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Abstract. A dominating set S in a graph G is called a radius dominating

set if for each vertex v ∈ V − S there is at least one vertex in u ∈ S such
that d(u, v) = rad(G). The cardinality of the minimum radius dominating

set is called the radius domination number of G, denoted by γrd(G). In this

article, we study the properties of this parameter. The radius domination
number of some families of standard graphs are obtained and the bounds are

estimated.

1. Introduction

Let G be a connected simple graph of order n and u, v be any two vertices in G.
The distance between u and v is the length of the shortest path between u and v,
denoted by d(u, v). The distance of the farthest vertex from v is called the eccen-
tricity of the vertex v, denoted by e(v). That is e(v) = max{d(u, v)|u ∈ V (G)}.
The minimum and maximum eccentricity taken over all the vertices are called the
radius and diameter of G, respectively. The radius and diameter of G are denoted
by rad(G) and diam(G)), respectively.

For any connected graph, it is obvious that rad(G) ≤ diam(G) ≤ 2rad(G). A
vertex v is called central vertex if e(v) = r(G) and peripheral vertex if e(v) =
diam(G). For each vertex v ∈ V , the open neighborhood of v is the set N(v)
containing all the vertices adjacent to v and the closed neighborhood of v is the
set N [v] containing v and all the vertices adjacent to v. For a subset S of V , the
open neighborhood of S is the set N(S) = ∪v∈SN(v) and the closed neighborhood
of S is the set N [S] = N(S) ∪ S.

The concept of domination [1, 3] was one of the most familiar concept in graph
theory that has attracted many mathematicians since it was introduced. The
concept of eccentric domination were introduced by T. N. Janakiraman et al. [2].

Definition 1.1. A subset S of vertices of a graph G is called a dominating set
if every vertex in V − S has a neighbor in S. The cardinality of a minimum
dominating set is called the domination number of G, denoted by γ(G).

Definition 1.2. A dominating set S is said to be eccentric dominating set if for
every vertex v in V − S, there exists at least one eccentric point vertex in S.
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The cardinality of the minimum eccentric dominating set is called the eccentric
domination number, denoted by γed(G).

2. Radius Domination

In this section, we shall define and discuss a new type domination, namely,
radius domination. Throughout this section G denotes a connected simple graph.

Definition 2.1. A subset S of vertices in G is a radius dominating set if S is a
dominating set and for each vertex v in V − S, there exists a vertex u in S such
that d(u, v) = rad(G).

From the above definition, it is clear that every graph possesses a radius domi-
nating set and further, super-set of a radius dominating set is also a radius dom-
inating set whereas a subset of a radius dominating set may not be a radius
dominating set.

Definition 2.2. If S is a radius dominating set in G such that none of its subset
is a radius dominating set, then S is called a minimal radius dominating set.

Definition 2.3. For a given graph G, the radius domination number γrd is the
order of the smallest ordered radius dominating set in G. That is

γrd(G) = min{|S| : S is a radius dominating set in G}.

Definition 2.4. For any vertex v ∈ V (G), any vertex in G at a distance rad(G)
from v called radius vertex of v. The set of all radius vertices of v is called the
radii of v, denoted by Rad(v). That is, Rad(v) = {u ∈ V (G)|d(u, v) = rad(G)}.

Definition 2.5. A subset S ⊆ G is called a radius point set of G for each vertex in
V −S, there is at least one vertex u such that d(u, v) = rad(G). The cardinality of
the minimum radius point set is called radius number of a graph and it is denoted
by rs(G).

Observation 2.6. From the definition of radius domination and radius point set,
it follows that union of a minimum dominating set and the minimum radius point
set is always a radius dominating set. That is, γrd(G) ≤ γ(G) + rs(G).

Observation 2.7. If G is a totally disconnected graph, then γ(G) = γrd(G) since
each vertex has same radius.

We characterize a minimal radius dominating set of a graph in the following
result.

Theorem 2.8. For a graph G, a dominating set S is a minimal radius dominating
set if and only if for each vertex v ∈ S, one of the following condition is true:

(1) v is an isolated vertex of S or it has no vertex at distance rad(G) in S.
(2) There exists a vertex u in V − S such that N(u) ∩ S = {v}.
(3) There exists a vertex u in V − S such that Rad(u) ∩ S = {v}.

Proof. Let S be any minimal radius dominating set in a connected graph G. From
the definition of minimal set it follows that for any vertex v ∈ S, the set S − {v}
will not be a radius dominating set which implies that either there is a vertex u
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in V (G) not dominated by S or having no radius vertex in S. Clearly, u must be
in (V − S) ∪ {v}.

Now we have two possibilities here: Suppose u = v. Then without loss of gener-
ality, v will be either an isolated vertex of S or has no radius vertex in S. Let us
assume, u ̸= v. Then u ∈ V − S. Suppose u is not dominated by S − {v}, then it
follows that v is the only neighbor of u in S and hence N(u) ∩ S = {v}. Similar
argument for radius vertex proves that Rad(u) ∩ S = {v}.

Conversely, we shall on contrary assume that a subset S of vertices satisfies above
conditions but not a minimal radius dominating set in G. Since it is not minimal
there is at least one vertex in S whose removal do not effect the property of S.
Let v be such vertex in S so that S − {v} is also a radius dominating set in G.
Hence v is adjacent to at least one vertex in S − {v} and has a radius vertex in
V − S. Therefore, condition (i) does not hold.

Now, as S − {v} is a radius dominating set, each vertex w not in S − {v} will
be dominated by S − {v}. In particular v has a neighbor in S other than itself
proving that condition (ii) does not hold.

Similar argument proves that S contains a radius vertex of v other than itself,
showing that condition (iii) does not hold. This completes the proof. □

Theorem 2.9. We have

(1) γrd(Kn) = 1.
(2) γrd(K1,n) = 1.
(3) γrd(Sn,m) = 2.
(4) γrd(Km,n) = 2.

Proof. (1) Let G ∼= Kn be a complete graph of order n. Then each vertex will
have eccentricity one and so any single vertex can dominate the graph.
Hence γrd(Kn) = 1.

(2) Let G ∼= K1,n be a star graph. Vertex at the center will have least eccen-
tricity and suffices to dominate entire vertex set. Thus γrd(G) = 1.

(3) Let Sn,m be a double star of order m+ n+ 2. Let D = {u, v}, where u, v
are the vertices of degree at least two. Each vertex of Sn,m except u, v
will have eccentricity 3 and e(u) = e(v) = 2. Since u, v are at a distance
rad(G) from other vertices and also adjacent to all other vertices, we have
γrd(G) = 2.

(4) Let G be a complete bi-partite graph with partite sets V1, V2. From the
construction of bipartite graph each vertex of the graph will have same
eccentricity and so any dominating set suffices to be a radius dominating
set of G. Therefore γrd(G) = 2.

□
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Remark 2.10. Let Pn be a path of order n. Then we have the followings:

(1) If n is an even integer, then rad(Pn) =
n
2 and there are two radius vertices.

Any minimum dominating set contains at least one of the radius vertex
and a leaf.

(2) If n is an odd integer, then rad(Pn) =
n−1
2 and there is only one radius

vertex in Pn. Further, any minimum radius dominating set contains the
radius vertex and two leaves.

Theorem 2.11. Let Pn be a path of order n. Then γrd(Pn) = rad(Pn).

Proof. Let Pn be a path on n ≥ 2 vertices and let V (Pn) = {v1, v2, . . . , vn}. First,
let us assume that n is odd. Then rad(G) = n−1

2 and there is only one vertex

of with eccentricity n−1
2 and the vertex is obviously vn+1

2
, which will be a ra-

dius vertex of v1 and vn. Now {V1, V2} will be a partition of V = V (Pn), where
V1 = {v1, v2, . . . vn−1

2
} and V2 = {vn+3

2
, vn+5

2
, . . . , vn−1, vn} each of order n−1

2 .

Now we shall choose minimum dominating set choosing radius vertices from partite
sets. Without loss of generality, we can observe that the radius vertex of vi ∈ V1

will be vn+2i−1
2

∈ V2. Thus for each vertex in V1 we shall choose a vertex or its

radius vertex for a radius dominating set. For minimality, we shall choose vertices
alternatively, otherwise which leads to move out of domination. Hence we must
select vertices from both V1 and V2. There are again two possibilities here:

Suppose n−1
2 is odd. Then we must select minimum of n−3

4 vertices from each

set along with the central vertex of Pn. Hence γrd(Pn) = 2
(
n−3
4

)
+ 1. That is

γrd(G) = rad(G). Next, suppose that n−1
2 is an even integer. In such case, se-

lect n−5
4 vertices from one set and n+3

4 from the other set. Therefore, γrd(Pn) =
n−5
4 + n−1

2 = n−1
2 . Thus, γrd(Pn) = rad(Pn).

Suppose n is an even integer, then rad(Pn) =
n
2 and there are two radius vertices.

Further, each vertex vi will be a radius vertex of vn−i. Thus there must be at
least n

2 vertices in any radius dominating set. On the other hand, any subset of
alternating vertices will be a radius dominating set having at most n

2 vertices.
Therefore, γrd(Pn) =

n
2 . □

Theorem 2.12. If G ∼= Hn is a helm graph with n ≥ 3, then γrd(G) = n+ 1.

Proof. Let G ∼= Hn be a helm graph of order 2n+1 with n ≥ 3. Then rad(G) = 2
and for n > 3, the singleton set containing central vertex forms a radii of all
pendant vertices and further each of the pendant vertex will be radius vertex of
a vertex adjacent to its support vertex. Thus, set of support vertices or leaves
along with the central vertex forms a radius dominating set of least cardinality.
Therefore, γrd(G) = n+ 1. □

Theorem 2.13. Let G1 and G2 be two connected graphs. We have

(1) γrd(G1 ∪G2) = γrd(G1) + γrd(G2).

(2) γrd(G1 ∨G2) =

{
1, if γrd(G1) = 1 or γrd(G2) = 1;

2, otherwise.
.
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Proof. Let G1 and G2 be two connected graphs. Proof of (1) is trivial. From the
definition of join of graphs, it follows that every pair of vertices from G1 and G2

are adjacent. Thus rad(G1 ∨G2) = 2. Since G1 or G2 contains a dominating ver-
tex then this vertex will be a dominating vertex of G1∨G2 and so γrd(G1∨G2) = 1.

On the other hand, if none of G1 and G2 contains a dominating vertex, then clearly
a pair of vertices from V (G1) and V (G2) will be a minimum radius dominating
set and so γrd(G1 ∨G2) = 2. □

Corollary 2.14. For the complete bipartite graph Km,n with m,n ≥ 2,
γrd(Km,n) = 2. In particular, γrd(Km1,m2,...,mk

) = 2, if mi ≥ 2 for each i.

As a consequence of Theorem 2.13, if G is a wheel or a Dutch-windmill graph,
then γrd(G) = 1.

Theorem 2.15. For a graph G ∼= P2 × Pn,

γrd(G) =

{
n if n, is even;

n− 1, if n is odd.

Proof. Let G ∼= P2 × Pn, a graph of order 2n. Suppose n is even. Then rad(G) =
n+2
2 and there will be four radius vertices in G. Each vertex in G can dominate

maximum of three vertices and will be a radius vertex for at least two vertices.
For minimality let us fix a vertex v which is a end vertex of a path and choose
minimum dominating set. Choose alternate vertices of other copy of Pn each of
which is a radius vertex of two other vertices. Thus, we must choose at least n− 1
vertices along with v and so γrd(Pn) = n.

Suppose n is odd. Then rad(G) = n+1
2 and there will be two radius vertices of

G. Let us choose a vertex v of degree 2 in G and choose vertices from other copy
of Pn. Since each vertex will have two radius vertices, selection of alternating
vertices gives a minimum radius dominating set having n − 2 vertices along with
v. Therefore, γrd(G) = n− 1. □

Theorem 2.16. For G ∼= P3 × Pn, γrd(G) = n.

Proof. Let G ∼= P3 × Pn, a graph of order 3n. Since it contains three copies of
path Pn, the middle copy of Pn is sufficient to dominate entire graph G and that
vertices themselves will be radius vertices of all other vertices. Since it forms a
minimum dominating set, we can conclude that γrd(G) = n. □

Definition 2.17. A firefly graph is a graph on n vertices having s triangles, t
pendant paths of length 2 and n − 2s − 2t − 1 pendant edges sharing a common
vertex. It is denoted by Fs,t,n−2s−2t−1.

Theorem 2.18. For G ∼= Fs,t,n−2s−2t−1, a firefly graph of order n, we have

γrd(G) = n− 2s− 2t.

Proof. Let G ∼= Fs,t,n−2s−2t−1, a firefly graph of order n having n − 2s − 2t − 1
pendant paths. Then rad(G) = 1 and diam(G) = 3. Since the central vertex
form radii of all pendant edges and triangles including support vertices of pendant
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edges, the minimum dominating set of pendant paths containing support vertices
along with this central vertex leads to minimum radius dominating set of G. As
all the pendant paths are independent, it follows that γrd(G) = n− 2s− 2t. □

The following results are immediate from the definition of radius domination:

Proposition 2.19. For any connected graph G of order n, 1 ≤ γrd(G) ≤ n.
Equality holds if ∆(G) = 0 or n− 1.

Proposition 2.20. For any connected graph G of order n, 1 ≤ γ(G) ≤ γrd(G).

Remark 2.21. We can not compare eccentric domination number and radius dom-
ination number by an inequality. For instance, for a star graph, we have γrd = 1
and γed = 2 resulting γrd < γed; but for a path P16, we have γrd = 8 and γed = 6
resulting γed < γrd.
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