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Abstract

The goal of this work is to provide a simple and general framework for
180◦ domain analysis in ferroelectric thin films. In this work we construct
mathematical and numerical description of complex ferroelectric systems and
use it to advance our knowledge and understanding of 180◦ domains along-
with dynamic creep behavior.The main theoretical tool we have employed
is an appropriate Landau-Ginzburg-Devonshire (LGD) model, and its time-
dependent generalizations.Finite element computation is adopted during the
expedition.1
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1 Introduction

A ferroelectric material shows a large variety of applications in forms of actuators,
sensors, nonvolatile random access memory systems, ultrasound transducers etc. Dif-
ferent rich technological aspects has led to extensive study of the material properties of
ferroelectric materials. Domain evolution and domain movement are critically involved
with such applications. This films of perovskites like BaTiO3, LiNbO3 are the materi-
als in which there have been efforts to explore the behaviour of 180◦ and 90◦ domains.
Although experimental measurements of domain growth rates in the well-established fer-
roelectrics PbT iO3 and BaTiO3 have been made, there is paucity of knowledge about
domain dynamics. Several experiments show how a domain forms, nucleates and moves
during electric switching [11, 9]. Some computational models have been developed to
study domain formation and switching [6]. Collins et al have provided a theoretical
stochastic model to study domain wall dynamics in ferrodistortive materials [6]. From
a first principles density functional theory based study by Young et al have provided
a method to study nucleation and growth mechanism, in connection with ferroelectric
domain wall motion [6].
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In this article, epitaxial thin films (2D) in the context of finitely distributed el-
ements is modeled. Time dependent Landau Ginzburg (TDGL) theory is the basis of
our model development. The numerical scheme is presented in section 2. Results of
finite element method are shown in section 3. In section 4, we demonstrate how domain
wall moves and what is the dynamic behaviour of such moving domains. For this pur-
poses, we begin with a simplistic but effective method of finite difference in time domains
(FDTD). Experimental resemblance and further studies with results of FDTD method
are described in section 5. Section 6 & 7 contain discussion and summary of our entire
work.

2 TDLG Model

Nucleation and growth of the domains drive polarization reversal in ferroelectrics. Side-
ways expansion of the domains happens when an external electric field is applied to a
ferroelectric. We use a simplified model to describe the main characteristic features of this
sideways motion. The approach involves the use of the time-dependent Ginzburg-Landau
theory. The model assumes that the interfacial and domain dynamics are completely de-
termined by the evolution of the order parameter.

The Landau-Ginzburg (LG) theory includes significant spatial variations of the polar-
ization within the phenomenological Landau-Devonshire model of free energy[13]. Slow
variations in the direction of the polarization lead to an additional contribution to the
free energy density (φ) which is proportional to |∆P |2. We restrict our study to the case
of a single-component order parameter, namely the polarization. We note that the spa-
tial varying term also preserves the symmetry. Hence the Landau-Ginzburg free energy
is [1, 3, 10]

φ = −1

2
AP 2 +

1

4
BP 4 +

δ

2
{∇P}2 − EP, (1)

where A = A0(T − Tc), where A0, B, δ are positive constants and Tc is the phase tran-
sition temperature in the absence of the applied electric field. The parameter E is the
external electric field which plays a crucial role for domain dynamics. Evolution of do-
main dynamics will be determined by spatio-temporal variation of the order parameter
polarization by the following kinetic equation

∂P

∂t
= −Γ

∂φ

∂P
. (2)

Hence the time-dependent Landau-Ginzburg (TDLG) equation is (using Eq.(2.1) and
Eq(2.2)),

∂P

∂t
= Γδ∇2P + Γ(AP −BP 3 + E). (3)

The problem posed by Eq.(2.3) is nonlinear and therefore difficult to solve analytically.
That is why we solve the problem numerically. The usual approach is to discretize the
problem in space by some finite elements and then watch what is the transient response.
The meaning of the latter is amplified below.

3 Finite Element Modelling

For studying macroscopic domain dynamics of ferroelectrics, we have persued a
finite element approach to solve the TDLG equations. The equations can be solved
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analytically some extent [6] in one dimension, but boundary condition implementation
and exactness are still beyond our scope. The finite element method is most suitable for
structural studies. The basic building blocks of finite element approach are

1. Continuum is discretized in a finite number of elements of geometrically simple
shapes.

2. Finite number of nodes will connect such elements.

3. Dislocation of the nodes will provide our expected variables.

4 Simulation Details

4.1 Space discretization

The structure of ferroelectric thin films are divided into triangular finite elements
[Fig.1]. N number of such elements contribute the whole spatial structure in x-y plane
where N = 2(m − 1) × (n − 1), m and n are number of nodes along x and y axes
respectively. The polarization is interpolated by a linear shape function inside the element
with weighted residuals [4].

4.2 Weak Formulation

We seek an approximate solution u(x, y, t) for the unknown function u(x, y, t) in
terms of a series involving basis functions (or, trial functions) with unknown coefficients.
The requirement on the choice of basis functions is that they chose set of functions should
be linearly independent and should represent a complete family of basis functions and
can be expressed as a linear combination of these basis functions. Let us assume an
approximate solution u(x, y) as:

u(x, y) ≈ u0(x, y) +
∑
j

Cjgj(x, y) (4)

where, u0(x) is a function which satisfies the non-homogeneous form of essential boundary
conditions. gj(x, y); j = 1, 2, 3,... represent a family of basis functions and are chosen so
as to satisfy the homogeneous essential boundary conditions of the problem. Applying
weighted residual method, we formulate the PDE in a weak solution with weight W (x, y)∫

Ω

wi

[
∂u

∂t
− Γ(K∇2u−Au+Bu3 − E)

]
dΩ = 0 (5)

where, wi is arbitrary weighting functions. Apply Green function to the quadratic term∫
Ω

wi
[
Γ(K∇2u)

]
dΩ = ΓK[

∫
Ω

[
∂wi
∂x
∂wi
∂y

] [
∂u

∂x

∂u

∂y

]
dΩ

−
∫
L

wi∇u · ndL] (6)

In Galerkin’s weighted residual method, the weighting functions are identical to the trial
functions, i.e.

wi = hi, i = 1, 2, 3 (7)
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Figure 1: Element mesh (Inset: A triangular element used for calculating polar-
ization)

4.3 Shape function

Fig.(2) depicts a surface of ferroelectric material The 2D volume represents the
domain of a boundary value problem to be solved. For simplicity, at this point, we
assume a two-dimensional case with a single field variable P (x, y) to be determined at
every point x, y such that a known TDLG equation is satisfied exactly at every such point
or every node. Following this way, we will arrive at an exact mathematical solution .A
small triangular element that encloses a finite-sized sub domain of the area of interest
is shown in inset of Fig.(2.1). We are treating the problem as a two-dimensional. The
vertices of the triangular element (nodes) are specific points in the finite element at which
the value of the field variable is to be explicitly executed. For the three-node triangle,
the field variable is described by the approximate relation

u(x, y) = h1(x, y)u1 + h2(x, y)u2 + h3(x, y)u3, (8)

where u1, u2&u3 are the values of the field at three nodes and h1, h2&h3 are shape
functions. Now we have to evaluate the nodal values taking them as constant. We
express the field variable in the polynomial form

u(x, y) = a0 + a1x+ a2y (9)

Then for the three nodes 1 2 and 3 1 x1 y1

1 x2 y2

1 x3 y3

 a0

a1

a2

 =

 u1

u2

u3

 (10)
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Under inversion

a0 =
1

2A
[u1(x2y3 − x3y2) + u2(x3y1 − x1y3)

+u3(x1y2 − x2y1)] (11)

a1 =
1

2A
[u1(y2 − y3) + u2(y3 − y1)

+u3(y1 − y2)] (12)

a2 =
1

2A
[u1(x3 − x2) + u2(x1 − x3)

+u3(x2 − x1)] (13)

where A is the area of the triangular element determined by

A =
1

2
det

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣ (14)

using Eq.(2.8-2.14) and after a rearrangement, we get

u(x, y) =
1

2A
{[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]u1 (15)

+[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]u2 (16)

+[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y]u3} (17)

h1(x, y) =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y] (18)

h2(x, y) =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y] (19)

h3(x, y) =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] (20)

4.4 FE formulation

To develop the finite element equations, a two-node linear element for which

u(x, y) = h1(x, y)u1 + h2(x, y)u2 + h3(x, y)u3, (21)

is used with Galerkin’s method. For Eq.(2.5), the residual equations are expressed as∫ x2

x1

∫ y2

y1

[
∂P

∂t
− Γ(K∇2P −AP +BP 3 − E)

]
hi(x, y)dxdy = 0

i = 1, 2, 3

(22)

Time domain simulation is based on forward interpolation. Nonlinearity approximated
with

u3 ≈ (hi)
2u (23)

therefore the whole process become quasi-linear. As far as stability of concern, quasi-
linear solution approximates the nonlinear part. Thus we get a numerical solution based
on theoretical finite element basis where we have approximated the solution and in a
self-organizing manner[12, 14]. Whole process has chosen such solutions that converges
the equation. Fig.(2), we have shown how periodic domain evolves and how electric field
switches it respectively.
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Figure 2: Topographic appearances of 180◦ domains at different time steps.
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5 Analytical Approach

An approximate solution of nonlinear partial differential equation like (TDLG )

∂P

∂t
= δ

∂2P

∂x2
+ (AP −BP 3 + E) (24)

can be given by [7]

P (x, t) =
β

F

∂F

∂x
+ λ (25)

where β = ±
√

2δ
b

and λ = any of the roots of the equation

−bλ3 + aλ+ E = 0 (26)

we have taken the only real solution

λ =
( 2

3
)
1
3 a

(9b2E +
√

3
√
−4a3b3 + 27b4E2)

1
3

+
(9b2E +

√
3
√
−4a3b3 + 27b4E2)

1
3

2
1
3 3

2
3 b

(27)

F (x, t) depends on coefficients of Eq(2.23). and can be expressed as

F (x, t) = C1exp(k+x+ s+t) + C2exp(k−x+ s−t) + C3 (28)

where
k± = − 1

2
± 1

2

√
q2
1 − 4q2 and s± = −k2

±p1 − k±p2 with

p1 = −3δ, q1 = 3bβλ
2δ

, p2 = −3bβλ, q2 = 1
2δ

(3bλ2 − a)
Now if we consider a special case where C1 = C2 = C, C3 = 0, k1 = −k2 = k, and
s1 = −s2 = s then

F (x, t) = C[exp(kx+ st) + exp(−kx− st)] (29)

P (x, t) =
Cβ

k
tanh(kx+ st) (30)

Therefore the velocity will be s (or -s).
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Figure 3: Domain wall velocity in terms of reciprocal of Electric field.
a=1,b=1,δ = 1

Figure 4: Initial domain decoration in space, domain and domain wall width
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Figure 5: Domain wall velocity in terms of Electric field E by FDTD method

Figure 6: 180◦ domain wall showing creep behaviour
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Figure 7: Domain wall width in time domain

In previous section we developed how ferroelectric domain evolves via TDLG equation
through finite element method. Now we will be elaborating how these domain moves
under electric field switching. We calculated velocity in one dimension domain array
with 180◦ pattern. For this study, it is enough to solve TDLG equation in 1D.

∂P

∂t
= Γδ

∂2P

∂x2
+ Γ(AP −BP 3 + E) (31)

is

P (t = 0, x) = P0tanh

(
x

rc

)
(32)

To solve TDLG equation, we used centered difference approximated finite difference
scheme for spatial sampling whereas for time sampling, we used forward approximation.

∂P (t, x)

∂t
≈ P (t+ δt, x)− P (t, x)

δt
(33)

∂2P (t, x)

∂x2
≈ P (t, x+ δx)− 2y(t, x) + y(t, x− δx)

δx2
(34)

The Ginzburg term ∂2P
∂x2

in this equation requires left as well as right boundary condition
simultaneously keeping in mind that the physical domain structure is 180◦. Therefore
our boundary conditions are

P (t = 0, x) = P0tanh(
x

rc
) [Initial condition] (35)

P (t, x = −L) = −1, P (t, x = L) = 1; (36)

therefore initial domain wall distribution is

Dw =
∂P

∂x
(t = 0, x) =

P0

rc
sech2 x

rc
. (37)
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Velocity is calculated taking maximum value of ∂P
∂x

as reference point . Domain wall
width is taken as standard deviation σ calculated by Full width at half maximum and
FWHM = 2

√
2ln2σ. Other parameters T = 18; Tc = 24; A1=0.0410; A=A1*(T-Tc);

B=100;

6 Fluctuations in Ferroelectrics

How does the system with some fluctuations approach towards equilibrium ? Earlier,
we have discussed L-K equation with fluctuations. The L-K equation with thermal
fluctuations is nothing but Langevin equation which is a stochastic differential equation.

dx

dt
= −Γ

∂φ

∂x
+ η(t) (38)

where Γ the Kinetic coefficient, η(t) is the random or fluctuating force. The distribution
of η(t) is Gaussian, and its correlation function obeys

< η(P, t)η(P ′, t′) >= 2ΓkBTδx,x′δ(t− t′) (39)

Corresponding fokker planck equation will be

∂f(P, t)

∂t
=

∂

∂P

(
f(P.t)

∂φ

∂P

)
+ Γ

∂2f(P, t)

∂P 2
(40)

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

<
P

(t
)>

Polarization in terms of time

High barrier weak noise

Fokker Planck Exact
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Figure 8: Numerically simulated result (P(t) vs t) from Landau-Khalatnikov equa-
tion, Fokker Planck equation and Kramer’s Treatment of high barrier weak noise.

For this case the free energy φ = −a0(T − Tc)P
2 + bP 4 − EP . The equilibrium

probability is obtained if we equate ∂f
∂t

= 0, hence

feq(P ) =
exp[−φ(P )/kBT ]∫

dP ′exp[−φ(P ′)/kBT ]]
(41)
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7 Results and Discussion

In conclusion, lateral domain wall motion in ferroelectric thin films is a creep pro-
cess. Domain wall motion is governed under influence of external electric field (Fig.(5))[8,
6, 11, 12].Fig.4 shows width of typical an 1800 domain. The velocity data fits well with
creep formula as described by Tybell et al [11] (Fig.(4))

v = CeαE
µ

(42)

α depends on A, Creep dynamical exponent can be fitted as µ ≈ 1. Our results suggest
a stable and general method for measuring velocity and wall thickness of ferroelectric
domains.
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