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Abstract. For a fractional stochastic differential equation in a Hilbert space
with white noise of the Balakrishnan type, existence and uniqueness theorems

for solutions are established. The correlation operator of the stochastic solu-
tion is calculated. The results obtained are used in digital signal processing
in space communication systems and in the analysis of the profitability of

securities.

1. Introduction

A difficult problem in the theory of measure and integral is the analysis of
the relationship between finitely additive and countably additive measures. The
first fundamental results on this problem are due to A. Aleksandrov [1] and K.
Yosida, E. Hewitt [2]. These papers consider real-valued measures that have the
property of finite additivity but not necessarily countable additivity. The current
state of the problem is detailed in Duanmu and Weiss [3]. In the introduction
to the cited work, it was noted that, in contrast to the theorems of Prokhorov
[4] and Vitali-Khan-Sachs [5], in which it was established that under regularity
conditions a sequence of countably additive measures converges to a countably
additive measure, we can prove that for every finitely additive probability measure
P on a totally bounded separable metric space there is a sequence of countably
additive probability measures {Pn}n∈N such that∫

fdPn =

∫
fdP

for every bounded uniformly continuous real-valued function f . Further, in [3]
it was noted that, on the other hand, in contrast to the Portmanteau theorem
[6], such convergence does not take place for simply bounded continuous func-
tions. This means that the assumptions of Portmanteau’s fundamental theorem
are sharp. In the case of infinite-dimensional phase spaces, other mathematical
difficulties arise. A. Balakrishnan’s monograph [7] describes the structure of mea-
surable sets of Hilbert spaces, consistent with its topology. It is important that
the theory of measure in a Hilbert space differs from the classical one in that the
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measure defined on the algebra of cylindrical sets turns out to be only finitely
additive.

This article is devoted to the solvability of stochastic differential equations in
a Hilbert space with a finitely additive probability measure and with a fractional
order of the derivative. In the second section of the work, results are presented
related to the finitely additive probability measure on a Hilbert space. A Gaussian
measure is constructed to illustrate the singularity of the infinite-dimensional case.
The concept of a stochastic integral based on a finitely additive probability measure
on an abstract space is also discussed and its relationship with the It integral
is explained. In the third section, we study a deterministic fractional evolution
equation in a Hilbert space. The results obtained in [8] for a homogeneous equation
on the solvability and representation of a solution are brought to the case of an
nonhomogeneous equation. In the fourth section, the concept of Balakrishnan’s
white noise is introduced and its properties are studied. In Section 5, on the basis
of the concept of an elementary random variable or a physical random variable, the
concept of a weak solution of a fractional stochastic evolution equation is given.
Theorems on the existence and uniqueness of a weak random solution of fractional
evolution equations are established. The results obtained are a generalization and
strengthening of a number of works [9-11]. Next, a probabilistic characteristic is
found - a correlation operator corresponding to a stochastic solution.

2. Finitely additive Gauss measures in a Hilbert space

It is well known that the classical measure theory in finite-dimensional spaces
originated in the works of A. Lebesgue on the theory of integration and found its
application in probability theory, mathematical physics, functional analysis and
other branches of mathematics [12]. In particular, A. Kolmogorov’s interpretation
[13] of the probability of an event as a measure of a set significantly influenced the
further development of probability theory. The theory of measure in an infinite-
dimensional Hilbert space differs from the classical one in that a measure defined
on the algebra of cylindrical sets turns out to be only finitely additive. A.V.
Balakrishnan [14] gave a canonical example in the form of a Gaussian measure
illustrating this feature of probability measures on infinite-dimensional spaces.

2.1. Algebra of cylindrical sets. Let H-separable real Hilbert space. We
choose n elements x1, x2, ..., xn in it and let it be a B-Borel set on the Euclidean
n-dimensional space Rn. We call a cylindrical set the set of elements y ∈ H such
that the n-dimensional vector {[y, xi}, i = 1, 2, ..., n belongs to B. Denote by Hn

the finite-dimensional space spanned by the elements x1, x2, ..., xn. The dimen-
sion of the space Hn can be less than n. If Pn is the projection operator from
H onto Hn, then together with each element y the cylindrical set also contains
Pny + (I − Pn)H. This explains the name ”cylindrical set”.

This set can be defined differently from more general positions. Consider a
finite-dimensional space Hm in H. Let B be a Borel set in H.

A cylindrical set is a set that can be represented as the sum of a Borel set B
and an orthogonal complement to Hm. The Borel set B is then called the base of
the cylinder, and Hm is called its basis space.
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The main properties of cylindrical sets were established in [B], namely
1) the set-theoretic complement of a cylindrical set is also a cylindrical set;
2) the intersection and union of cylindrical sets is also a cylindrical set;
3) two cylindrical sets with bases B1 in H1 B2 in H2 coincides if and only if

B1 = B2.
Properties 1)-3) show that the class of cylindrical sets C forms an algebra. The

space H can be represented as the union of a countable number of cylindrical sets.
The space H itself and the empty set are cylindrical sets. On the other hand, it is
obvious that the union of a countable number from C does not necessarily belong
to . The smallest σ-algebra of sets containing open (or closed) sets in H is called
the Borel σ-algebra of the space H, and the sets belonging to it are called Borel
sets. Denote the class of Borel sets by B.

There is an assertion.

Lemma 2.1. ([7]) The class of Borel sets B coincides with the smallest σ-algebra
containing all cylindrical sets.

It follows from Lemma 2.1 that the B it least is an σ-algebra containing all
closed balls (or, equivalently, all open balls).

So, we have described two objects out of three forming a probability space:
the phase (selective) space H and the Borel σ - algebra B of its subsets. The
next subsection is devoted to Gaussian probability measures on finite-dimensional
spaces.

2.2. Gauss measure on Rn. We begin by studying the Gaussian probability
measure on the Euclidean space Rn (see [15], [16] for example).

Let n ∈ N and let B0(Rn) denote the complete Borel σ-algebra on Rn. Let
λn : B0(Rn) → [0,∞)) denote the usual n-dimensional Lebesgue measure. Then
the standard Gaussian measure γn : B(Rn) → [0, 1] is defined by the formula

γn(A) =
1√
(2π)n

∫
A

exp

(
− 1

2
∥x∥2Rn

)
dλn(x) (2.1)

for any measurable set A ∈ B0(Rn).
In terms of the Radon-Nikodym derivative, equalities (2.1) can be rewritten as

dγn(x)

dλn
=

1√
(2π)n

exp

(
− 1

2
∥x∥2Rn

)
.

In a more general case, the Gaussian measure with mean µ ∈ Rn and variation
σ2, σ > 0, is given as follows

γn
µ,σ2(A) =

1√
(2πσ2)n

∫
A

exp

(
1

2σ2
∥x− µ∥2Rn

)
dλn(x).

The Gaussian measure with mean µ > 0 is called the centered Gaussian mea-
sure.

The Dirac measure δµ is a weak limit of γn
µ,σ2 for σ → 0 d is considered as a

degenerate Gaussian measure. On the contrary, a Gaussian measure with finite
nonzero variation is called a degenerate Gaussian measure.
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The standard Gaussian measure γn on Rn is a probability measure associated
with a normal (Gaussian) probability distribution, that is, if

z ∼ N(µ, σ2)

then

P (z ∈ A) = γn
µ,σ2(A).

2.3. Gauss measure on cylindrical sets in H. Let be a Z-cylindrical set with
base B and basis space Hm. Then by definition:

(1) µ(Z) = χm(B)-countably additive probability measure on the σ-algebra of
Borel subsets in Hm. In particular, if {Zk}-polarly disjoint cylindrical sets with
common base space Hm and corresponding bases {Bk}∞, then

µ

( ∞∑
k=1

Zk

)
=

∞∑
k=1

µ(Zk) =
∞∑
k=1

χm(Bk).

(2) Consistency conditions. In order for the measure µ to be correctly defined,
it is necessary that the following condition be satisfied: if

z = B +Hc
m = B +Hp + (Hm +Hp)

c,

where Hp-subset, orthogonal to Hm, then

χm(B) = χm+p(B +Hp),

where χm+p-Borel measure on Hm +Hp.
Since χm is a countably additive measure on Borel subsets of the finite-dimen-

sional space Hm, it follows that

χm(B) = infχm(G),

where G is an arbitrary open set in Hm containing B.
Next, we give an example of a cylindrical finitely additive measure. Let R

be a self-adjoint non-negative definite operator mapping H into H. We define a
measure χ on Borel sets of a finite-dimensional space Hm as follows. We choose
an orthonormal {e1, ..., em} in Hm. Borel sets in Hm can be assigned one-to-one
correspondence with Borel sets in the ”coordinate” space

x ↔ {[x, ei] : i = 1, ...,m}.
We now introduce a Gaussian measure on Borel sets with a matrix of second

moments {rij}, where rij = [Rei, ei], and R is a given operator.
Obviously, this measure does not depend on the chosen basis. Note that the

(m × m) matrix {rij} can be degenerate. It is easy to see that the introduced
measure satisfies the consistency condition. We denote this cylindrical measure by
µ.

Let NR denote the null space of the operator R and Hm a subspace of NR.
Then the measure µ of any cylindrical set with base in Hm is equal to 1 or 0,
depending on whether this set contains a zero element or not.
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The following property of the measure under consideration plays a very import-
ant role. Let {φi} be a complete orthonormal system in the set of values of the
operator R. Denote by En the cylindrical set:

En = {x :
n∑

i=1

[x, φi]
2 ≤ M2}, µ > 0.

Since

En ⊂
n∩

i=1

{x : [x, φi]
2 ≤ M2},

then

µ(En) ≤ (Φ(M)/λn)
n,

where

Φ(x) =
1√
2π

x∫
0

exp(− t2

2
)dt

and

λ2
n = min

φ∈Hn

(Rφ,φ)

[φ,φ]
,

where Hn is the space spanned by the vectors φ1, ..., φn.
But in this case

1

n
logµ(En) ≤ logΦ(λ/λn)

and hence

lim
1

n
logµ(En) ≤ logΦ(µ/λ),

where

λ = limλn.

In particular, µ(En) → 0, if λ > 0.
Let S(0,M) be a ball of radius M centered at the origin. Then S(0,M) ⊂ En

for every n. This proves that there is no countably additive measure on the class
of Borel sets B that coincides with the measure µ on cylindrical sets. Indeed, if P
is such a countably additive measure, then

P (S(0,M)) ≤ P (En)

as well as P (En) = µ(En), P (S(0,M)) = 0 for all M . But

H =
∪
n

S(0, n), n = 1, 2, ...

and that’s why

1 = lim
n→∞

P (S(0, n)),

and we come to a contradiction.
Thus, if an R-positive definite self-adjoint operator for which

[Rx, x] ≥ m[x, x],m > 0,
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then the cylindrical measure induced by it cannot be extended in such a way that
it becomes countably additive on B, provided that H is infinite-dimensional. And
since the prototypes of non-degenerate Gaussian distributions are positive-definite
operators, we are forced to restrict ourselves to finitely additive measures.

3. The Cauchy problem for a fractional differential equation in a
Hilbert space: a deterministic case

Our goal in this section is to define a weak solution to a class of fractional
abstract differential equations. In this case, the fractional derivatives in the equa-
tion will be Caputo derivatives. Results will be established for weak and strong
solutions of homogeneous and nonhomogeneous equations.

3.1. Operators in fractional Sobolev vector spaces. Let H be a real Hilbert
space with inner product < ·, · > and norm ∥ · ∥. Let A be a linear self-adjoint
positive operator on H with dense domain D(A). The operator A satisfies the
inequalities

< Ax, x >≥ a∥x∥2 ∀x ∈ D(A) (3.1)

for some a > 0. Suppose that the spectrum of A consists of a sequence of positive
eigenvalues {λn}n∈N such that λn → ∞ for n → ∞. Moreover, all λn are isolated
numbers, and the proper space generated by each prime λn has dimension one.

Moreover, the eigenfunctions en of the operator A (Aen = λnen) form an or-
thonormal basis of the space H.

The fractional powers of Aθ are defined for θ > 0 (see, for example, [8]). The
domain D(Aθ) of the operator Aθ consists of those u ∈ H for which

∞∑
n=1

λ2θ
n

∣∣ < u, en >
∣∣2 < ∞

and

Aθu =
∞∑

n=1

λθ
n < u, en > en, u ∈ D(Aθ).

It is easy to establish that D(Aθ) is a Hilbert space with the following norm

∥u∥D(Aθ) = ∥Aθu∥ =

( ∞∑
n=1

λ2θ
n

∣∣ < u, en >
∣∣2)1/2

, u ∈ D(Aθ), (3.2)

and for any 0 < θ1 < θ2 we have

D(Aθ2) ⊂ D(Aθ1).

In particular, the norm of the space D(
√
A) is defined as follows

∥u∥D(
√
A) = ∥

√
A u∥ =

( ∞∑
n=1

λ2θ
n

∣∣ < u, en >
∣∣2)1/2

, u ∈ D(
√
A). (3.3)

If we denote the spaces dual to H by H ′, then we have
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D(A−θ) = (D(Aθ))
′

(3.4)

whose elements are linear bounded functionals over D(Aθ).
If u ∈ D(A−θ) and φ ∈ D(Aθ) then the value u(φ) is determined by the formula

< u,φ >−θ,θ= u(φ). (3.5)

In addition, D(A−θ) is a Hilbert space with norm

∥u∥D(A−θ) =

( ∞∑
n=1

λ−2θ
n

∣∣ < u, en >−θ,θ

∣∣2)1/2

, u ∈ D(A−θ), (3.6)

and for any 0 < θ1 < θ2 we have D(A−θ1) ⊂ D(A−θ2). We also recall that

< u,φ >−θ,θ= (u, φ) u ∈ H,φ ∈ D(Aθ). (3.7)

We now give the definition of a fractional Sobolev vector space. For β ∈
(0, 1), T > 0 and a Hilbert space H equipped with the norm ∥ · ∥H by Hβ(0, T,H)
we denote the spaces of all and u ∈ L2(0, T,H) such that

[u]Hβ(0,T,H) =

( T∫
0

T∫
0

∥u(t)− u(τ)∥2H
|t− τ |2β+1

)
< +∞, (3.8)

Then Hβ(0, T,H) with norm

∥ · ∥Hβ(0,T ;H) = ∥ · ∥L2(0,T ;H) + [·]Hβ(0,T ;H)

is a Hilbert space.
The following assertion holds.

Theorem 3.1. (see [8]). Let H be a separable Hilbert space.
1. Riemann-Liouville operator

Iβ : L2(0, T ;H) → L2(0, T ;H), 0 < β ≤ 1

is injective and its range R(Iβ) is determined by the formula

R(Iβ) =


Hβ(0, T,H), 0 < β < 1/2

{φ ∈ H1/2(0, T ;H) :
T∫
0

t−1|v(t)|2dt < ∞}, β = 1/2

Hβ
0 (0, T,H), 1/2 < β ≤ 1,

(3.9)

where Hβ
0 (0, T,H) = {u ∈ Hβ(0, T ;H) : u(0) = 0}.

2. For the Riemann - Liouville operator Iβ and the inverse I−β, the equivalence
of the following norms are true

∥Iβ(u)∥Hβ(0,T ;H) ∼ ∥u∥L2(0,T ;H), u ∈ L2(0, T ;H),
∥I−β(v)∥L2(0,T ;H) ∼ ∥v∥Hβ(0,T ;H), u ∈ R(Iβ).

(3.10)
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3.2. Fractional derivatives and Mittag-Leffler functions.

Definition 3.2. For any α > 0, we define the Riemann-Liouville integral operator
of order α by the formula

Iα(f)(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds, f ∈ L1(0, T ) for a.e. t ∈ (0, T ),

where T > 0 and

Γ(α) =

∞∫
0

tα−1e−tdt −

Euler’s gamma function.

The fractional Caputo derivative of order α ∈ (1, 2) is given by

cDα
t f(t) =

1

Γ(2− α)

t∫
0

(t− s)1−α d
2f

ds2
(s)ds.

The Caputo derivative can be expressed in terms of the Riemann-Liouville in-
tegral operator

cDα
t f(t) = I2−α

(
d2f

dt2

)
(t).

If f
′
is absolutely continuous, then

cDα
t f(t) =

d

dt
I2−α(f ′ − f ′(0))(t).

For arbitrary constants α, β > 0, the Mittag-Leffler function is introduced

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C.

The function Eα,β(z) is an entire function z ∈ C.
Note that Eα,1(0) = 1.
Next, we introduce the Laplace transform of the function f(t) in the form

L[f(t)](z) =

∞∫
0

eztf(t)dt, z ∈ C.

Lemma 3.3. Let α ∈ (1, 2) and β > 0. Then for any µ ∈ R such that πα/2 <
µ < π there exists a constant C = C(α, β, µ) such that what

|Eα,β(z)| ≤
C

1 + |z|
, z ∈ C, µ ≤ |arg(z)| ≤ π. (3.11)

Lemma 3.4. For α, β, λ > 0 we have

L[tβ−1Eα,β(−λtα)](z) =
zα−β

zα + λ
,Rez > λ1/2. (3.12)
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Lemma 3.5. If α, λ > 0, then we have

d

dt
Eα,1(−λtα) = −λtα−1Eα,α(−λtα), t > 0 (3.13)

d

dt
(tkEα,k+1(−λtα)) = tk−1Eα,k(−λtα), k ∈ N, t ≥ 0 (3.14)

d

dt
(tα−1Eα,α(−λtα) = −λtα−2Eα,α−1(−λtα), t ≥ 0. (3.15)

Lemma 3.6. For any 0 < β < 1, the function x → xβ

1+x reaches its maximum on

[0,+∞] at the point beta
1−β and the maximum value as

max
x≥0

xβ

1 + β
= ββ(1− β)1−β , β ∈ (0, 1). (3.16)

3.3. Weak solutions of a homogeneous fractional equation. Let α ∈ (1, 2)
and T > 0.

Definition 3.7. The function u(t) is called a weak solution of the abstract fractio-
nal equation

cDα
t u+Au = 0 (3.17)

if u ∈ C([0, T ];D(
√
A)), u′ ∈ L2(0, T ;H)

∩
C([0, T ];D(A−β)) for some β ∈ (0, 1),

and for any v ∈ D(
√
A) there is

< I2−α(u′ − u′(0))(t), v >∈ C1([0, T ])

and

d

dt
< I2−α(u′ − u′(0))(t), v > + <

√
Au(t),

√
Av >= 0, t ∈ (0, T ). (3.18)

Remark 3.8. For a weak solution u(t) of equation (3.11) we have

cDβ
t ∈ H1−β(0, T ;H), β ∈ (0, 1),

where the Caputo derivative of order β ∈ (0, 1) is given by

cDβ
t u(t) =

1

Γ(1− β)

t∫
0

(t− s)−βu′(s)ds = I1−β(u′)(t). (3.19)

In fact, since u′ ∈ L2(0, T ;H) we can apply Theorem 3.1 to get I1−β(u′) ∈
H1−β(0, T ;H), so cDβ

t u ∈ H1−β(0, T ;H).
In particular, for β = α/2 and β = 1− α/2 we have

cD
α/2
t u ∈ H1−α/2(0, T ;H)u

cD
1−α/2
t u ∈ Hα/2(0, T ;H).

Recall (see, for example, [17]) that the Laplace transform is used to solve scalar
fractional differential equations.

There is an assertion
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Lemma 3.9. for any λ > 0 and x, y ∈ R the solution to the problem{
cDα

t u(t) +Au(t) = 0, t ≥ 0

u(0) = x, u′(0) = y.

looks like

u(t) = xEα,1(−λtα) + ytEα,2(−λtα).

Theorem 3.10. Let u0 ∈ D(
√
A)u and u1 ∈ H, then the function

u(t) =
∞∑

n=1

[
< u0, en > Eα,1(−λnt

α)+ < u1, en > tEα,2(−λnt
α)
]
en (3.20)

is the only weak solution (3.17) satisfying the initial conditions

u(0) = u0, u
′(0) = u1. (3.21)

The proof of the theorem follows the following scheme. First, we need to make
sure that the representation of solutions in the form of a series (3.20) is correct.

To do this, we will look for a solution in the form

u(t) =
∞∑

n=1

uu(t)en (3.22)

where the functions un(t) =< u(t), en > are unknown. It is easy to see that,
taking into account the initial conditions (3.21), un(t) will be a solution to the
problem {

cDα
t un(t) + λnun(t) = 0, t ≥ 0

un(0) =< u0, en >, u′
n(0) =< u1, en >

(3.23)

and, further, with the help of Lemma 3.9 we obtain

un =< un, en > Eα,1(−λnt
α)+ < u1, en > tEα,2(−λnt

α), t ≥ 0. (3.24)

Now, taking u0 ∈ D(
√
A), u1 ∈ H, we show that series (3.22) with un(t) given

in form (3.23) is a weak solution of (3.17) and satisfies conditions (1.13).

First, note that for any t ∈ [0, T ] we have u(t) ∈ D(
√
A). Indeed, since

∥
√
Au(t)∥2 =

∞∑
n=1

λn|un(t)|2 ≤ 2
∞∑

n=1

λn| < u0, en > Eα,1(−λnt
α)|+

+2
∞∑

n=1

λn∥ < u1, en > tEα,2(−λnt
α)∥2

then thanks to (3.18) we get

λn| < u0, en > Eα,1(−λnt
α)|2 ≤ Cλn|u0, en|2,

λn| < u1, en > Eα,2(−λnt
α)|2 ≤ Ct2−α|u1, en|2×
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× λnt
α

(1 + λntα)2
≤ Ct2−α| < u1en > |2

and, therefore, given α < 2, we get

∥
√
Au(t)∥2 ≤ C∥

√
Au0∥2 + CT 2−α∥u1∥2, (3.25)

So, for any n ∈ N we have

∥
√
A

∞∑
k=u

uk(t)ek∥2 ≤ C
∞∑

k=n

λk| < u0, en > |2+

+CT 2−α
∞∑

k=n

| < u1, ek > |2

and in addition,

lim
n→∞

sup
t∈[0,T ]

∥
√
A

∞∑
k=n

uk(t)ek∥ = 0

As a result, the series (3.22) converges uniformly in [0, T ] in D(
√
A) to u ∈

C([0, T ];D(
√
A)).

Moreover, u(0) =
∞∑

n=1
< u0, en > en = u0.

3.4. Weak and strong solutions of an nonhomogeneous equation. Recall
(see [17]) that to find a solution to a scalar fractional inhomogeneous equation, one
can use the Laplace integral transform of the Mittag-Leffler functions and their
derivatives indicated in formulas (3.11) - (3.15).

Lemma 3.11. Let f(t) be defined on the semiaxis R+. For any α, 1 < α < 2, λ > 0
and x, y ∈ R, the solution to the problem

cDα
t u(t) + λu(t) = f(t), t > 0

u(0) = x, u′(0) = y

presented in the form

u(t) =

t∫
0

(t− s)α−1Eα,α(−λ(t− s)α)f(s)ds+ xEα,1(−λtα) + yTEα,2(−λtα).

Let us now consider an nonhomogeneous equation in the space H in the form

cDα
t u(t) +Au(t) = f(t), t > 0 (3.26)

with initial conditions

u(0) = u0, u
′(0) = u1, (3.27)

where A is a self-adjoint positively homogeneous operator on H such that ¯D(A) =
H.

There is an assertion.
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Theorem 3.12. Assume that u0 ∈ D(
√
A) and u1 ∈ H, while the function f(t)

and taking values in H is strongly continuously differentiable on compact segments
[kT, (k + 1)T ] ⊂ R+, k ∈ Nv{0}. Then the function

u(t) =

t∫
0

(t− s)α−1Eα,α(−λn(t− s)α) < f(s), en > ends+

+
∞∑

n=1

[< u0, en > Eα,α(−λnt
α)+ < u1, en > tEα,2(−λnt

α)]en (3.28)

is the only weak solution of equation (3.26) satisfying the initial conditions (3.27).

Additionally, we note that

u′(t) = (α− 1)

t∫
0

(t− s)α−2Eα,α(−λn(t− s)2) < f(s), en > ends−

λn

t∫
0

(t− s)2α−2Eα,α(−λn(t− s)2) < f(s), en > ends+

∞∑
n=1

[−λn < u0, en > tα−1Eα,1(−λnt
α)+ < u1, en > Eα,2(−λnt

α)]en (3.29)

and u′ ∈ C([0, T ],D(A−θ)) for θ ∈ ( 2−α
2n , 1/2).

The proof of the theorem consists in the implementation of the Duhamel prin-
ciple for the class of fractional equations under consideration. The uniqueness of
the weak solution follows directly from Theorem 3.10.

Theorem 3.13. Let f(t) satisfy the conditions of theorem (3.17). For u0 ∈ D(A)

and u1 ∈ D(
√
A) the weak solution of Eq. (3.28) coincides with the strong solution

and has place equality

cDα
t u(t) = −λn

t∫
0

(t− s)α−1Eα,α(−λn(t− s)α) < f(s), en > ends−

−
∞∑

n=1

[λn < u0, en > Eα,1(−λnt
α) + λn < u1, en > tEα,2(−λnt

α)]en.

The central place in the proof of this theorem is occupied by Lerch’s theorem
on the uniqueness of the inverse Laplace transform in the infinite-dimensional case
and the following equality

I2−α(u′ − u1)(t) = −
∞∑

n=1

λn[< u0, en > tEα,2(−λnt
α)+

+ < u1, en > t2Eα,3(−λnt
α)]en (3.30)

and that I2−α(u′ − u1)(t) ∈ C([0, T ],H).
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From (3.29) it follows that

d

dt
I2−α(u′ − u1)(t) = −

∞∑
n=1

λn[< u0, en > tEα,2(−λnt
α)+

+ < u1, en > t2Eα,2(−λnt
α)]en (3.31)

d
dtI

2−α(u′ − u1)(t) ∈ C([0, T ], H).

4. Balakrishnan’s White Noise

Let (Ω,B, ρ) be a probability triple. In the course of probability theory, a
random variable is understood as any function defined on Ω and measurable with
respect to the Borel σ-algebra B.

Here we need finitely additive measures on algebras, since in this case we can
consider Gaussian random variables with non-nuclear correlation matrices. In the
monograph [7], developing the scheme of Dunford and Schwartz, a new approach
to the definition of a random variable is proposed.

So, let an Ω-abstract space, a C-algebra (not necessarily a σ-algebra) of subsets
in Ω, a µ-finitely additive probability measure defined on C. A function f(ω)
mapping Ω into a Hilbert space is called a random variable in the weak sense if
for any finite set of elements φi, i = 1, ..., n, from the Hilbert space conditions are
met:

1) The set {ω : {[f(ω), φi]} ∈ B}, where B is a Borel set in Euclidean space,
belongs to C ;

2) The measure thus induced on Borel sets is countably additive for every n.
Here the set {[f(ω), φi]} defines an ordinary random variable. Given a cylin-

drical probability measure on a Hilbert space, then one can construct the corre-
sponding random variable by setting: Ω = H, the C-class of cylindrical sets, and
f(ω) = ω. For example, if the cylindrical measure is a Gaussian measure µ such
that its characteristic function is∫

H

ei[ω,φ]dµ = exp

(
− ∥φ∥2

2

)
.

Then, for an arbitrary orthonormal basis {φk} in H, the scalar products
[f(ω), ωk] define independent Gaussian random variables with mean zero and unit
variance. However, for all ω

∞∑
k=1

[f(ω), φk]
2 = ∥f(ω)∥2 < ∞.

This statement contradicts the classical probability theory, according to which
a similar sum of squares of independent Gaussian random variables with unit
variance should increase infinitely with probability 1. One fundamental point
should be noted. In the classical theory, the space of all possible sequences is
taken as a phase space, and a certain countably additive measure is defined on
the Borel algebra of its subsets. Here we are talking only about finitely additive
measures, and they are defined on algebras. In fact, for the case of Gaussian
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random variables, the subspace of square summable sequences has measure zero.
Therefore, it is extremely important how the probability space is arranged.

Everywhere below we assume that Ω = H, C is the class of cylindrical sets, and
B is a Borel algebra on H. Note that condition 1) of the definition of a random
variable implies that the preimages of Borel sets in En (n-fixed) belong to C. But
since the Borel sets in En form a σ-algebra, their preimages also form a σ-algebra.

Consequently, the measure µ is also defined on the σ-algebra B of Borel sets
in the space H. Therefore, we can slightly weaken the definition and call f(ω) a
random variable in the weak sense if for any finite set n of elements φi from H
the set {ω : {[f(ω), φi]} ∈ B}, where B is a Borel set in En, belongs to B, and the
measure µ is defined and countably additive on the σ-subalgebra of the preimage
algebra of Borel sets.

Let now (H,C, µ)-probability space, where H-real separable Hilbert space, C-
class of cylindrical sets with finite-dimensional bases, and µ-cylindrical measure.
For a given function f(·) mapping H into another Hilbert space H ′, the preimages
of the Borel sets {ω : f(ω) ∈ B,B ∈ H} do not necessarily belong to the class C.
Therefore, in the general case, it will not be possible to determine the probability of
such an event. What class of functions do random variables belong to? To answer
this question, we will proceed by analogy with the procedure for completing spaces
with the help of Cauchy sequences. Denote by P the projection operator onto a
finite-dimensional space. Then the inverse images of the Borel sets of the function
f(Pω) (under the assumption that f(·) is Borel measurable) belong to the class
C.

Therefore, for any Borel set C from the space H ′ the formula

χ(C) = µ{ω : P (ω) ∈ C}
defines a countably additive measure on the σ-algebra of Borel sets in H ′. Thus
the function f(Pω) is a random variable. In what follows, each such function will
be called an elementary random variable (ESV). A random variable is an arbitrary
Cauchy sequence with respect to the measure of elementary random variables.

Let us give an extension of the concept of ESP.

Definition 4.1. Let f : H → beanH-measurable Borel map and let Pn be a
sequence of finite-dimensional projections strongly convergent to the identity op-
erator. The mapping f(·) is called a physical random variable (PSV) if:

1) the sequence of tame functions {f(Pnω)} is a Cauchy sequence in probability
for each {Pn}.

2) a sequence of {vn} probability measures induced by f ◦ Pn and defined as

vn = µ ◦ (f ◦ Pn)
−1

converges strongly to the same probability measure on H1 for every sequence Pn.

Condition 2) is equivalent to the fact that there is a limit

C(ω) = lim
n→∞

∫
H

ei[f◦Pnω,ω′]dµ(h)

independent of Pn.
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If f is a FSV, then µ can always be extended to events of the form f−1(B′),
where B′ is a Borel set in H ′ using the equality

µ(f−1(B′)) = lim
n→∞

µ((ω ∈ H
∣∣f ◦ Pn(ω) ∈ B′)),

where the limit exists by definition. The class of H ′-valued FSWs is denoted as
L′(H,C, µ,H ′)-adjoint to L(H,C, µ,H ′) spaces.

To complete our constructions, we introduce the Balakrishnan’s noise model.
It is natural to assume that the Gaussian noise has a much larger bandwidth than
just the signal. This follows from the fact that the corresponding representation
is the identity mapping on H equipped with the Gaussian measure µG with the
unit correlation operator. Such a mapping is called Balakrishnan’s white noise.

Let’s give a description of the FSV. To achieve this goal, the following concept
of continuity is needed.

Definition 4.2. Let H,H ′ be real Hilbert spaces. A mapping F : H → H ′ is
continuous in x ∈ H with respect to the S-topology if for any ε > 0 there exists a
Hilbert-Schmidt operator Lε(x) : H → H ′ such that from the inequality

∥Lε(x)(x− x′)∥ ≤ 1 (4.1)

follows that

∥F (x)− F (x′)∥ ≤ ε. (4.2)

The mapping F is S-continuous on U ⊂ H if the Hilbert-Schmidt operator from
(4.1) does not depend on x ∈ H.

Let us give a weaker notion of the following form.

Definition 4.3. A map F : H → H ′ is said to be uniformly S-continuous in a
neighborhood of the origin (USCNO) if F is uniformly S-continuous on the sets

Un = {x ∈ H : ∥Lnx∥ ≤ 1}

where {Ln}n≥1 is a sequence of Hilbert-Schmidt operators such that

∥Ln∥HS → 0
∞∪

n=1

Un = H.

Obviously, a uniform S-continuous mapping is also a USCNO. In this case
Ln = 1

nL.
Now we have all the necessary tools to formulate the criteria for the FSF.

Theorem 4.4. A sufficient condition for the mapping F : H → H ′ to be FSF is
its USCNO-th.

A useful characterization of the USCNO-ness of a mapping is the following
assertion.

Theorem 4.5. A map F : H → H ′ is USCNO if and only if there exists a
Hilbert-Schmidt operator L : H → H ′ and a continuous map g : H → H ′ such that

F = g ◦ L.
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5. The Cauchy problem for a fractional differential equation in a
Hilbert space: the stochastic case

In this section, using families of special Mittag-Leffler functions and expansions
in eigenfunctions of a non-negative definite self-adjoint operator A with a dense
domain in the Hilbert space H, we obtain a generalization of linear states with a
finite-dimensional space to the infinite-dimensional case, in particular, it covers the
systems described by partial differential equations and fractional time derivatives
of order α, 1 < α < 2 together with Balakrishnan white noise as input.

To this end, at the very beginning, we define the function spaceW = L2(0, T ;H)
and 0 < T < ∞. Let Hn be a separable Hilbert space and let Wn = L2(0, T ;Hn)
(here the letter n is an abbreviation for the word noise). Denote by A the operator
defined in Section 3 and by B the linear bounded operator acting from the space
Hn to H.

Consider the fractional stochastic differential equation

cDα
t u(t) +Au(t) = Bω(t), t > 0, 1 < α < 2, (5.1)

along with initial conditions

u(0) = u0, u
′(0) = u1. (5.2)

The results obtained in §3, §4 allow for each ω ∈ Wn to rewrite problem (5.1),
(5.2) in integral form. Moreover, it can be argued that the integral equation
indicated below has a unique weak solution. Since we want to emphasize the
dependence of the solution on the input ω, we will use the notation u(t, ω) for
this.

Recall also that en and λn denote the n-th eigenfunctions and eigenvalues of
the operator A, respectively.

The equation

< u(t, ω), en >=< u0, en > + < u1, en > t−

−
t∫

0

(t− s)α−1 < u(s, ω), Aen > ds+

t∫
0

(t− s)α−1 < Bω(s), en > ds (5.3)

has a solution defined by the formula

u(t, ω) =

t∫
0

(t− s)α−1Eα,α(−λn(t− s)α) < Bω, en > ends+

+
∞∑

n=1

[< u0, en > Eα,1(−λnt
α)+ < u1, en > tEα,2(−λnt

α)]en,

and for each ω this solution is unique in the class of weakly continuous functions
satisfying equation (5.3). Let us calculate the correlation operator corresponding
to the process u(t, ω). The process u(t, ω) is defined at each time t. Assuming u0

and u1 are given, we get
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E
([

u(t, ω)−
∞∑

n=1

[< u0, en > Eα,1(−λnt
α)+ < u1, en > Eα,2(−λnt

α)en

]
×

[
u(s, ω)−

∞∑
n=1

[< u0, en > Eα,1(−λnt
α)+ < u1, en > Eα,2(−λnt

α)

]
en

)
=

E
(∫ t

0

(t− s)α−1Eα,α(−λn(t− s)α) < Bω, en > ends×

×
∫ s

0

(s− σ)α−1Eα,α(−λn(s− σ)α) < Bω(σ), en > endσ

)
=

E
(∫ t

0

(t− s)α−1Eα,α(−λn(t− s)α) < ω(s), B∗en > ends×

×
∫ s

0

(s− σ)α−1Eα,α(−λn(s− σ)α) < ω(σ), B∗en > endσ

)
=

[ ∫ t

0

(t− s)α−1Eα,α(−λn(t− s)α)ds·

∫ s

0

(s− σ)α−1Eα,α(−λn(s− σ)α)dσ · ∥B∗∥
]
en.

Therefore, the correlation operator R(t, s) is defined by the formulas

R(t, s)u0 =

∫ t

0

(t− s)α−1Eα,α(−λn(t− s)α)ds·

∫ s

0

(s− σ)α−1Eα,1(−λn(s− σ)α)u0dσ.

R(t, s)u1 =

∫ t

0

(t− s)α−1Eα,α(−λn(t− s)α)ds×

×
∫ s

0

(s− σ)α−1Eα,2(−λn(s− σ)α)u1dσ.

6. Conclusion

Gaussian finitely additive white noise (Balakrishnan’s white noise) has a uni-
form power spectral density, is normally distributed, sums with the useful signal,
and is statistically independent of the signal. Most often, such measures are used
in digital signal processing in space communication systems and in the analysis of
the profitability of securities.
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