t

k
)),M(gx,Ax, φ(

t

k
)),M(gy,Ay, φ(

t

k
)),

M(gx,Ay, 2φ(
t

k
)),M(gy,Ax, 2φ(

t

k
))},

is equivalent to the following

2|Ax−Ay| ≤ max{|gx− gy|, |gx−Ax|, |gy−Ay|, 1

2
|gx−Ay|, 1

2
|gy−Ax|} (3.11)

We now verify inequality (3.11) for x, y ∈ Y so that gx ≥ gy. Now, consider the
subsequent main cases:

Case (1) Let x ∈ [0, 1/16], we discuss the subsequent possibilities:

(1.1) Let y ∈ [0, 1/16]. Then, gx ≥ gy implies that x
2 ≥

y
2 , i.e., x ≥ y, and

2|Ax−Ay| ≤ max{|gx− gy|, |gx−Ax|, |gy−Ay|, 12 |gx−Ay|,
1
2 |gy−Ax|},

iff | x4 −
y
4 | ≤ max{| x2 −

y
2 |,

3x
8 ,

3y
8 ,

1
2 |

x
2 −

y
8 |,

1
2 |

y
2 −

x
8 |},

iff |x− y| ≤ max{2|x− y|, 3x2 ,
3y
2 , |x−

y
4 |, |y −

x
4 |},

which is true, since |x− y| ≤ 2|x− y|.

(1.2) Let y ∈ (1/16, 1/8). Then, gx ≥ gy implies that x
2 ≥ y, i.e., x ≥ 2y, i.e.,

which is not possible, since x ∈ [0, 1/16] and y ∈ (1/16, 1/8).

(1.3) Let y = 1
4 . Then, gx ≥ gy implies that x

2 ≥
1
4 , i.e., x ≥ 1

2 , which is also not
possible, since x ∈ [0, 1/16].

Case (2) Let x ∈ (1/16, 1/8), we discuss the subsequent possibilities:

(2.1) Let y ∈ [0, 1/16]. Then, gx ≥ gy implies that x ≥ y
2 , and

2|Ax−Ay| ≤ max{|gx− gy|, |gx−Ax|, |gy−Ay|, 12 |gx−Ay|,
1
2 |gy−Ax|},

iff 2| x8 −
y
8 | ≤ max{|x− y

2 |, |x−
x
8 |, |

y
2 −

y
8 |,

1
2 |x−

y
8 |,

1
2 |

y
2 −

x
8 |},

iff 2| x4 −
y
4 | ≤ max{|x− y

2 |,
7x
8 ,

3y
8

1
2 |x−

y
8 |,

1
2 |

y
2 −

x
8 |},

iff |x− y| ≤ max{4|x− y
2 |,

7x
2 ,

3y
2 , 2|x−

y
8 |, |y−

x
4 |},

which is true, since |x− y| ≤ 4|x− y
2 |.

(2.2) Let y ∈ (1/16, 1/8). Then, gx ≥ gy implies that x ≥ y, and
2|Ax−Ay| ≤ max{|gx− gy|, |gx−Ax|, |gy−Ay|, 12 |gy−Ax|},
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iff 2| x8 −
y
8 | ≤ max{|x− y|, |x− x

8 |, |y−
y
8 |,

1
2 |x−

y
8 |,

1
2 |y−

x
8 |},

iff |x− y| ≤ max{4|x− y|, 7x2 ,
7y
2 , 2|x−

y
8 |, 2|y−

x
8 |},

which is true, since |x− y| ≤ 4|x− y|.

(2.3) Let y = 1
4 . Then, gx ≥ gy implies that x ≥ 1

4 , which is not possible.

Case (3) Let x = 1
4 , we discuss the following possibilities:

(3.1) Let y ∈ [0, 1/16]. Then, gx ≥ gy implies that 1
4 ≥

y
2 , i.e., 1

2 ≥ y or y ≤ 1
2 ,

and
2|Ax−Ay| ≤ max{|gx− gy|, |gx−Ax|, |gy−Ay|, 1

2|gy−Ax|},
iff 2| 164 −

y
8 | ≤ max{| 14 −

y
2 |, |

1
4 −

1
64 |, |

y
2 −

y
8 |,

1
2 |

1
4 −

y
8 |,

1
2 |

y
2 −

1
64 |},

iff | 132 −
y
4 | ≤ max{| 14 −

y
2 |,

15
64 ,

3y
8 ,

1
8 , |1−

y
2 |,

1
4 |y−

1
32 |},

iff | 18 − y| ≤ max{2| 12 − y|, 1516 ,
3y
2 ,

1
2 , |1−

y
2 |, |y−

1
32 |},

which is true, since | 18 − y| ≤ 15
16 .

(3.2) Let y ∈ (1/16, 1/8). Then, gx ≥ gy implies that 1
4 ≥ y or 1

4 ≤ y, and

2|Ax−Ay| ≤ max{|gx− gy|, |gx−Ax|, |gy−Ay|, 12 |gxx−Ay|,
1
2 |gy−Ax|},

iff 2| 164 −
y
8 | ≤ max{| 14 − y|, | 14 −

1
64 |, |y−

y
8 |,

1
2 |

1
4 −

y
8 |,

1
2 |y−

1
64 |},

iff | 132 −
y
4 | ≤ max{| 14 − y|, 1564 ,

7y
8 ,

1
8 , |1−

y
2 |,

1
2 |y−

1
64 |},

which is true, since | 132 −
y
4 | ≤

7y
8 .

(3.3) Let y = 1
4 . Then, we have gx = g 1

4 = gy, and

2|Ax −Ay| ≤ max{|gx − gy|, |gx −Ax|, |gy −Ay|, 12 |gx −Ay|,
1
2 |gy −Ax|},

which is true, since Ax = A 1
4 = Ay.

Hence, in all the cases, the inequality (3.11) is verified. Consequently, inequality
(3.1) holds, i.e., the pair (A, g) is an ordered generalized φ−contraction. Further,
we have x0 = 0 ∈ Y so that gx0 = g0 = 0 = A0 = Ax0. Now, all the postulates of
Theorem 3.5 are verified and a unique common fixed point of A and g exists in Y,
which is indeed 0.

Remark 3.7. It is worth mentioning that Theorem 3.5 is a genuine extension and
improvement of Aage et al. [1] to an ordered fuzzy metric space, in view of the
fact that, we have neither used the completeness of the entire space nor continuity
of mappings under consideration. Rather, we have used a relatively weaker notion
like the completeness of any subspace of the entire space. One may also check
by simple calculations that in Example 3.6, mappings under consideration are
not continuous. Moreover, an ordered generalized φ−contraction for a pair of
mappings is a significant generalization of Aage et al. [1], which is presumed to
hold only on the elements of the underlying ordered set.

Theorem 3.8. Let (Y,M, ∗) be a complete fuzzy metric space equipped with a
partial order � and a continuous t−norm satisfying a∗a ≥ a, a ∈ [0, 1]. Let a self-
mapping A on Y be a monotonically increasing ordered generalized φ−contraction.
Further, if {xn} ⊂ Y is an increasing sequence converging to x ∈ Y, then xn �
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x, n ∈ N. If we have x0 ∈ Y so that Ax0 � x0, then A has a unique fixed point in
Y.

Proof. If g is an identity mapping on Y, the result holds immediately on the
pattern of Theorem 3.5. �

Theorem 3.9. Let (Y,M,∗) be a complete fuzzy metric space equipped with a
partial order � and a continuous t−norm satisfying a ∗ a ≥ a, a ∈ [0, 1]. Let
k ∈ (0, 1) be fixed. Let a self-mapping A on Y be monotonically increasing ordered
φ−contraction, i.e.,

M(Ax,Ay, φ(t)) ≥M(x, y, φ(
t

k
)), x � y, t > 0, and x, y ∈ Y. (3.12)

Further, if {xn} ⊂ Y is an increasing sequence converging to x ∈ Y, then xn �
x, n ∈ N. If we have x0 ∈ Y so that Ax0 � x0, then A has a unique fixed point in
Y.

Proof. Since (3.12) is true for x, y ∈ Y, x � y and t > 0, we attain

M(Ax,Ay, φ(t)) ≥M(x, y, φ(
t

k
)) ≥ min{M(Ax,Ay, φ(

t

k
)),M(x,Ax, φ(

t

k
)),

M(y,Ay, φ(
t

k
)),M(x,Ay, 2φ(

t

k
)),M(y,Ax, 2φ(

t

k
))}.

Hence, inequality (3.2) is true for x, y ∈ Y, t > 0, and x � y. Utilizing Theorem
3.8, A has a fixed point in Y. Uniqueness of a fixed point immediately exists on
utilizing Lemma 3.1. �

Next, we formulate an interesting result in an ordered metric space:

Theorem 3.10. Let (Y, d) be a complete metric space equipped with a partial
order �. Let k ∈ (0, 1) be fixed. Let a self-mapping A on Y be monotonically
increasing. Suppose that the following holds:

d(Ax,Ay) ≤ kd(x, y), x, y ∈ Y, and x � y. (3.13)

Further, if {xn} ⊆ Y is an increasing sequence converging to x, then xn � x, n ∈ N.
If we have x0 ∈ Y so that Ax0 � x0, then A has a unique fixed point in Y.

Proof. Define M(x, y, t) = t
t+d(x,y) , x, y ∈ Y, t > 0, and a ∗ b = min{a, b}. Then,

(Y,M, ∗) is a fuzzy metric space. We assert that inequality (3.13) implies (3.12)
for φ(t) = t, t ∈ R+.

Otherwise, from inequality (3.12), t
t+d(Ax,Ay) <

t
k

t
k+d(x,y)

or t + kd(x, y) < t +

d(Ax,Ay), which implies kd(x, y) < d(Ax,Ay), a contradiction to inequality (3.13).
Then, the proof follows immediately by the application of Theorem 3.9. �

Remark 3.11. (i) It is interesting to mention that order-theoretic contractions
are comparatively weaker than standard contractions since these hold only
for the elements in the partially ordered set under consideration (see, Ex-
amples 3.6 ). Consequently, we are able to particularize the existing results
to a variety of situations.
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(ii) Noticeably, in Rhoades [12], φ is taken to be continuous, non-decreasing,
and limt→∞ φ(t) = ∞. Consequently, our version is more improved than
Rhoades [12].

(iii) Theorem 3.9 may be considered as an analogue of Theorem 19 of Aage et
al. [1] for an ordered generalized φ−contraction for a pair of mappings in
the set-up of ordered fuzzy metric spaces.

(iv) Theorem 3.10 is actually Theorem 2.1 of Nieto and Rodŕıguez-López [11].

4. Application

As an application, we solve functional equations emerging in dynamic program-
ming which were first investigated by Bellman [3]-[4] using the famous Banach fixed
point theorem. A dynamical process is composed of a state space and a decision
space (initial state actions and transition model and possible actions that are al-
lowed). In a way, dynamic programming is a beneficial tool for both mathematical
optimizations as well as computer programming. Let W ⊆ X , D ⊆ Y, and B(W)
symbolize the state space, decision space, and the set of bounded functions respec-

tively on W. Define, M(x, y,t) = e−
d(x,y)
t , with t−norm a ∗ b = min{a, b}, a ∗ b ∈

[0, 1], where, d(x, y) = ‖x(τ)− y(τ)‖∞ = sup |x− y|τ, τ ∈ W. Then (B(W),M, ∗)
is a complete fuzzy metric space. Let it be equipped with a partial order “ � ”.

Theorem 4.1. Let A and g be self-mappings of (B(W),M, ∗) equipped with a
partial order �. If the following hypotheses hold:

(a) u : W ×D×R −→ R and H :W ×D × R −→ R are bounded and τ :
W ×D −→W denotes transformation of the process.

(b) ∃ a δ ∈ (0, 1) so that:

|H(x, y,Ah(τ(x, y)))−H(x, y,Ak(τ(x, y)))| ≤ δ(h, k, φ(
t

k
)), (4.1)

where, δ(h, k, φ( tk )) = min{M(gx, gy, φ( tk )),M(gx,Ax, φ( tk )),

M(gy,Ay, φ( tk )),M(gx,Ay, 2φ( tk )),M(gy,Ax, 2φ( tk ))}, for a
φ− function, h, k ∈ B(W) and (x, y) ∈ W ×D, with gx � gy and t > 0,

(c) A is g−monotonically increasing,
(d) AY ⊆ gY,
(e) Agh = gAh, whenever, gh = Ah.

Then the system{
Ah(t) = supx∈W{u(x, y)}+H(x, y,Ah(τ(x, y)))

Ak(t) = supx∈W{u(x, y)}+H(x, y,Ak(τ(x, y)))
, (4.2)

has a unique solution in B(W).

Proof. The system has a unique solution iff A and g have a single common point.
For h, k ∈ B(W) and ε > 0, ∃y, z ∈D, so that

Ah < u(x, y) +H(x, y,Ah(τ(x, y))) + ε, (4.3)

Ak < u(x, z) +H(x, z,Ak(τ(x, z))) + ε, (4.4)

and since,
Ah ≥ u(x, z) +H(x, z,Ah(τ(x, z))), (4.5)
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Ak ≥ u(x, y) +H(x, y,Ak(τ(x, y))), (4.6)

then from inequalities (4.3) and (4.6)

Ah−Ak ≤ H(x, y,Ah(τ(x, y)))−H(x, y,Ak(τ(x, y))) + ε

≤ δ(h, k, φ(
t

k
)) + ε.

(4.7)

Also from inequalities (4.4) and (4.5)

Ah−Ak > H(x, z,Ah(τ(x, z)))−H(x, z,Ak(τ(x, z)))− ε

≥ −δ(h, k, φ(
t

k
))− ε.

(4.8)

Consequently, inequalities (4.7) and (4.8) implies that

d(Ah,Ak) = sup |Ah−Ak|τ

≤ δ(h, k, φ(
t

k
)) + ε.

Since ε > 0 is arbitrary, d(Ah,Ak) ≤ δ(h, k, φ( tk )).

So, M(Ah,Ak, φ(t)) = e−
d(Ah,Ak)
φ(t) ≥ δ(h, k, φ( tk )).

Exploiting (e), a pair (A, g) is weakly compatible. Hence, all the postulates of
Theorem 3.4 are verified and consequently, A and g have a single common fixed
point, i.e., the system of functional equations (4.2) has a unique solution. �

5. Conclusion

In this work, results for ordered φ−contractive mapping [1] have been extended
to an ordered pair of mappings in ordered fuzzy metric space utilizing relatively
weaker order theoretic variants. To prove the coincidence of a pair of mapping, we
have used the monotonic technique together with the traditional technique. Fur-
ther, we presented ordered generalized φ−contraction for a pair of self-mappings
(A, g) which is also a novel and sharpened version of celebrated and contemporary
contractions existing in the literature (see, [1], [6], [7], [9], [10], [11], [13], [15], and
so on ) as the underlying contraction is presumed to hold only on the elements of
the ordered set. To substantiate the significance of our conclusions, we solved the
set of functional equations emerging in dynamic programming, which are being
utilized in computer programming and optimization.
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