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Abstract. In this paper, we study non-stationary filtration of real gases in

porous media. Thermodynamic state of the medium is given by van der Waals
state equations. Solutions for non-stationary filtration equation are obtained

by means of finite dimensional dynamics. The analysis of phase transitions

along the flow in case of isentropic and isenthalpic processes is presented as
well as singular properties of solutions obtained are discussed. Domains in

the jet space where the dynamics found is an attractor are shown.

1. Introduction

One-dimensional flows of one-component gas through porous media are de-
scribed by the following system of differential equations (see, for example, [1, 2, 3]):

• the Darcy law

u = −k
µ
px, (1.1)

• the continuity equation

ρt + (ρu)x = 0, (1.2)

where u(t, x) is the velocity of the gas, p(t, x) is the pressure, ρ(t, x) is the density,
k and µ are the permeability coefficient and viscosity respectively. Equation (1.1)
corresponds to the momentum conservation law, equation (1.2) is responsible for
the conservation of mass. In addition to (1.1)-(1.2) we assume that the medium
is involved in one of two processes, isentropic or isenthalpic. In the first case
the specific entropy σ(t, x) is assumed to be constant, i.e. σ(t, x) = σ0, while
in the second one the specific enthalpy η = e + pρ−1, where e is the specific
energy, is assumed to be constant, η(t, x) = η0. In both cases, we need additional
relations for thermodynamic variables to make system (1.1)-(1.2) complete. To this
end, we use van der Waals equations of state. The van der Waals model allows
to investigate such critical phenomena as phase transitions, and considering it
together with equations describing dynamics one can analyze how phase transitions
occur along the flow of the gas, which is the main goal of this paper.

Filtration processes with phase transitions were studied an a few works, for
instance in [4, 5], where numerical methods were applied to the system of filtra-
tion equations. Some invariant solutions and analysis of admissible symmetries
of filtration equations for various media are presented in [6]. Phase transitions in
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2 VALENTIN LYCHAGIN AND MIKHAIL ROOP

stationary filtration of real gases are studied in [11, 12, 13, 14]. The similar anal-
ysis for Euler and Navier-Stokes flows is presented in [15]. In the present work,
we use a method of finite dimensional dynamics [7, 8, 9] to find exact solutions
for non-stationary system (1.1)-(1.2) for two types of processes — isentropic and
isenthalpic.

2. van der Waals gases

In this section, we briefly describe thermodynamic states geometrically (see [16,
17, 18] for more details) and discuss phase transitions for the van der Waals model.

Let us consider the contact space (R5, θ) with coordinates (σ, e, v, p, T ), where
v = ρ−1 is the specific volume and T is the temperature, and with contact structure
given by the differential 1-form

θ = dσ − (pT−1)dv − T−1de.
By a thermodynamic state we mean a 2-dimensional submanifold L ⊂ (R5, θ), such
that θ|L = 0. The last means that L is a Legendrian manifold, on which the first
law of thermodynamics holds. If one has σ = σ(e, v) on L, then the Legendrian
manifold L is defined by the following relations:

σ = σ(e, v), T =
1

σe
, p =

σv
σe
.

The Legendrian manifold L is also equipped with the differential quadratic
form [16]

κ = d(pT−1) · dv + d(T−1) · de.
The domains on L where this form is negative are called applicable phases. A
jump from one applicable point a1 = (σ1, e1, v1, p, T ) ∈ L to another a2 =
(σ2, e2, v2, p, T ) ∈ L governed by the intensives (p, T ) and the specific Gibbs po-
tential γ = e− Tσ + pv conservation law is called phase transition.

For van der Waals gases the Legendrian manifold L is given by

p =
8T

3v − 1
− 3

v2
, e =

4n

3
T − 3

v
, σ = R ln

(
T 4n/3 (3v − 1)

8/3
)
, (2.1)

where R is the universal gas constant, n is the degree of freedom. Note that
equations (1.1)-(1.2) together with either isentropicity or insenthalpicity condition
and (2.1) become a complete system.

The differential quadratic form is

κ = −Rn
2

dT 2

T 2
− 9R(4Tv3 − 9v2 + 6v − 1)

4Tv3(3v − 1)2
dv2.

We can see that κ changes its sign, therefore there are phase transitions. Using
the condition γ(a1) = γ(a2) one can obtain equations for the coexistence curve,
i.e. curve where phase transition occurs [12]:

p

RT
=

3

3v1,2 − 1
− 9

8v21,2T
, 3(v1 − v2) = (3v2 − 1)(3v1 − 1) ln

(
3v1 − 1

3v2 − 1

)
.

The coexistence curve for van der Waals gases is shown in figure 1.
By a thermodynamic process we shall mean a contact transformation Φ: R5 →

R5 preserving the Legendrian manifold L. From infinitesimal point of view, such
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Figure 1. Coexistence curve for van der Waals gases.

a transformation is generated by a contact vector field X tangent to L. Integral
curve l ⊂ L of X is exactly what we call a thermodynamic process.

3. Finite dimensional dynamics

In this section, we describe a method of finding solutions for scalar evolution-
ary equations by means of finite dimensional dynamics (see also [7, 8, 9]). The
basic idea of this method is to find finite-dimensional subspaces in an infinite-
dimensional space of solutions of evolutionary equations.

First of all, let us recall some basic ideas of geometric theory of ODEs [19,
20]. Let π : R2 → R be a trivial bundle and let Jk(π) with canonical coor-
dinates (x, y0, . . . , yk) be a space of k-jets of sections of π. Then, any ODE
F
(
x, y, y′, . . . , y(k)

)
= 0 can be understood as a submanifold

E = {F (x, y0, y1, . . . , yk) = 0} ⊂ Jk(π). (3.1)

The Cartan distribution C on Jk(π) is generated by the Cartan forms

ωj = dyj − yj+1dx, j = 0, k − 1,

or, equivalently, C = 〈∂yk ,D〉, where

D = ∂x + y1∂y0 + . . .+ yk∂yk−1
.

We will assume that E is a smooth submanifold and that at any point θk ∈ E the
Cartan subspace Cθk is transversal to the tangent space TθkE , which means that
the following conditions hold:

∂F

∂yk
6= 0, D(F ) 6= 0 on E .

The last implies that restriction C(E) of the Cartan distribution C on E is a one-
dimensional distribution generated by a vector field

XF =
∂F

∂yk
D −D(F )

∂

∂yk
.
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4 VALENTIN LYCHAGIN AND MIKHAIL ROOP

A vector field X ∈ D(E) is called infinitesimal symmetry of E if it preserves
the distribution C(E), i.e. [X, C(E)] ⊂ C(E). Such vector fields form a Lie algebra
Sym(E) which is decomposed into a direct sum

Sym(E) = Shuff(C(E))⊕ C(E),

where Shuff(E) is a Lie algebra of shuffle symmetries which consists of vertical
with respect to projection πk : Jk(π)→ R vector fields on E preserving C(E). We
will mainly be interested in ODEs resolved with respect to the higher derivative,
i. e. F = yk − f(x, y0, . . . , yk−1).

Theorem 3.1. Shuffle symmetries of E have the following form

Sφ =

k∑
j=0

Dj(φ)
∂

∂yj
,

where φ ∈ C∞(E) is a generating function for the symmetry Sφ satisfying the Lie
equation

Sφ(F ) = 0 mod 〈F,DF, . . .〉. (3.2)

Let y = h(x) be a solution of equation E and let

Γ =
{
y0 = h(x), y1 = h′(x), . . . , yk = h(k)(x)

}
⊂ E

be its prolongation to Jk(π). Let Φt be a flow of the vector field Sφ. Then, for

small t, a curve Γt = Φt(Γ) ⊂ E is a k-jet of ht(x) = (Φ∗t )
−1

(h(x)):

Γt =
{
y0 = ht(x), y1 = h′t(x), . . . , yk = h

(k)
t (x)

}
⊂ E .

Since ẏj = Dj(φ) for j = 1, k, the function u(t, x) = ht(x) satisfies the following
evolutionary equation:

∂u

∂t
= φ

(
x, u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
. (3.3)

In other words, solutions for evolutionary equation (3.3) can be obtained from

solutions of the ODE E with the symmetry Sφ as u(t, x) = (Φ∗t )
−1

(h(x)), and the
ODE E is called finite dimensional dynamics for evolutionary equation (3.3).

The following theorem [8, 9] is used to find finite-dimensional dynamics.

Theorem 3.2. Equation (3.1) is a finite-dimensional dynamics for evolutionary
equation (3.3) if and only if

[φ, F ] = aF + bD(F ),

where a and b are some functions and [φ, F ] is the Poisson-Lie bracket between
functions φ and F of the form

[φ, F ] =

k∑
j=0

(
∂φ

∂yj
Dj(F )− ∂F

∂yj
Dj(φ)

)
.

In other words,

[φ, F ] = 0 mod 〈F, DF, . . .〉. (3.4)
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CRITICAL PHENOMENA IN NON-STATIONARY FILTRATION OF REAL GASES 5

Definition 3.3. [10] Dynamics (3.1) is said to be an attractor for the solution
u(t, x) of evolutionary equation (3.3) if

lim
t→∞

F [u] = 0,

where F [u] = F (x, u, ux, ..., ux...x).

If the dynamics found turns out to be an attractor, then one can conclude
that any solution of (3.3) behaves like that obtained by finite-dimensional dynam-
ics method and the corresponding finite-dimensional subspaces in solution space
of (3.3) are stable.

Define functions [10]

ψ1 =
∂φ

∂y0
+ a, ψ2 =

∂φ

∂y1
+ b, ψ3 =

∂φ

∂y2
.

The following theorem [10] provides conditions under which dynamics (3.1) is an
attractor for (3.3).

Theorem 3.4. Let u(t, x) be a solution of (3.3) and let ψj [u], j = 1, .., 3, be
bounded functions. Assume that

ψ1[u] ≤ c1 < 0, ψ3[u] ≥ c2 > 0. (3.5)

Then, dynamics (3.1) is an attractor for (3.3).

4. First order dynamics and exact solutions

Now that we have recalled all necessary constructions from thermodynamics and
geometry of differential equations, we can construct solutions for non-stationary
filtration equations and having all the thermodynamic variables as functions of t
and x locate the coexistence curve obtained above in the plane (t, x).

First of all, let us assume that a thermodynamic state of the gas is given by L
and the gas is involved in a thermodynamic process l ⊂ L and let ρ be a parameter
on l. This means that all the thermodynamic variables are expressed in terms of
ρ:

p = p(ρ), µ = µ(ρ), k = k(ρ). (4.1)

Theorem 4.1. Equations (1.1)-(1.2) for the gas L and process l ⊂ L are equiva-
lent to the equation

ρt = (Q(ρ))xx, (4.2)

where

Q(ρ) =

∫
k(ρ)ρp′(ρ)

µ(ρ)
dρ.

Let us rewrite equation (4.2) in the form

ρt = A(ρ)ρxx +A′(ρ)(ρx)2, (4.3)

where A(ρ) = Q′(ρ). We are looking for the first order dynamics for (4.3) in the
form [9]:

F (y0, y1) = y1 − f(y0) = 0, (4.4)

which has symmetry
φ = A(y0)y2 +A′(y0)(y1)2.

77



6 VALENTIN LYCHAGIN AND MIKHAIL ROOP

The Poisson-Lie bracket (3.4) therefore has the following form:

2A′(y0)f ′ + fA′′(y0) +A(y0)f ′′ = 0.

Its general solution is

f(y0) =
C1y0 + C2

A(y0)
,

where C1 and C2 are arbitrary constants.
Therefore, the first order dynamics for (4.3) is

y′ =
C1y + C2

A(y)
,

and its solution is given by

x =

y∫
y(0)

A(ξ)

C1ξ + C2
dξ, (4.5)

where y(0) is a constant.
Let us now get solution for (4.3). The symmetry Sφ for equation (4.4) is of the

form

Sφ =
C1(C1y0 + C2)

A(y0)

∂

∂y0
,

and its flow Φt : (x, y0) 7→ (x, z(y0, t)), where z(y0, t) is found from the relation
z∫

y0

A(ξ)

C1(C1ξ + C2)
dξ = t.

Introduce a new function G(ξ) by the following way:

G′(ξ) =
A(ξ)

C1(C1ξ + C2)
.

Then, G(z) − G(y0) = t, from follows that z = G−1(t + G(y0)). Therefore by
means of Φ−1t solution (4.5) is transformed into solution of (4.3) given implicitly:

x =

G−1(−t+G(ρ))∫
y(0)

A(ξ)

C1ξ + C2
dξ. (4.6)

Let us consider (4.6) in more details. Introduce another function H(ξ) by the
following way:

H ′(ξ) =
A(ξ)

C1ξ + C2
.

Note that G(ξ) and H(ξ) are related by H(ξ) = C1G(ξ) + α1, where α1 is a
constant. Therefore (4.6) is transformed as

x = H(G−1(−t+G(ρ)))−H(y(0)) = C1G(G−1(−t+G(ρ))) + α1 −H(y(0)) =

= C1(−t+G(ρ))− α0,

where α0 = −α1 +H(y(0)) is a constant.
Summarizing above discussion, we conclude that the following theorem is valid:
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Theorem 4.2. Solution for non-stationary filtration equation (4.2) is given as

ρ(t, x) = G−1
(
x+ α0

C1
+ t

)
. (4.7)

where

G(ρ) =

∫
Q′(ρ)

C1(C1ρ+ C2)
dρ,

and C1, C2, α0 are constants.

By means of state equations (2.1) and (4.1) one can get all the thermodynamic
variables as functions of (t, x).

4.1. Isentropic processes. From now and on, we will assume µ and k to be
constants for simplicity.

In case of isentropic processes σ = Rσ0 the pressure is expressed in terms of
density in the following way:

p(ρ) = 8 exp

(
3σ0
4n

)
(3ρ−1 − 1)−1−2/n − 3ρ2.

The function A(ρ) = Q′(ρ) is of the form

Q′(ρ) =
k

µ

(
−6ρ2 + 24 exp

(
3σ0
4n

)(
1 +

2

n

)
ρ2/n+1(3− ρ)−2−2/n

)
.

The conditions for invertibility of G(ρ) are given by the following theorem [11, 12]:

Theorem 4.3. Function G(ρ) is invertible if the specific entropy constant σ0
satisfies the following inequality:

exp

(
3σ0
4n

)
>

1

4ν
(1 + ν)1+ν(2− ν)2−ν ,

where ν = 1 + 2/n.

The distribution of phases is shown in figure 2.

4.2. Isenthalpic processes. For isenthalpic processes η = η0 the pressure p(ρ)
has the following form:

p(ρ) =
3ρ(nρ2 + (6− 3n)ρ+ 2η0)

6 + 3n− ρn
,

and therefore

Q′(ρ) =
6kρ

µ(6 + 3n− ρn)2
(
3η0(n+ 2) + ρ(6− 3n)(6 + 3n) + 6nρ2(n+ 1)− n2ρ3

)
.

Theorem 4.4. Function G(ρ) is invertible if the specific enthalpy constant η0
satisfies the following inequality:

η0 >
2(n− 2)2(2n+ 5)

3n(n+ 2)
.

The distribution of phases for isenthalpic processes is shown in figure 3.
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8 VALENTIN LYCHAGIN AND MIKHAIL ROOP

Figure 2. The distribution of phases for van der Waals gases.
Coloured domain is the condensation of the gas, while white one
is the gas phase.

Figure 3. The distribution of phases for van der Waals gases.
Blue domain is the liquid phase, white domain is the gas phase,
domain between is the condensation

5. Second order dynamics and exact solutions for ideal gases

In this section, we construct second order dynamics of equation (4.2) for ther-
modynamic state given by ideal gas state equations:

p = ρRT, e =
n

2
RT, σ = R ln

(
Tn/2

ρ

)
.

We will assume that the function A(ρ) = Q′(ρ) is of the form:

A(ρ) = qρα, (5.1)
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where q > 0 and α are constants. One can show that at least for two processes
we consider here, isenthalpic and isentropic, in case of constant viscosity µ and
permeability k, condition (5.1) holds. Indeed, if the level of the specific enthalpy
η(t, x) = η0 is given, one has

A(ρ) =
2η0kρ

µ(n+ 2)
. (5.2)

And if the specific entropy level σ(t, x) = σ0 is given, we get

A(ρ) =
Rk

µ

(
2

n
+ 1

)
exp

(
2σ0
Rn

)
ρ2/n+1. (5.3)

We will look for the second order dynamics in the form

F (y0, y1, y2) = y2 − yβ0B(y1). (5.4)

Such a choice is justified by form (5.1) for A(y0). In [9], second order dynamics
were found in the form F (y0, y1, y2) = y2 − g1(y0)y1 − g2(y0). Such dynamics do
exist but only if A(y0) is a polynomial of degree no greater than two, which is
valid for (5.2) but not for (5.3).

The function B(y1) is to be defined, as well as constant β. As in the previ-
ous case, one has to resolve equation (3.4) with respect to B(y1). The following
theorem is a result of straightforward computations.

Theorem 5.1. Second order dynamics in the form (5.4) exist if

β = −1, B(y1) = b1y
2
1 ,

where b1 is a constant equal to either −α, or −α+ 1, or −α/2 + 1.
In case of b1 = −α the corresponding dynamics is trivial.

Let us consider the last two cases.

5.1. Case b1 = −α/2 + 1. Here, the second order dynamics has the following
form

y′′ =
(

1− α

2

) (y′)2

y
. (5.5)

Equation (5.5) has two commuting symmetries

φ1 = y1, φ2 = qyα−10 y21

(
1 +

α

2

)
.

The first one is a translation along x axis, and the second one is the right-hand
side of (4.3). The corresponding vector fields

S1 = y1
∂

∂y0
+

(2− α)y21
2y0

∂

∂y1
,

S2 = q
(

1 +
α

2

)
yα−20 y21

(
y0

∂

∂y0
+ y1

∂

∂y1

)
are linearly independent and therefore the Lie-Bianchi theorem [19, 20] can be
applied to integrate (5.5).
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10 VALENTIN LYCHAGIN AND MIKHAIL ROOP

The restriction C(E) of the Cartan distribution on (5.5) is given by differential
1-forms

ω1 = dy0 − y1dx, ω2 = dy1 −
(2− α)y21

2y0
dx.

Let us choose another basis (κ1,κ2) in C(E) by the following way:(
κ1

κ2

)
= W−1

(
ω1

ω2

)
,

where

W =

(
ω1(S1) ω1(S2)
ω2(S1) ω2(S2)

)
.

According to the Lie-Bianchi theorem, since the Lie algebra 〈S1, S2〉 is commu-
tative, the new forms (κ1,κ2) are closed and therefore locally exact, i.e. locally
κi = dJi, where Ji are functions on E and solution of (5.5) is given (in general,
implicitly) by relations Ji(x, y0, y1) = Ci for some constants Ci.

In our case, the matrix W−1 is of the form

W−1 =
2

qα(α+ 2)y31

(
q(α+ 2)y21 −qy0y1(α+ 2)

(α− 2)y1y
−α+1
0 2y−α+2

0

)
,

and forms (κ1,κ2) are

κ1 = −dx+
2

y1α
dy0 −

2y0
y21α

dy1,

κ2 =
2(α− 2)y−α+1

0

y21qα(α+ 2)
dy0 +

4y−α+2
0

y31qα(α+ 2)
dy1,

and the corresponding integrals are

−x+
2y0
y1α

= C1,
2y−α+2

0

qα(α+ 2)y21
= C2. (5.6)

Eliminating y1 from (5.6) we get solution of (5.5):

y(x) =

(
2C2q(α+ 2)

α(C1 + x)2

)−1/α
.

Solution of (4.3) is obtained by shifting (5.6) along the flow of S2. Trajectories of
S2 are shown in figure 4.

The flow of the vector field S2 has the following form

Φt : (x, y0, y1) 7→ (x, y0Ψ(y0, y1, t), y1Ψ(y0, y1, t)) ,

where

Ψ(y0, y1, t) =
(

1−
(

1 +
α

2

)
qtαy21y

α−2
0

)−1/α
.

Applying transformation Φ−1t to (5.6) and eliminating y1, we get solution of (4.3):

ρ(t, x) =

(
α(x+ C1)2

2q(α+ 2)(C2 − t)

)1/α

. (5.7)

For isentropic flows, α = 2/n+ 1 and since n ≥ 3, the constant α is positive. For
isenthalpic processes, α = 1. In both cases, one can observe a blow-up effect in
solution. Namely, solution (5.7) becomes infinite for all x in finite time defined by
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Figure 4. Vector field S2

constant C2. In figure 5, the constant C2 = 1, the distribution of the density is
given for time moments t = 0.5, t = 0.85 and t = 0.999 and it odes not exist for
t > 1.

Figure 5. The graph of the density.

If functions µ(ρ) and k(ρ) are such that A(ρ) = qρα, where α is negative,
solution (5.7) has a singularity at the point x = −C1. The graph of the solution
is given in figure 6 for time moments t = 5 and t = 9.

5.2. Case b1 = −α+ 1. In this case, the second order dynamics is

y′′ = (1− α)
(y′)2

y
.
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12 VALENTIN LYCHAGIN AND MIKHAIL ROOP

Figure 6. The graph of density for flows with α = −1/3.

Symmetries S1 and S2 are

S1 = y1
∂

∂y0
+

(1− α)y21
y0

∂

∂y1
, S2 = qyα−10 y1S1.

Since vector fields S1 and S2 are linearly dependent, one cannot apply the Lie-
Bianchi theorem but one still can write a solution

y(x) = (α(C1x+ C2))1/α. (5.8)

By shifting (5.8) along the trajectories of S2 as it was done in the previous case,
we get solution of the form

ρ(t, x) =
(
C2

1αqt+ C1αx+ C2α
)1/α

. (5.9)

Solution (5.9) is a travelling wave, which coincides with (4.7) by choosing constants
C1 and C2.

5.3. Attractors. Functions a and b in (3.4) are of the form

a =
q(α+ b1)yα−20

((
α2 − α(b1 + 3) + 2

)
y41 + 4y2y

2
1y0(α− 1) + 2y22y

2
0

)
b1y21 − y2y0

, b = 0,

where b1 is either −α+ 1 or −α/2 + 1. Therefore, functions ψj are

ψ1 = qαyα−20

(
y2y0 + (α− 1)y21

)
+ a,

ψ2 = 2qαy1y
α−1
0 , ψ3 = qyα0 .

For b1 = −α+ 1 and for isentropic processes where α = 2/n+ 1 inequalities (3.5)
take the form

−qn−2(n− 2)
(
y2y0n+ 2y21

)
y
2/n−1
0 ≤ c1 < 0, qy

2/n+1
0 ≥ c2 > 0. (5.10)

Inequalities (5.10) for given c1 and c2 define domains in the jet space J2(π) where
dynamics (5.4) is an attractor for equation (4.2). Sections of these domains for
various values y2 are shown in figure 7.
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Figure 7. Attractor domains (coloured) for q = 1, n = 3, c1 =
−1, c2 = 1
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