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Abstract. In this paper, we propose an extension of the inverse Frèchet

distribution called the inverse power Frèchet distribution, which offers more
reliability and flexibility in modeling lifetime data. A comprehensive account

of the statistical properties such as reliability characteristics, moments, quan-

tiles, mean deviation, generating function, stochastic ordering, mean residual
lifetime function and various entropy measures have been derived. Bonfer-

roni, Lorenz Curves and Gini index are also computed for the proposed model.

Different estimation methods are studied to estimate the proposed model pa-
rameters. Simulation studies is done to present the performance and behavior

of the different estimates of the proposed model parameters. The real data

application for the proposed distribution is modeled to illustrate its applica-
bility, and it is shown that our distribution fits much better than some other

existing distributions.

1. Introduction

Extreme value theory and its applications plays an important role in statistical
analysis and one of the important distributions used to describe extreme data is
the Frèchet distribution (which is also known as the extreme value distribution of
type II). The Frèchet distribution is named according to French mathematician
Maurice Renè Frèchet, who developed it as a maximum value distribution.

Some new important extensions of the Fréchet distribution have been proposed
in the literature. For example, Beta Fréchet disrribution by Barreto-Souza et al.
[9], The modified Fréchet distribution and its properties by Tablada and Cordeiro
[24], a new three parameter Fréchet by Al-Babtain et al. [3] and the generalized
transmuted Fréchet distribution by Nofal and Ahsanullah [21]. De Gusmão et al.
[12] proposed a three parameter generalized inverse Weibull distribution in which
includes the Fréchet distribution. Krishna et.al. [18] proposed Marshall-Olkin
Fréchet and applications of Marshall-Olkin Fréchet have been studied by Krishna
et.al. [19]. Silva et al. [23] defined the gamma extended Fréchet. Afify et al. [2] in-
vestigated the Weibull Fréchet distribution and its applications. Logistic Fréchet
distribution has been proposed by Tahir et al [25]. For more details about the
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Fréchet distribution and its applications, see Kotz and Nadarajah. [17]. Further-
more, applications of this model in various fields are given in Harlow. [16].

The Fréchet (Fr) distribution can be seen as the inverse Weibull distribution with
shape parameter θ and scale parameterλ. Thus, its probability density func-
tion(pdf) is given by

f (y; θ, λ) = θλθy−(θ+1) exp

[
−
(
λ

y

)θ]
(1.1)

where y > 0, θ > 0, and λ > 0. The cumulative distribution function (cdf) is given
by

F (y; θ, λ) = exp

[
−
(
λ

y

)θ]
(1.2)

Researchers have more interest to generate inverted distributions under inverse
transformation for example, the inverse power two-parameter weighted Lindley
distribution by Abd El-Monsef and Al-Kzzaz [1], the inverse power Lindley dis-
tribution was discussed by Barco et al [8] using power transformation X = Y 1/α

for the inverse Lindley distribution and Alkarni [4] proposed the extended inverse
two-parameter Lindley distribution as a statistical inverse model for upside-down
bathtub survival data that uses the transformation X = Y −1/α.

Starting from the Fréchet (Fr) distribution, we develop and study a new general-
ization model called an inverse power Frèchet (IPFr) distribution. The objective
of this article is to study the statistical properties of the IPFr distribution, and
then estimate the unknown parameters using maximum likelihood method. We
aim that comprehensive description of mathematical and statistical properties of
this distribution will attract wider applications in biology, engineering, medicine,
economics and other areas of research.

Here, this paper generates another generalization of the Frèchet distribution using
inverse transformation of Frèchet random variates. Let us consider a transforma-
tion X = Y −1/α where Y ∼ Fr (θ, λ). Then the resulting distribution of X is
called the inverse power Frèchet distribution and denoted by X ∼ IPFr (α, θ, λ).
The probability density function and cumulative distribution function of the IPFr
are given by

f (x;α, θ, λ) = αθλθxαθ−1 exp
[
− (λxα)

θ
]

(1.3)

and

F (x;α, θ, λ) = 1− exp
[
− (λxα)

θ
]

(1.4)

respectively, where α, θ > 0 are shape parameter and λ > 0 is scale parameter . It
can be noticed that the inverse Fr distribution (Weibull distribution ) is a special

86



THE INVERSE POWER FRÈCHET DISTRIBUTION 3

case of the IPFr distribution when α = 1.

The paper is organized as follows. The introduction of the proposed study in-
cluding the methodological details is given in Section 1. Section 2 provides some
statistical properties related to the proposed model. Entropy such as Renyi en-
tropy, Shannon entropy, β-entropy and generalized entropy are derived in Section
3. Different methods of estimation of the model parameters are constructed in
Section 4. In Section 5, simulation study has been carried out to see the perfor-
mance of the estimates of the model parameters using the methods of estimation
discussed in Section 4. In Section 6, we illustrate the application and usefulness of
the proposed model by applying it to one data set. Finally, Section 7 offers some
concluding remarks.

2. Statistical properties

The different mathematical and statistical properties such as Asymptotic behav-
ior, reliability measures, moments, mean deviation, generating functions, quantile
function, Bonferroni and Lorenz curves, stochastic ordering and order statistics of
the IPFr distribution have been derived in following subsections.

2.1. Asymptotic behavior. By omitting the dependence on the positive param-
eters α, θ and λ in (1.3) and (1.4), we have f (x;α, θ, λ) = f (x) and F (x;α, θ, λ) =
F (x). The behaviors of the pdf of IPFr distribution f (x) at x = 0 and x = ∞,
respectively, are given by

f (0) =

 ∞, if αθ<1
λθ, if αθ=1, f (∞) = 0
0, if αθ>1

The following theorem shows that there are two shapes for the pdf of IPFr distri-
bution.

Theorem 2.1. The pdf f (x)of the IPFr distribution is

(1) decreasing if {α θ ≤ 1}.
(2) unimodal if {α θ>1}.

Proof. The first derivative of f (x) is given by

f ′ (x) = −ψ (x)

x
f (x)

where ψ (x) = 1 + α θ
(
λθxα θ − 1

)
• If α θ ≤ 1, then ψ (x)>0. Hence f ′ (x) < 0 which implies that f (x) is

decreasing.
• f ′ (x) = 0 if ψ (x) = 0 which occurs at the point

x0 =

(
α θ − 1

α θ λθ

) 1
α θ
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Figure 1. Plots of the IPFr pdf distribution for different parameter values.

The second derivative of f (x) given by

f ′′ (x) = − 1

x
[(1 + ψ (x)) f ′ (x) + ψ′ (x) f (x)]

where ψ′ (x) = λθ (α θ)
2
xα θ−1.

Clearly, at α θ> 1, ψ (x) is a unimodal function with maximum value at the point
x0 since, f ′′ (x0)<0, f (x) has a global maximum at x0; hence, the mode of f (x)
is given by

x0 =

(
α θ − 1

α θ λθ

) 1
α θ

�

The behavior of IPFr distribution density can be illustrated as in the Fig. 1.

2.2. Reliability measures. The characteristics based on reliability analysis play an
important role to study the pattern of any lifetime phenomenon. Here, we present
the survival (or reliability) function and study the hazard (or failure) rate function.
Also, the mean time to system failure and the mean residual lifetime are obtained
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THE INVERSE POWER FRÈCHET DISTRIBUTION 5

for the IPFr distribution.

2.2.1. The survival. The survival function of the IPFr distribution, denoted by
S (x), is given by

S (x) = 1− F (x) = exp
[
− (λxα)

θ
]
, x>0 (2.1)

2.2.2. The hazard rate function. The other characteristic of interest of a random
variable is the hazard (failure) rate function. h (x), also known as the (instanta-
neous) rate of failure for the survivors to time x during the next instant of time.
The hazard rate function for the IPFr distribution is given by

h (x) =
f (x)

R (x)
= αθλθxαθ−1 (2.2)

Now, we study the behavior of h (x), of the Log-IL distribution and show its
different shapes. According to Glaser [15], the behavior of h (x) has the same
meanings as behavior of η (x) where η (x) = − d

dx ln f (x). The following theorem
shows the shapes of the hazard rate function of the IPFr distribution

Theorem 2.2. Hazard rate function of the IPFr distribution is

• Decreasing if {α θ<1}.
• Constant if {α θ = 1}.
• Increasing if {α θ>1}.

Proof. Since

η (x) = − d

dx
ln f (x) = αθλθxαθ−1 − αθ − 1

x

It follows that

η′ (x) = (αθ − 1)

(
αθλθxαθ−2 +

1

x2

)
• If α θ<1, then η′ (x)< 0. Hence η (x) is decreasing which implies that
h (x) is decreasing.
• If α θ=1, then η′ (x) = 0. Hence η (x) is constant which implies that h (x)is

constant.
• If α θ>1, then η′ (x)> 0. Hence η (x) is increasing which implies that h (x)

is increasing.

�

Fig. 2 illustrates the behavior of the hazard rate function of the IPFr distribution
at different values of the parameters involved.
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Figure 2. Plots of hazard rate function of the IPFr distribution for differ-
ent parameter values.

2.2.3. The mean residual life time. The mean residual life (also known as the
mean remaining life) function represents the expected additional life length for a
unit that is alive at age x, denoted by E (X − x|X ≥ x) which can be given as

m (x) = E (X − x|X ≥ x) =
1

S (x)

∫ ∞
x

S (t) dt

=
1

λ
1
α exp (λxαθ)

Γ

(
αθ + 1

αθ
, λxαθ

) (2.3)

2.3. Moments. Let x1, x2, ...xn be the random observation from the IPFr distri-
bution, the rth raw moment (about the origin) is given by

µ
′

r = E (xr)

= λ−
r
α Γ

(
α θ + r

α θ

)
; r = 1, 2,

(2.4)

The mean and variance are, respectively
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THE INVERSE POWER FRÈCHET DISTRIBUTION 7

µ = µ
′

1 = λ−
1
α Γ

(
α θ + 1

α θ

)

σ2 = µ
′

2 −
(
µ
′

1

)2

= λ−
2
α

[
Γ

(
α θ + 2

α θ

)
−
{

Γ

(
α θ + 1

α θ

)}2
]

The nth central moment µn can be obtained from the rth raw moments through
the relation

µn = E (X − µ)
n

=

n∑
r=0

(
n
r

)
(−1)

n−r
(µ)

n−r
µ
′

r; n = 1, 2, ...

Then, the nth central moment is given by

µn = E (X − µ)
n

=

n∑
r=0

(
n
r

)
(−1)

n−r
λ−

n
α

(
Γ

(
α θ + 1

α θ

))n−r
Γ

(
α θ + r

α θ

)
(2.5)

The coefficient of skewness and kurtosis measure convexity of the curve and its
shape. It is obtained by moments based relations suggested by Pearson and given
by;

β1 =
(µ3)

2

(µ2)
3 =

(
µ
′

3 − 3µ
′

2µ+ 2µ3
)2

(
µ
′
2 − µ2

)3
and

β2 =
µ4

(µ2)
2 =

µ
′

4 − 4µ
′

3µ+ 6µ
′

2µ
2 − 3µ4(

µ
′
2 − µ2

)2
The coefficient of variation (CV) is calculated by

CV =

√[
Γ
(
α θ+2
α θ

)
−
{

Γ
(
α θ+1
α θ

)}2
]

Γ
(
α θ+1
α θ

) × 100

Some measures are calculated in Table 1 for different combination of model pa-
rameters and it is observed that the shape of the IPFr distribution is right skewed
for some choices of α, θ, and λ. Also, there is no change in β1, β2 and CV when
α and θ are fixed.

2.4. Mean Deviation. The mean deviation (MD) about mean is defined by

MD =

∫
x

|x− µ| f (x, α, θ, λ) dx

=

∫ µ

0

(µ− x) f (x, α, θ, λ) dx+

∫ ∞
µ

(x− µ) f (x, α, θ, λ) dx

After simplification, we get
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8 M. M. E. ABD EL-MONSEF AND H.S.AL-KZZAZ

Table 1. Values of mean, variance, skewness, kurtosis, mode and coeffi-
cient of variation for the IPFr distribution at different parameter combina-

tions.

Moments µ σ2 β1 β2 x0 CV
λ α = 1 and θ = 0.5

0.5 4.0000 80.0000 43.8080 87.7200 No mode 223.6070
1 2.0000 20.0000 43.8080 87.7200 No mode 223.6070

1.5 1.3333 8.8889 43.8080 87.7200 No mode 223.6070
2 1.0000 5.0000 43.8080 87.7200 No mode 223.6070
λ α = 2 and θ = 0.5

0.5 1.4142 2.0000 4.0000 9.0000 No mode 100
1 1.0000 1.0000 4.0000 9.0000 No mode 100

1.5 0.8165 0.6667 4.0000 9.0000 No mode 100
2 0.7071 0.5000 4.0000 9.0000 No mode 100
λ α = 2 and θ = 1

0.5 1.2533 0.4292 0.3983 3.2451 1.0000 52.2723
1 0.8862 0.2146 0.3983 3.2451 0.7071 52.2723

1.5 0.7236 0.1431 0.3983 3.2451 0.5773 52.2723
2 0.6267 0.1073 0.3983 3.2451 0.5000 52.2723

MD = 2µF (µ)− 2

∫ µ

0

xf (x, α, θ, λ) dx

= 2λ−
1
α

(
Γ

(
αθ + 1

αθ
, λθµα θ

)
− Γ

(
αθ + 1

αθ

)
exp

[
− (λxα)

θ
]) (2.6)

2.5. Generating Functions. In distribution theory, the role of generating func-
tions is very useful to generate the respective moments of the distribution and also
these functions are uniquely determining the distribution. The different generating
function of the IPFr distribution have been calculated as follows;

• Moment generating function MX (t)for a random variable X is obatined
as

MX (t) = E
(
etx
)

=

∞∑
j=0

1

j !

(
tλ−

1
α

)j
Γ

(
α θ + j

α θ

)
(2.7)

• Characteristics function φX (t) for random variable X is obtained by re-
placing t by i t,

φX (t) = E
(
eitx
)

=

∞∑
j=0

1

(j) !

(
i tλ−

1
α

)j
Γ

(
α θ + j

α θ

)
(2.8)

where, i2 = −1.
• The kumulants generating function KX (t) is obtained as

KX (t) = ln

 ∞∑
j=0

1

j !

(
tλ−

1
α

)j
Γ

(
α θ + j

α θ

) (2.9)

2.6. Quantile function and median. Let X be a random variable follows the
IPFr distribution then, the quantile function, say Q (x) is
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THE INVERSE POWER FRÈCHET DISTRIBUTION 9

Q (x) = λ−
1
α (− ln (1− x))

1
αθ (2.10)

The median can be derive from (2.10) by letting x = 0.5

Q (0.5) = λ−
1
α (ln (2))

1
αθ

2.7. Bonferroni, Lorenz Curves and Gini index. The Bonferroni, Lorenz
curves and Gini index have more comprehensive applications to describe inequality
distribution in economics, reliability, demography, insurance and medicine. For the
IPFr distribution, the Bonferroni curve defined by

BF (p) =
1

pµ

∫ p

0

Q (x) dx

=
Γ
(
αθ+1
αθ

)
− Γ

(
αθ+1
αθ ,− ln (1− p)

)
pΓ
(
αθ+1
αθ

) (2.11)

the Lorenz curve is given by

LF (p) =
1

µ

∫ p

0

Q (x) dx

==
Γ
(
αθ+1
αθ

)
− Γ

(
αθ+1
αθ ,− ln (1− p)

)
Γ
(
αθ+1
αθ

) (2.12)

and, the Gini index is given by

G = 1− 2

∫ 1

0

LF (p) dp

= 1− (2)
− 1
αθ

(2.13)

2.8. Stochastic Ordering. Stochastic ordering of a positive continuous random
variables is an important property for judging the comparative behavior of con-
tinuous distributions. A random variable X is said to be smaller than a random
variable Y in the

(1) stochastic order (X ≤st Y ) if FX (x) ≥ FY (x) for all x.
(2) hazard rate order (X ≤hr Y ) if hX (x) ≥ hY (x) for all x.
(3) mean residual life order (X ≤mrl Y ) if (mX (x) ≤hr mY (x)) for all x.

(4) likelihood ratio order(X ≤lr Y ) if fX(x)
fY (x) decreases in x.

The following results due to Shaked and Shanthikumar [22] are well known for
establishing stochastic ordering of distributions

X ≤lr Y⇒X ≤hr Y⇒X ≤mrl Y

and hence

X ≤hr Y⇒X ≤st Y
The following theorem shows that distribution is ordered with respect to the
strongest likelihood ratio ordering.
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10 M. M. E. ABD EL-MONSEF AND H.S.AL-KZZAZ

Theorem 2.3. Let X ∼ IPFr (α1, θ1, λ1)and Y ∼ IPFr (α2, θ2, λ2). Then, the
following results hold true

(1) If α1θ1 = α2θ2and λ1>λ2, then X ≤lr Y , X ≤hr Y,X ≤mrl Y and X ≤st
Y .

(2) If α1θ1>α2θ2, then X ≤lr Y , X ≤hr Y,X ≤mrl Y and X ≤st Y .

Proof. We have

r (x) =
fX (x)

fY (x)
=
α1θ1λ1

θ1

α2θ2λ2
θ2
xα1θ1−α2θ2eλ2x

α2θ2−λ1x
α1θ1

;x>0

Taking logarithm both sides, we can write

ln r (x) = ln

(
α1θ1λ1

θ1

α2θ2λ2
θ2

)
+ (α1θ1 − α2θ2) lnx+ λ2x

α2θ2 − λ1x
α1θ1

This gives

∂ ln r (x)

∂x
=

1

r (x)
r′ (x)

=
(α1θ1 − α2θ2)

x
+ α2θ2λ2x

α2θ2−1 − α1θ1λ1x
α1θ1−1

Now, if α1θ1 = α2θ2 and λ1>λ2 or (α1θ1>α2θ2), then ∂ ln r(x)
∂x < 0. Hence, r (x)

decreases in x this implies that X ≤lr Y and hence X ≤hr Y,X ≤mrl Y and
X ≤st Y . �

2.9. Order Statistics. Let X(1), X(2), ..., X(n) are the n ordered random sample
drawn from (1.3). Then, the density of the rth order statistic follows from Arnold
et al. [7], with the pdf of X(r) is given

fr:n (x) =
1

B (r, n− r + 1)

n−r∑
k=0

(
n− r
k

)
(−1)

k
[F (x)]

r+k−1
f (x) , x>0

and the rth order cdf Fr:n (x) is

Fr:n (x) =

n∑
j=0

n−r∑
k=0

(
n
j

)(
n− j
k

)
(−1)

k
[F (x)]

j+k

Hence, using (1.3) and (1.4), the pdf and the cdf of rth order statistics are, re-
spectively, given by

fr:n (x) =
αθλθxαθ−1

B (r, n− r + 1)

n−r∑
k=0

r+k−1∑
i=0

(
n− r
k

)(
r + k − 1

i

)
(−1)

k+i
e−(i+1)(λxα )θ

(2.14)

Fr:n (x) =

n∑
j=0

n−r∑
k=0

j+k∑
i=0

(
n
j

)(
n− j
k

)(
j + k
i

)
(−1)

k+i
e−i(λx

α )θ (2.15)
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THE INVERSE POWER FRÈCHET DISTRIBUTION 11

The distributions (pdf & cdf) of the smallest and the largest order statistics of the
IPFr distribution are obtained by putting r = 1 and r = n in (2.14) and (2.15)
respectively.

3. Entropy Measurement

In information theory, entropy is a measure of variation of the uncertainty and large
value of entropy indicates the greater uncertainty in the data. In this section, we
discuss the different measure of change.

3.1. Renyi Entropy. The Rényi entropy IR (ρ) of a random variableX is defined
as

IR (ρ) =
1

1− ρ
ln

(∫ ∞
0

[f (x)]
ρ
dx

)
where ρ > 0 and ρ 6= 1. Suppose X follows the IPFr distribution, we obtain

IR (ρ) =
1

1− ρ
ln

((
αθλθ

)ρ ∫ ∞
0

x(αθ−1)ρe−ρ(λx
α)θdx

)
Let ξ (ρ) = ρ(αθ−1)+1

αθ , after solving the internal, we get the following

IR (ρ) =
ln (ξ (ρ))

1− ρ
− ln (αθ)− ξ (ρ)

ln (ρ)

1− ρ
− 1

α
ln (λ) (3.1)

3.2. Shannon Entropy. The Shannon entropy of a random variable X is defined
by

IS (ρ) = −
∫ ∞

0

f (x) ln [f (x)] dx

Using the IPFr pdf, we obtain

IS (ρ) =
αθ + (αθ − 1) γ + θ ln (λ)− αθ ln

(
αθλθ

)
αθ

(3.2)

where γ is Euler-Mascheroni constant.

3.3. β-Entropy. The β-entropy is defined as

IH (β) =
1

β − 1

(
1−

∫ ∞
0

[f (x)]
β
dx

)
where β > 0 and β 6= 1. Using (1.3) and after simplification the expression for
-entropy is given by

IH (β) =
1

β − 1

(
1− (αθ)

β−1
Γ (ξ (β))

ρξ(β)λ
1−β
α

)
(3.3)
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12 M. M. E. ABD EL-MONSEF AND H.S.AL-KZZAZ

3.4. Generalized Entropy. The generalized entropy is obtained by;

IG =
υωµ

−ω − 1

ω (ω − 1)
;ω 6= 0, 1

where, υω =
∫∞

0
xωf (x) dx. From (2.4) the value of υω can be written as

υω = λ−
ω
α Γ

(
α θ + ω

α θ

)
The generalized entropy can be written as

IG =
Γ
(
α θ+ω
α θ

) (
Γ
(
α θ+1
α θ

))−ω − 1

ω (ω − 1)
(3.4)

4. Estimation and inference of the parameters

The main aim of this section is to study different estimation methods of the un-
known parameters of the IPFr distribution.

4.1. Maximum Likelihood method. Here, we discuss maximum likelihood es-
timation method and their fisher information matrix as well as asymptotic con-
fidence intervals for estimating the unknown parameters α, θ, and λ of the IPFr
distribution. The estimators obtained under these methods are not in nice closed
form; thus, numerical approximation techniques are used to get the solution. Fur-
ther, the performances of these estimators are studied through Monte Carlo simu-
lation. Consider the random sample x1, x2, ..., xn of size n from the IPFr distribu-

tion and Θ = (α, θ, λ)
T

be the parameter vector. The sample likelihood function
is written as

n∏
i=1

f (x;α, θ, λ) = αnθnλnθe−λ
θ ∑n

i=1 xi
αθ

(
n∏
i=1

xi
αθ−1

)
(4.1)

The log-likelihood function is given by

L (α, θ, λ) = n lnα+ n ln θ + nθ lnλ+ (αθ − 1)

n∑
i=1

lnxi − λθ
n∑
i=1

xi
αθ (4.2)

The maximum likelihood estimators (MLEs) α̂, θ̂ and λ̂ are obtained by solving
the non-linear equations:

∂

∂α
L (α, θ, λ) =

n

α
+ θ

n∑
i=1

ln (xi)− θλθ
n∑
i=1

[
xi
αθ ln (xi)

]
(4.3)

∂

∂θ
L (α, θ, λ) =

n

θ
+n ln (λ)+α

n∑
i=1

ln (xi)−λθ ln (λ)

n∑
i=1

xi
αθ−αλθ

n∑
i=1

[
xi
αθ ln (xi)

]
(4.4)
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∂

∂λ
L (α, θ, λ) =

nθ

λ
− θλθ−1

n∑
i=1

xi
αθ (4.5)

The exact solution of the MLEs α̂, θ̂ and λ̂ in (4.3-4.5) is genuinely not possible.
Hence, we use the non-linear optimization algorithms for maximizing the likeli-
hood function numerically such as a Newton-Raphson algorithm for maximizing
the likelihood function numerically.

From standard large-sample theory of maximum likelihood estimators (Theorem
5.1) Lehmann and Casella [20], the expected Fisher information matrix I = [Iij ],
i, j = 1, 2, 3, from a single observation for constructing 100 (1− ψ) % asymptotic
confidence interval for the parameters using is given by

I = −E

 I11 I12 I13

I21 I22 I23

I31 I32 I33


where,

I11 = −E
[
∂2

∂α2
L (α, θ, λ)

]
=

n

α2
+ θ2λθ

n∑
i=1

[
xi
αθ [ln (xi)]

2
]

I22 = −E
[
∂2

∂θ2L (α, θ, λ)
]

= n
θ2 + λθ [ln (λ)]

2
n∑
i=1

xi
αθ + 2αλθ ln (λ)

n∑
i=1

xi
αθ ln (xi)

+α2λθ
n∑
i=1

[
xi
αθ [ln (xi)]

2
]

I33 = −E
[
∂2

∂λ2
L (α, θ, λ)

]
=
nθ

λ2
+ (θ − 1) θλθ−2

n∑
i=1

xi
αθ

I12 = −E
[
∂2

∂αθL (α, θ, λ)
]

= θλθ ln (λ)
n∑
i=1

[
xi
αθ ln (xi)

]
−

n∑
i=1

ln (xi)

+λθ
n∑
i=1

[
xi
αθ ln (xi) + αθxi

αθ [ln (xi)]
2
]

I23 = −E
[
∂2

∂θλL (α, θ, λ)
]

= λθ−1
n∑
i=1

xi
αθ − n

λ + θλθ−1 ln (λ)
n∑
i=1

xi
αθ

+λθ
n∑
i=1

[
xi
αθ ln (xi) + αθxi

αθ [ln (xi)]
2
]

+αθλθ−1
n∑
i=1

xi
αθ ln (xi)

We have as n → ∞,
√
n
(

Θ̂−Θ
)

is asymptotically normal with (vector) mean

zero and variance matrix I−1, and Θ̂ is asymptotically efficient in the sense that

√
n
(

Θ̂−Θ
)
d→N3

(
0, I−1

)
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where
d→ denotes convergence in the distribution and I−1 is the inverse of the

Fisher information matrix I. The asymptotic variances and covariance of the

MLEs α̂, θ̂ and λ̂ are given by:

V (α̂) =
I22I33 − I2

23

n∆
, V

(
θ̂
)

=
I11I33 − I2

13

n∆
, V

(
λ̂
)

=
I11I22 − I2

12

n∆

Cov
(
α̂, θ̂

)
=
I13I23 − I12I33

n∆
, Cov

(
α̂, λ̂

)
=
I12I23 − I13I22

n∆
,

Cov
(
θ̂, λ̂
)

=
I13I12 − I11I23

n∆

where ∆ = det (I) is the determinant of the matrix I. The corresponding asymp-
totic 100 (1− ψ) %confidence interval of Θ, are given by

Θ̂± zψ/2

√
̂

V ar
(

Θ̂
)

where
̂

V ar
(

Θ̂
)

is the MLE of V ar
(

Θ̂
)

and zψ/2 is the upper ψ/2 quantile of the

standard normal distribution.

4.2. Least squares and weighted least squares methods. The least squares
(LSE) and the weighted least squares (WLSE) methods are used to find the min-
imum distance between theoretical cumulative distribution and the empirical cu-
mulative distribution. Let F

(
X(i)

)
be the distribution function of the ordered

random variables X(1)<X(2)<...<X(n) where {X1, X2, ..., X2} is a random sample
of size n from a distribution function F (.). Then, the expectation of the empirical
cumulative distribution function is defined as

E
[
F
(
X(i)

)]
=

i

n+ i
; i = 1, 2, ..., n

The LSEs of α, θ and λ denoted by α̂LSE , θ̂LSEand λ̂LSE can be obtained by
minimizing the following function

LS (α, θ, λ) =

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)2

(4.6)

with respect to α , θ and λ. Therefore α̂LSE ,θ̂LSE and λ̂LSE can be obtained as
the solution of the following system of non-linear equations:

∂LS (α, θ, λ)

∂α
=

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)
F
′

α (x;α, θ, λ) = 0 (4.7)

∂LS (α, θ, λ)

∂θ
=

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)
F
′

θ (x;α, θ, λ) = 0 (4.8)
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∂LS (α, θ, λ)

∂λ
=

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)
F
′

λ (x;α, θ, λ) = 0 (4.9)

The WLSEs of α, θ and λ denoted by α̂WLSE ,θ̂WLSEand λ̂WLSE can be obtained
by minimizing

WLS (α, θ, λ) =

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)2

(4.10)

with respect to α , θand λ, therefore these estimators can also be obtained by
solving:

∂WLS (α, θ, λ)

∂α
=

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)
F
′

α (x;α, θ, λ) = 0

(4.11)

∂WLS (α, θ, λ)

∂θ
=

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)
F
′

θ (x;α, θ, λ) = 0

(4.12)

∂WLS (α, θ, λ)

∂λ
=

n∑
i=1

(n+ 1)
2

(n+ 2)

i (n− i+ 1)

(
F
(
x(i);α, θ, λ

)
− i

n+ i

)
F
′

λ (x;α, θ, λ) = 0

(4.13)
where

F
′

α (x;α, θ, λ) = θ (λxα)
θ

ln (x) exp
[
− (λxα)

θ
]

,

F
′

θ (x;α, θ, λ) = (λxα)
θ

ln (λxα) exp
[
− (λxα)

θ
]

and

F
′

λ (x;α, θ, λ) =
θ (λxα)

θ
exp

[
− (λxα)

θ
]

λ

4.3. Cramer-von-Mises method. The Cramer-von Mises statistics can be given
by

C (α, θ) =
1

12n
+

n∑
i=1

(
F
(
x(i);α, θ

)
− 2i− 1

2n

)2

(4.14)

Then the CME estimators α̂CME , θ̂CME and λ̂CME are obtained by minimizing
(4.14) with respect to α, θ and λ. These estimators can also be obtained by solving
the following non-linear equations:

∂C (α, θ, λ)

∂α
=

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− 2i− 1

2n

)
F
′

α (x;α, θ, λ) = 0 (4.15)
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∂C (α, θ, λ)

∂θ
=

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− 2i− 1

2n

)
F
′

θ (x;α, θ, λ) = 0 (4.16)

∂C (α, θ, λ)

∂λ
=

n∑
i=1

(
F
(
x(i);α, θ, λ

)
− 2i− 1

2n

)
F
′

λ (x;α, θ, λ) = 0 (4.17)

where F
′

α (x;α, θ, λ) , F
′

θ (x;α, θ, λ) and F
′

λ (x;α, θ, λ) are defined above .

4.4. Maximum product spacing method. Cheng and Amin [11] introduced
the maximum product spacing (MPS) and showed that the MPS method can be
used as an alternative to MLE to estimate the parameters of continuous univariate
distributions. Let the difference is defined as

Di (α, θ, λ) = F
(
x(i);α, θ, λ

)
− F

(
x(i−1);α, θ, λ

)
, i = 1, 2, ..., n (4.18)

where F
(
x(0);α, θ, λ

)
= 0 and F

(
x(n+1);α, θ, λ

)
= 1. The geometric mean of the

differences can be written as

G (α, θ, λ) = n+1

√√√√n+1∏
i=1

Di (α, θ, λ) (4.19)

Substituting (1.4) in (4.18) and maximizing the above expression, we have

∂ logG (α, θ, λ)

∂α
=

1

n+ 1

n+1∑
i=1

(
F
′

α

(
x(i);α, θ, λ

)
− F ′α

(
x(i−1);α, θ, λ

)
F
(
x(i);α, θ, λ

)
− F

(
x(i−1);α, θ, λ

) ) = 0

(4.20)

The MPSEs α̂MPS , θ̂MPS and λ̂MPS are obtained as the simultaneous solution of
the following non linear equations:

∂ logG (α, θ, λ)

∂θ
=

1

n+ 1

n+1∑
i=1

(
F
′

θ

(
x(i);α, θ, λ

)
− F ′θ

(
x(i−1);α, θ, λ

)
F
(
x(i);α, θ, λ

)
− F

(
x(i−1);α, θ, λ

) ) = 0 (4.21)

∂ logG (α, θ, λ)

∂λ
=

1

n+ 1

n+1∑
i=1

(
F
′

λ

(
x(i);α, θ, λ

)
− F ′λ

(
x(i−1);α, θ, λ

)
F
(
x(i);α, θ, λ

)
− F

(
x(i−1);α, θ, λ

) ) = 0

(4.22)

where F
′

α (x;α, θ, λ) , F
′

θ (x;α, θ, λ) and F
′

λ (x;α, θ, λ)are defined above .

4.5. Anderson–Darling and right-tail Anderson–Darling methods. The
method of Anderson-Darling (AD) was introduced by Anderson and Darling [5,6]
and is based on an Anderson-Darling statistic. The Anderson-Darling statistic is
given by

A2 = n

∫ ∞
0

(
F (xi)− E

[
F
(
x(i)

)])2
F (xi) (1− F (xi))

dF (xi)
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THE INVERSE POWER FRÈCHET DISTRIBUTION 17

The Anderson-Darling statistic is given by

A (α, θ) = −n− 1

n

n∑
i=1

(2i− 1)
[
logF

(
x(i);α, θ

)
+ log

(
1− F

(
x(i);α, θ

))]
(4.23)

Therefore, the ADs α̂AD,θ̂AD and λ̂AD can be determined by minimizing (4.23)
with respect to α, θ and λ. These estimators can also be obtained by solving the
non-linear equations

∂A (α, θ, λ)

∂α
= − 1

n

n+1∑
i=1

(2i− 1)

(
F
′

α

(
x(i);α, θ, λ

)
F
(
x(i);α, θ, λ

) − F
′

α

(
x(n−i+1);α, θ, λ

)
1− F

(
x(n−i+1);α, θ, λ

)) = 0

(4.24)

∂A (α, θ, λ)

∂θ
= − 1

n

n+1∑
i=1

(2i− 1)

(
F
′

θ

(
x(i);α, θ, λ

)
F
(
x(i);α, θ, λ

) − F
′

θ

(
x(n−i+1);α, θ, λ

)
1− F

(
x(n−i+1);α, θ, λ

)) = 0

(4.25)

∂A (α, θ, λ)

∂λ
= − 1

n

n+1∑
i=1

(2i− 1)

(
F
′

λ

(
x(i);α, θ, λ

)
F
(
x(i);α, θ, λ

) − F
′

λ

(
x(n−i+1);α, θ, λ

)
1− F

(
x(n−i+1);α, θ, λ

)) = 0

(4.26)
Also, the Right-tail AD is given by

RA (α, θ) =
n

2
− 2

n∑
i=1

F
(
x(i);α, θ

)
− 1

n

n∑
i=1

(2i− 1) log
(
1− F

(
x(i);α, θ

))
(4.27)

Hence, the RADs α̂RAD,θ̂RAD and λ̂RAD are obtained by minimizing (4.27) with
respect to α,θ and λ. These estimators can also be determined by solving the
non-linear equations

∂RA (α, θ, λ)

∂α
= −n

n∑
i=0

F
′

α

(
x(i);α, θ, λ

)
F
(
x(i);α, θ, λ

) +
1

n

n+1∑
i=1

(2i− 1)
F
′

α

(
x(n−i+1);α, θ, λ

)
1− F

(
x(n−i+1);α, θ, λ

) = 0

(4.28)

∂RA (α, θ, λ)

∂θ
= −n

n∑
i=0

F
′

θ

(
x(i);α, θ, λ

)
F
(
x(i);α, θ, λ

) +
1

n

n+1∑
i=1

(2i− 1)
F
′

θ

(
x(n−i+1);α, θ, λ

)
1− F

(
x(n−i+1);α, , λ

) = 0

(4.29)

∂RA (α, θ, λ)

∂λ
= −n

n∑
i=0

F
′

λ

(
x(i);α, θ, λ

)
F
(
x(i);α, θ, λ

) +
1

n

n+1∑
i=1

(2i− 1)
F
′

λ

(
x(n−i+1);α, θ, λ

)
1− F

(
x(n−i+1);α, , λ

) = 0

(4.30)
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5. Simulation Study

Here, a simulation study is performed to examine the performance of the different
estimates presented above. The following procedure for evaluating the efficiency
of the estimators is adopted as follow:

• Generate random sample with size n from the IPFr distribution.

• The values obtained in step 1are used to compute the Θ̂ =
(
α̂, θ̂, λ̂

)
con-

sidering the MLE, LSE,WLSE, CME, MPS, AD and RAD estimators.
• Repeat the steps 1 and 2 Ntimes.

• Using Θ̂ =
(
α̂, θ̂, λ̂

)
and Θ = (α, θ, λ), compute the Bias and the mean

square errors (MSE).

The results are computed using the nlminb function (in the stat package) and
Nelder-Mead method in R software. From the IPFr distribution , 5,000 samples
were generated, where n = {50, 100, 150}, and by choosingα = {1, 1.5, 0.5},θ =
{0.5, 0.6, 1.5}andλ = {0.8, 0.2, 2} , for each parameters combination and each sam-
ple. Bias and mean square error (MSE) of the MLE, LSE, WLSE, CME, MPS,
AD and RAD were evaluated in tables 2-4 and the ranks (partial and overall) of
the estimators were calculated in table 5. From tables 2-5, we can observe that:

• All estimates show the property of consistency i.e., the MSEs decrease as
sample size increase for all parameter combinations.

• According to MSEs, the MPS estimation method has the best performance
of estimators for all parameter combinations.

Table 2. Simulation results for α = 1, θ = 0.5, λ = 0.8.

Est.
Meth.

S.Size n=50 n=100 n=150
Est.
Par.

α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂

MLE
Bias -0.0153 0.0256 0.0213 -0.0080 0.0140 0.0058 -0.0048 0.0100 0.0007
MSE 0.0028 0.0030 0.0450 0.0008 0.0012 0.0175 0.0005 0.0007 0.0091

LSE
Bias -0.0200 0.0082 0.0427 -0.0095 0.0044 0.0228 -0.0073 0.0035 0.0109
MSE 0.0026 0.0036 0.0726 0.0010 0.0016 0.0317 0.0007 0.0011 0.0205

WLSE
Bias -0.0271 0.0177 0.0438 -0.0151 0.0100 0.0194 -0.0100 0.0072 0.0159
MSE 0.0058 0.0039 0.0624 0.0022 0.0016 0.0301 0.0013 0.0010 0.0200

CME
Bias -0.0108 0.0203 0.0548 -0.0070 0.0111 0.0275 -0.0050 0.0062 0.0186
MSE 0.0028 0.0040 0.0745 0.0011 0.0018 0.0341 0.0006 0.0011 0.0213

MPS
Bias -0.0115 -0.0043 0.0167 -0.0052 -0.0006 -0.0025 -0.0026 0.0003 -0.0025
MSE 0.0011 0.0017 0.0484 0.0004 0.0007 0.0175 0.0002 0.0004 0.0098

AD
Bias -0.0120 0.0144 0.0245 -0.0073 0.0086 0.0070 -0.0052 0.0056 0.0041
MSE 0.0022 0.0023 0.0488 0.0009 0.0009 0.0189 0.0005 0.0005 0.0102

RAD
Bias -0.0031 0.0108 0.0432 -0.0030 0.0061 0.0179 -0.0052 0.0059 0.0194
MSE 0.0039 0.0034 0.0690 0.0016 0.0018 0.0329 0.0010 0.0012 0.0220

6. Real Data Illustration

In this section, we perform the practical applicability of the proposed model using
maximum likelihood estimate of the parameter to represents the potentiality of the
new model as compared to some other existing life-time models by using the real
data set. This data set represents vinyl chloride data obtained from clean upgradi-
ent ground-water monitoring wells in mg/L; this data set is used by Bhaumik et al.
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Table 3. Simulation results for α = 1.5, θ = 0.6, λ = 0.2.

Est.
Meth.

S.Size n=50 n=100 n=150
Est.
Par.

α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂

MLE
Bias 0.0041 0.0169 0.0080 0.0027 0.0076 0.0039 0.0015 0.0048 0.0018
MSE 0.0009 0.0042 0.0029 0.0003 0.0018 0.0013 0.0002 0.0012 0.0008

LSE
Bias -0.0145 0.0052 0.0094 -0.0057 0.0013 0.0040 -0.0027 0.0003 0.0025
MSE 0.0028 0.0064 0.0029 0.0010 0.0029 0.0013 0.0004 0.0018 0.0009

WLSE
Bias -0.0109 0.0076 0.0081 -0.0026 0.0034 0.0043 -0.0012 0.0019 0.0027
MSE 0.0023 0.0058 0.0027 0.0009 0.0023 0.0013 0.0004 0.0015 0.0009

CME
Bias -0.0075 0.0205 0.0112 -0.0017 0.0092 0.0058 -0.0012 0.0050 0.0036
MSE 0.0027 0.0070 0.0031 0.0009 0.0031 0.0015 0.0004 0.0018 0.0009

MPS
Bias -0.0100 -0.0222 0.0069 -0.0057 -0.0143 0.0028 -0.0042 -0.0111 0.0028
MSE 0.0006 0.0040 0.0027 0.0002 0.0019 0.0012 0.0001 0.0012 0.0008

AD
Bias -0.0071 0.0072 0.0095 -0.0018 0.0028 0.0038 -0.0009 0.0020 0.0021
MSE 0.0020 0.0049 0.0028 0.0006 0.0022 0.0012 0.0003) 0.0014 0.0008

RAD
Bias -0.0026 0.0104 0.0085 -0.0022 0.0059 0.0046 -0.0014 0.0035 0.0038
MSE 0.0011 0.0051 0.0030 0.0005 0.0024 0.0014 0.0002 0.0016 0.0009

Table 4. Simulation results for α = 0.5, θ = 1.5, λ = 2.

Est.
Meth.

S.Size n=50 n=100 n=150
Est.
Par.

α̂ θ̂ λ̂ α̂ θ̂ λ̂ α̂ θ̂ λ̂

MLE
Bias 0.0143 0.0069 0.0326 0.0080 0.0028 0.0169 0.0052 0.0040 0.0119
MSE 0.0029 0.0113 0.0165 0.0014 0.0049 0.0071 0.0008 0.0031 0.0046

LSE
Bias 0.0054 -0.0190 -0.0034 0.0025 -0.0089 0.0004 0.0014 -0.0052 -0.0005
MSE 0.0034 0.0184 0.0199 0.0014 0.0085 0.0098 0.0009 0.0056 0.0067

WLSE
Bias 0.0117 -0.0198 0.0212 0.0083 -0.0159 0.0174 0.0059 -0.0132 0.0148
MSE 0.0038 0.0163 0.0226 0.0015 0.0067 0.0116 0.0010 0.0044 0.0076

CME
Bias 0.0105 0.0116 0.0291 0.0048 0.0060 0.0146 0.0032 0.0019 0.0073
MSE 0.0038 0.0195 0.0216 0.0014 0.0084 0.0098 0.0009 0.0055 0.0066

MPS
Bias -0.0057 -0.0340 -0.0337 -0.0031 -0.0205 -0.0207 -0.0019 -0.0148 -0.0151
MSE 0.0021 0.0111 0.0135 0.0010 0.0051 0.0062 0.0006 0.0032 0.0039

AD
Bias 0.01126 -0.0119 0.0173 0.0063 -0.0087 0.0089 0.0045 -0.0037 0.0102
MSE 0.0034 0.0150 0.0157 0.0013 0.0069 0.0071 0.0008 0.0040 0.0045

RAD
Bias 0.01196 -0.0071 0.0179 0.0048 -0.0043 0.0095 0.0038 -0.0039 0.0067
MSE 0.0049 0.0177 0.0145 0.0015 0.0069 0.0075 0.0010 0.0043 0.0052

[10] in testing parameters of a Gamma distribution for small samples and they are:

5.1 1.2 1.3 0.6 0.5 2.4 0.5
0.4 2 0.5 5.3 3.2 2.7 2.9
1.8 0.9 2 4 6.8 1.2 0.4
8 2.3 0.9 0.8 1 0.1 0.6

1.1 2.5 0.2 0.4 0.2 0.1

The proposed distribution is compared with other five alternative distributions
such as:

• Inverse power Lindley (IPL) distribution (Barco et al [8]) given by the pdf

f (x) =
αθ2

θ + 1

(
1 + xα

x2α+1

)
exp

(
−θ
xα

)
where x, α, θ>0
• Inverted xgamma (IXG) distribution (Yadav et al [27]) given by the pdf
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Table 5. Ranks (partial and overall) of all the estimation methods for
various combination of α,θ and λ.

Est.
Meth.

Int.
Val.

α = 1, θ = 0.5, λ = 0.8 α = 1.5, θ = 0.6, λ = 0.2 α = 0.5, θ = 1.5, λ = 2
Sum

Overall
Rank

n 50 100 150 50 100 150 50 100 150

MLE
α̂ 4.5 2 2.5 2 2 2.5 2 4 2.5 24 2

θ̂ 3 3 3 2 1 1.5 2 1 1 17.5 2

λ̂ 1 1.5 1 4.5 4 2 4 2.5 3 23.5 3

LSE
α̂ 3 4 5 7 7 6 3.5 4 4.5 44 4

θ̂ 5 4.5 5.5 6 6 6.5 6 7 7 53.5 6

λ̂ 6 5 5 4.5 4 5.5 5 5.5 6 46.5 5

WLSE
α̂ 7 7 7 5 5.5 6 5.5 3 6.5 52.5 7

θ̂ 6 4.5 4 5 4 4 4 7 5 43.5 4

λ̂ 4 5 4 1.5 4 5.5 7 6.5 7 44.5 4

CME
α̂ 4.5 6 4 6 5.5 6 5.5 6 4.5 48 6

θ̂ 7 6.5 4.5 7 7 6.5 7 5.5 6 57 7

λ̂ 7 7 6 7 7 5.5 6 4.5 5 55 7

MPS
α̂ 1 1 1 1 1 1 1 2 1 10 1

θ̂ 1 1 1 1 2 1.5 1 1 2 11.5 1

λ̂ 2 1.5 2 1.5 1.5 2 1 1 1 13.5 1

AD
α̂ 2 3 2.5 4 4 4 3.5 4.5 2.5 30 3

θ̂ 2 2 2 3 3 3 3 2.5 3 23.5 3

λ̂ 3 3 3 3 1.5 2 3 2.5 2 23 2

RAD
α̂ 6 6 6 3 3 2.5 7 4.5 6.5 44.5 5

θ̂ 4 6.5 7 4 5 5 5 4 4 44.5 5

λ̂ 5 6 7 6 6 5.5 2 6.5 4 48 6

f (x) =
θ2

(1 + θ)
.

1

x2

(
1 +

θ

2
.

1

x2

)
exp

(
−θ
x

)
where x, θ>0
• Exponentiated inverse Rayleigh (EIR) distribution (Ul Haq [26]) given by

the pdf

f (x) =
2αθ

x3
exp

(
−αθ
x2

)
where x, α, θ>0
• Exponentiated inverse Weibull (EIW) distribution (Flaih et al [14])given

by the pdf

f (x) = θβx−(β+1)exp
(
−x−β

)θ
where x, β, θ>0
• Inverse Gompertz (IG) distribution (Eliwa et al [26]) given by the pdf

f (x) =
α

x2
exp

(
−α
β

(
exp

(
β

x

)
− 1

)
+
β

x

)
where x, α, β>0.

For these models the method of maximum likelihood is used to estimate of the
parameter (s). We perform goodness of fit measures selection tools such as log-
likelihood (-L), Akaike Information Criterion (AIC), Bayesian Information Crite-
rion (BIC), Hanna-Quinn Information Criterion (HQIC) and Consistent Akaike
Information Criterion (CAIC). Goodness of fit tests statistics such as Cram-von
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Mises W 2
n , Anderson–Darling A2

n, Watson U2
n, Liao-Shimokawa Lnand Kolmogrov-

Smirnov K −S with its respective P-value are considered in order to verify which
distribution fits better to these data. In general, the smaller values of these sta-
tistics indicate, the better fit to the data.

Table 6. The goodness of fit measures for the data set.

Models
Measures

MLEs - L AIC BIC HQIC CAIC
IPFr(α, θ, λ) 1.1618 0.8695 0.4779 55.4496 116.8992 121.4783 118.4608 124.4783
IPL(α, θ) 0.7772 — 1.0729 59.1204 122.2409 125.2936 123.2819 127.2936
IXG(θ) — 1.0675 — 62.6554 129.3108 132.3636 130.3519 134.3636
EIR(α, θ) 0.1000 — 1.1486 93.3510 190.7021 193.7548 191.7432 195.7548
EIW (β, θ) — 0.6540 0.8804 58.6266 121.2532 124.3059 122.2942 126.3059
IG(α, β) — 0.42935 0.1000 63.0348 130.0695 133.1223 131.1106 135.1223

Table 7. The goodness-of-fit test statistics for the data set.

Models
Statistics

W 2
n A2

n U2
n Ln K − S p-value

IPFr(α, θ, λ) 0.0433 0.2826 2.9048 0.6589 0.0918 0.9366
IPL(α, θ) 0.1072 0.8256 8.1014 1.0161 0.1130 0.7777
IXG(θ) 0.4092 2.3257 8.3411 1.9872 0.2022 0.1241
EIR(α, θ) 3.2125 25.1005 10.9716 11.9177 0.4854 2.197E-07
EIW (β, θ) 0.1027 0.7719 8.0938 0.9963 0.1134 0.7745
IG(α, β) 0.5355 2.9530 8.45024 2.2547 0.2214 0.0713

Table 5, indicates that the inverse power Fret distribution presents a better fit
model to the data than the other models. The tests shown in Table 6 observe that
the EIR distribution not fit the data (p-value < 0.05) and the inverse power Fret
distribution shows the lowest test statistics with the largest p-values. Therefore,
our proposed distribution can be recommended as a good alternative to the existing
family of Fret distribution.
Furthermore, seven estimation methods are used to estimate the unknown pa-
rameters of the proposed distribution. Table 7 display the estimates of the IPFr
parameters using these estimation methods and the values of K−S and its p-value
for the data set. We can conclude that the AD estimation method is recommended
to estimate the IPFr parameters for the data set.

7. Conclusion

In this paper, we proposed inverse power Fret distribution (IPFr) as an extension
of Fret distribution which offers the upside-down bathtub shape for its hazard rate.
Different mathematical and statistical properties, such as reliability measures, mo-
ments, generating functions, quantile, mean deviation, stochastic ordering, order
statistics, some entropy measures, Bonferroni, Lorenz curves and Gini index are
studied. We also perform the behavior of the estimated parameters by using
seven estimation methods and these methods are performed through the simula-
tion study. Real data set has also studied for the demonstration of flexibility and
better fit of the observed model as compared to some other existing models.
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Table 8. The parameter estimates of IPFr distribution, K−S and p-value
for the data set.

Est. Meth.
Est. Par.

K − S p-value
α̂ θ̂ λ̂

MLE 1.1618 0.8695 0.4779 0.0918 0.9366
LSE 1.1072 0.8372 0.5136 0.0995 0.8893

WLSE 0.5445 1.7424 0.7119 0.0893 0.9489
CME 1.1190 0.8641 0.5188 0.0909 0.9416
MPS 1.1254 0.8243 0.4782 0.0895 0.9482
AD 1.1177 0.8683 0.5053 0.0856 0.9645

RAD 1.0990 0.8365 0.5167 0.1015 0.8751
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Figure 3. Plots of (P-P) for the fitted distributions.
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