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MATRIX MAPS OVER SEMINEARRINGS

KUNCHAM S.P., TAPATEE S.*, RAJANI S., KEDUKODI B.S.,
AND HARIKRISHNAN P.K*

ABSTRACT. In this paper, we introduce the notion of a matrix seminearring
(abbr. Mp(S)) over an arbitrary seminearring S. A (right) seminearring is
a generalization of a semiring and a nearring, wherein (S, +) and (5,-) are
semigroups; with only one distributive law is assumed. We prove various
properties of matrix maps over a seminearring and obtain a one-one cor-
respondence between the ideals of a seminearring and that of full ideals of
matrix seminearring. Furthermore, we introduce prime ideal in matrix sem-
inearring and prove that the ideal P*, induced by a prime ideal P in S is
prime in M, (S).

1. Introduction and preliminaries

Nearrings are generalized rings where the addition need not be abelian and only
one distributive property is assumed. Rings can be viewed as algebraic systems of
‘linear’ functions on groups, while nearrings describe the general non-linear case |3,
9]. Matrix nearrings over arbitrary nearrings were introduced by Meldrum & Van
der Walt [10], wherein the correspondence between the two-sided ideals in nearring
N and those of matrix nearring M, (N) were obtained. Some developments in
matrix nearrings over arbitrary nearrings were due to Meyer [11], Booth, and
Groenewald [2]. Juglal et.al (see, [6]) studied different prime N-ideals and prime
relations between generalized matrix nearring and multiplication modules over a
nearring. Furthermore, Juglal and Groenewald [7] studied the class of strongly
prime nearring modules and shown that it forms a 7-special class. For more
literature on matrix nearrings, we refer to [5, 4, 12, 13, 15, 14].

We introduce the notion of matrix seminearring M, (S) over a seminearring S
with 1. We prove various properties of matrix maps over a seminearring and obtain
a one-one correspondence between the ideals of a seminearring and that of a matrix
seminearring. Furthermore, we introduce prime ideal in matrix seminearring and
prove that the ideal P*, induced by a prime ideal P in S is prime in M, (S).

Definition 1.1. [8] A set S together with two binary operations + and - is called
a (right) seminearring if

(1) (S,4) and (S,-) are semigroups;

(2) (p+ q)r =pr+ qr, for every p,q,r € S;

(3) There exists 0 € S such that 0 +s=s+0=s for every s € S.
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(4) 0-s5=0 for every s € S.
Moreover, a right seminearring is said to be zero-symmetric if p0 = 0 for all p € S.
Example 1.2. Let (S, +) be a semigroup. Then the set of maps from S to S with

respect to usual addition and substitution of maps becomes a seminearring (we
denote it by (M (S),+,0)), which is not a nearring.

Definition 1.3. [1] A subset I of a seminearring S is called a right (left) s-ideal
if

(1) p+qe€1,and

(2) rp (pr) € 1,
forall p,ge I and r € S.

Definition 1.4. A subset I of a seminearring .S is called a right (left) invariant if
ISCI(SICI).

Throughout, S denote a right seminearring having an absorbing zero.

Analogous to the notion given in [3], for any u € S, the ideal generated by u
[ee]

is denoted by (u) and defined as, (u) = U Si+1, where Sip; = SY U S U Sg
i=1

with So = {u}, and SY = {p+q : p,q € Si}, S;7 = {as : s € S,a € S},

SZT:{SCL:SES,CLESi}.

2. Matrix Seminearring

For a right seminearring S with identity 1, let S™ will be the direct sum of n
copies of (S, +). The elements of S™ are written as (s1,- - , $p) as column vectors.
The symbols i; and 7; respectively, denote the i*" coordinate injective and j**
coordinate projective maps.

For an element a € S, i;(a) = (0,---,_a ,---,0), and 75(a1,--- ,an) = aj, for
ith
any (a1, - ,a,) € S™. The seminearring of n X n matrices over S, denoted by

M, (5), is defined as M, (S) = ({6}, : S" — S" [ r € §,1 < i,j < n}), where
61 (P1s- -+ spn) = (81,82, ,8n) with s; = rp; and sy = 0 if k& # i. Clearly,
6i; = 4;6"1;, where 0"(s) = rs, for all r,s € S. M,(S) is a subseminearring of
M(S™). If S is a semiring, then 05, corresponds to the n x n-matrix with s in
position (k,1) and zeros elsewhere. We denote e; as 1 in the i*" component and 0
elsewhere; and e =e; +es + -+ - + €,.

Definition 2.1. For 1 <i,5 < n, (5ilj are defined as the matrix units.
Definition 2.2. For the identity matrix I is defined as I = 61, + 03y + -+ + 6L .

Definition 2.3. The i’ row of matrix A is the function 7;4 : S™ — S. Tt is
denoted by A(7).

Definition 2.4. The product of a scalar s € S and a given matrix A is sA, defined

as y_4;6° A(i).
=1
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Definition 2.5. Scalar multiplication on the right of a matrix A by an element
s € S is defined by

For any matrix B € M,(S), we use w(B) to denote minimum number of §j,
therein.

Proposition 2.6. If S is zero-symmetric, then 862-1j = 0;;, forall s € 5.
Proof. Take s € S. Then,
Sé}j(alaa%"' 7an) = 8(07 y Aj oy aO)

O

The following properties of matrix nearrings (see, [10]) are generalized to matrix
seminearrings. However, we provide the proofs for completeness.

5, ifi=k, j=1
88, 4+ 00, ifi # k.

Lemma 2.7. (1) 67; + 05, = {
177

T §S 5:187 @f] = k7
@) e ={ g E
§h, ifj=k;
151 _ P1RI 9
(%) ‘5”‘5“{ 0. ifj+k
(4) 03500k, + -+ 005 ) = 05
where r;s € S, 1 <4,5,k, 1 <n.
Proof. (1) Let (a1,az2, -+ ,a,) € S™. Then

(5% + 521)(%7@27 T 7an)

= 5;’;’(0/170/27"' aa/n) +5fj(a/17a27"' aa/n)
= 6;}((11,(12,"' 7an) +51'Sj(a1aa2a"' 7a/n)
:(07”.7Taj,.")0)+(0)"'78aja”'70)
~~ ~—
ith kth

Case (i): If i = k and j = [, then we get

(6£j+5l§l)(a1aa2a"' 7an) = (Oa TQj + 8aj, - 30)
———
ith
=(0,--- 7(T+s)aja"' ,0)
——
ith
:5:;»3(01170127._. 7an)
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Case (ii): If ¢ # k, then without loss of generality take i < k. Then we
get

((5%“!‘6]2)(@1,0,2,"' aan):(07"'7raj7"' y SAL 5 ,0)

ith Kth
Similarly, we can verify that

58 +(5: a1,a9,+ ,an) = (0, , ra;,---, sa;,---,0).
(631 +0i;) (a1, az )= ( j ! )

Therefore, 6;; + 5, = o5, + 675, if i # k.
(2) Suppose j = k. Now
(5%621)(&17 e 7an) = 5:3'(51?[(&1’ T 7a'n))
=0.(0,---, ,oo,0
i ( say )
kth

=4/(0,---, sa;,---,0) (since j = k
i ( ! ) ( Jj=k)

th

Suppose j # k. Now
(5@‘5;1)(@17“‘ Q) = 5%(512[(@17 ey ap))
:(ST O, , Sap - ’0
i ( }l )
ktL

:(07 7\749/7"' )O) (Sincej#k)

7;th

- 520(a17 e aan)'

(3) If j =k, by (2), we get 6,6}, = 6};.
Suppose j # k. Then

52'1j51%l(a17 g, - 7an) = 51'1j(5]il(a1; te ,(Ln))
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03 (O1h, + -+ + 0k, (a1, a2, -+, an)

= 03, (074, (a1, a2+ @) o+ 075 (ar,a2,0+ s an))
:5%((7“1@1@170,'“ 70)_|_..._|_(070’... 7rnakn))

= 6’:] ((TlakmrQakz? o 7rnakn))

= O,...’frfrjakj7...70)

O

Lemma 2.8. For any A € M,(S) and z,y, -+ ,z € S, there are a,b,--- ,c € S
such that

A(85y 4 0% 4+ +07y) = 0 + Oy + -+ + Or,
forany1 <k <n.

Proof. We prove this result by induction on w(A). Suppose w(A) = 1. Then A =
63; for some 1 <i,j <nand s € S. Now 67;(0f;, +05, +---+07,) (w1, 22, 2p) =
O (T, YYky - -+ 221) = (6% 440, 4+ +8%)(x1, 29, ,Ty,). Assume that
the result is true when w(A) < n. Suppose w(A) = n. Then A = B+ C or
A = BC for some B,C € M,(S) with w(B),w(C) < n.

Case 1: A=B+C.

A(O), + 0gp, + -+ 05y) = (B + C)(01), + 03y, + -+ +05y) = BT, + 05, + -+ +
07) + OO0 + 8%+ +07,) = (874 + 055 + -+ 8) + (05 + 053+ +677) =
(F77 4 037 -+ 3.

Case 2: A= BC

A(0F), + O3y, + -+ 05y) = (BCO)(0T), + 03y, + -+ + 07y) = B(C(37), + dgp, + -+ +
02.)) = B(0], + 055 + -+ 0,%) (Since w(C) < n). Since w(B) < n, we get
A0 408 4+ 02,) = 00 4+ 082 4 - 4 5bn 0

Lemma 2.9. Let K € M, (S), x € S and p € S™. Then (Kp)(ze) = K(p(xe)).

Proof. We prove this by induction on w(K). Suppose w(K) = 1, then K = §¢; for
some 1 <14,5<n,a€S. Now

(Kp)(we) = (05p)(a(L,1,- - ,1)
= (0’... , QT 70)(95’;8’... 7x)
~—
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Assume that the result is true when w(K) < n. Suppose w(K) = n. Then
K =B+ C or K = BC for some B,C € M,(S) with w(B),w(C) < n.

Case 1: K=B+C

(Kp)(ze) = (B+C)p)(xe) = (Bp+Cp)(ze) = (Bp)(ze) +(Cp)(xe) = B(p(we)) +
Clp(e)), (by induction) = (B + C)(p(ve)) = K (p(ze)).

Case 2: K = BC.

(Kp)(ze) = (BC)p)(ze) = B((Cp)(ze)) = (BC)(p(ze)) = K(p(xe)). 0
Corollary 2.10. For any p € S™, there exists X € M, (S) such that p = Xe;.
Theorem 2.11. An element r € S is distributive if and only if 6;; is distributive
in My(S).
Proof. Suppose r is distributive in S. Then r(s+t) = rs+rt for all s,t € S. Let
A,B € M,(S) and X € S™.
65;(A+ B)(X) = 6;;(AX + BX)
= (Zl(srT])(AX + BX
= Zi(sr(TJAX -|— ’TjBX
= Z'i(’I“(TjAX + TjBX )
= i;(rrjAX +r7;BX), (since r is distributive in \S)
= iiéTTjAX + ii(STTjBX
= 0;;(AX) +6;;(BX) = (6;;A)X + (0;; B)X = (6;;A+ 0;;B)X.

~— — — —

Conversely, suppose d;; is distributive over M, (S). Let s,t € S. Then
r S t __ KT S r St
615(05; +65,)(1, 1, 1) = 6;5(05,(1, 1, -+, 1) + 67;05,(1,1,--- ;1))

1777t
:5:]((07, s 7...,0)4_(0,...7 t ’70))

-th -th

On the other hand,
(0765 + 0005 (1,1 1) = 80.65,(1, 1+ 1) + 8565, (1,1--- 1)

ij gt ij-gi 1j =gt iy gt
:(0,"'77'87"',0)‘1‘(0,"'7Tt,"',o)
7;th ith
=(0,---,rs+7rt,---,0).
N—_——

it’L

Since §;; is distributive, we get (0,0, ,r(s+1),---0) = (0,--- ,rs +rt,---,0).

Therefore r(s +t) = rs + rt. O

Theorem 2.12. An element r € S is constant if and only if 5;— is constant in

M, (S).
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Proof. Suppose r is constant in S. Let X = (z1, 72, ,2,). Consider 6;;0(X) =
5:](O(X)) = 5;"](07 ’0) = (07 ,‘T'O s 1T 70) = (07 y TXj g ,0)7 where

ith th

z; = 7j(X). Since r is constant, we get §,0(X) = (0,---, r_,---,0) = 0/, X.

Therefore, ¢;; is constant.

Conversely, suppose d7; is constant in M,(S). Consider (4;;0)(1,1,---,1) =
67,(0,0,---,0) = (0,---, 10 ,--- ,0).
~—

ith

On the other hand, d7;(1,1,---,1) = (0,---, r_,---,0). Since d;; is constant,
3 —~— ]

i”L

we have (67;0) = d;;. That is,

0,-+-, 70 ,---,0)=(0,---, 7 ,---,0). Therefore, r0 = r. O
-th -th

We consider a zero symmetric matrix seminearring and 1 € S.

3. s-ideals in M, (S)
Definition 3.1. A subset Q of M, (S) is a right (left) s-ideal if

(1) A+ B € Q, and
(2) AX (XA) € Q,

forall A,B € Q, X € M,(S5).
Moreover, an s-ideal A of M,,(5) is said to be a full s-ideal if A = K* for some
s-ideal K of S.

Definition 3.2. A subset Q of M, (5) is a right (left) invariant if QM,(S) C Q
(M (5)Q C Q).

Remark 3.3. Every right s-ideal of M, (S) is right invariant.
Lemma 3.4. If Q C M, (S) is right invariant, then QS™ = Qe;.

Proof. Easy verification. |

Definition 3.5. If K C S, we define
K*={Ae M,(S): Ap e K", for all p € S}.

Proposition 3.6. If K is a left s-ideal of S, then K* is a two-sided s-ideal of
M, (S).

Proof. Let A,B € K*. Then Ap, Bp € K™ for all p € S™. Now, (A+ B)p=Ap+
Bp € K™. Therefore, A+ B € K*. For any C € M,(S), (AC)p = A(Cp) € K™,
since Cp € S™. Therefore AC € K*. Also, (CA)p = C(Ap) = Cp1, where
p1 = Ap € K™. Now we apply induction on the weight of C. Let w(C) = 1, say
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C =6

5> s€Sand p1 = (z1, - ,m,) € K". Then,

Cpr=075(w1, -+ 2p)
:(0’...’81"7-’...’0)
“th

€ K", since K is a left s-ideal.

Therefore, (CA)p € K™ for all p € 8™, and so CA € K*. Suppose that the result
in true for w(C)<n. Let w(C) =n. Then C = P+ Q or C = PQ.
Case-(i): C=P+Q

Cp1=(P+Q)m
= Pp1 +Qp1
e K"+ K"
=K".

Therefore, (CA)p € K™ for all p € S™, and so CA € K*.
Case-(ii): C = PQ

Cp1 = (PQ)p1
= P(Qp1)
= Pps, where po = Qp; € K"
e K".

Hence, (CA)p € K" for all p € S™, and so CA € K*. Therefore, K* is a two-sided
s-ideal of M,,(S). O

Definition 3.7. If K C M,,(S), we define
Ki={teS:telIm(r;A) for some A e K,1<j<n}.

Proposition 3.8. Let K is a two sided s-ideal of M,(S). a € K. if and only if
0 € K.

Proof. Let a € K,. Then there exists A € K, p € S" and 1 < j < n such that
7j(Ap) = a. Since Ap € KS", by Lemma 3.4, there exists X € K such that
Ap = Xey. Now,

Xer = X (01 + 05y + -+ dn)er
= (611 +---+0,7)e1, by Lemma 2.8
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Therefore,
(4p)

(Xe )

(071 + -+ 0pt)er
(

(

a=Tj

|
2

|
2

=Tj 6‘11{61 + o+ pier)

ay, - )

)

= aj.
Now, 6%jX((5h +89 -+ 389 (ar, )

= 01,671 + 053 4+ 051 + -+ oni)(ar, - an)

:5‘11{(0417... Q)
:(aja1707"' 70)
= (av,0,--- ,0)
=04 (a1, - ,ay), for all (aq, -+, ) € S™.

Therefore, 61, X (61, 4 09, +--- +69;) = 6§, € K.
Conversely, suppose that 6f; € K. Then 716{,(1,0,---,0) = 71(a,0,---,0) = a.
Therefore, a € .. O

Corollary 3.9. If K is a two sided s-ideal of M, (S), then s € K. if and only if
6 e K.
ij

Proof. By Proposition 3.8, we have 0§, € K. Since K is a s-ideal of M,(S), we
have 03; = 0;,03,01; € K. O

Proposition 3.10. If K is a two-sided s-ideal of M, (S), then K. is a two-sided
s-ideal of S.

Proof. Suppose that K is a two-sided s-ideal in M,,(S). To show K, is a two-sided
s-ideal in S. Let a,b € K,. This implies 6§, %, € K. Now 637 = 6§, + 6%, € K.
Therefore, a + b € K,.. Let a € K, and s € S. Now, §{f = 6{407; € K, as K
is s-ideal in M,,(S). Also, 65¢ = 65,0, € K. Therefore, sa € K,. Hence K, is
two-sided s-ideal of S. ]

Proposition 3.11. For two-sided s-ideal K of S and the corresponding two-sided
s-ideal I of M,,(S) the following are true.

(1) (K" 2K
(ii) (K7). = K

Proof. (i) Suppose that L € K. Then 7;Lp € K., for every p € S™ and
1 < j < n. This implies Lp € (K,)", for all p € S™. Therefore, L € (K,)*.
(ii) = € (K*), if and only if 6f; € K* if and only if 6§,p € K™, Vp € S™
if and only if §¥,e € K™ if and only if (x,0,---,0) € K™ if and only if
re K.
(]
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Proposition 3.12. There is a bijection between the set of two-sided s-ideals of
S and the set of full s-ideals of M, (S) given by K — K* and K — K, such that
(K*)s =K and (K,)* = K for a s-ideal K of S and a s-ideal K of M,(S).

Definition 3.13. A € M, (S) is nilpotent if A¥ = 0, for some k € Z*; and if
there is no such element in M, (S) except 0, then we call M, (.S) is reduced.

Definition 3.14. An s-ideal K in a seminearring S is said to fulfill the insertion
of factors property (IFP) if for every a,b,c € S, ab € K implies acb € K.

Theorem 3.15. If M,,(S) is reduced, then S has IFP.

Proof. Suppose M, (S) is reduced. Let a,b,n € S such that ab = 0. Then, we have
5% = 0. Now, (6%9)% = §b36bs = §babe = 51)0@ = 6% = 0, as S has absorbing zero.
Therefore, ((511)2 = 0. Since M"(S) is reduced, we have that 6% = 0. This means,
§%p = (0,0,---,0), for all p € S™. In particular, 6%¢(1,1,---,1) = (0,0,---,0).
This implies (ba 0,---,0)=(0,---,0), and so ba = 0. Now (5‘11{”’)2 = o§pbset =
sgpbant — ganOnb — (5‘1)1 Therefore, (5‘11{”’)2 = 0. Since Mn(S) is reduced, we have
that J¢7* = 0. So, (6¢7*)(1,1,---,1) = 0. This is same as, (anb,0,---,0) =
(0,0,---,0). Therefore, anb = O Hence S has IFP.

]

Proposition 3.16. Let K be an s-ideal of M, (S). If K has IFP, then K. has IFP
in S.

Proof. Suppose K has IFP. Let a,b,c € S such that ab € .. To show acb € K,.
Since ab € K., we have §¢? € K, and so 6%,6%, € K. Since K has IFP, we have
54 ASY, € K, for all A € M, (S). Put A = 6§,. Then 6¢* = §%,65,6%, € K. Thus
5“1’ € K, and so acb € K. O

Definition 3.17. A s-ideal K of M, (S) is said to be prime if PQ C K implies
P CKor QCK, for all s-ideals P, Q of M, (S).

Proposition 3.18. Let P be a prime s-ideal of S. Then P* is a prime s-ideal of
M, (S).

Proof. Let P be a prime s-ideal of S. We show P* is a prime s-ideal of M, (.5).
Suppose that A and B be two s-ideals of M,,(S) such that AB C P*. On a contrary,
suppose that A ¢ P* and B ¢ P*. Then there exist A € A and B € B such that
A ¢ P* and B ¢ P*. This means that there exist p,d € S™ such that Ap ¢ P"
and B ¢ P™. That is, a = 7,(Ap) ¢ P, for some 1 < k < n. Since Ap € (A)S"
and (A) is a right s-ideal of M,,(S), by Lemma 3.4, there exists C' € (A4) such that
Ap = Cey. This implies that

Cey = C[67, + 69 + -+ ]es
= [611 + 057 -+ - + Optler

:(Clv"' 7Cn)
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Now, 74(Ce1) = ¢, = 16(Ap) = a, implies ¢, = a ¢ P. This implies, d7% ¢ P*.
Also,

81, C[63, + 69 + -+ +6%]
= 01, [0} + 053 - + 035
=01} € (4).

So, 6%, € (A) \ P*. Similarly, since B§ ¢ P", there exists b ¢ P such that
8%, € (BY\ I*. Since a ¢ P, b ¢ P, it follows that a) ¢ P and (b) ¢ P. Again,
since (a)(b) € P, we get c € (a) and d € (b) such that cd ¢ P. Therefore,

off ¢ P* oo (1)

Now ¢ € (a). Write X = {a}. Referring to the notion of (a) = (J;=, Xi, we prove
5, € (0%4). Suppose ¢ € X, and m = 0. Then ¢ € Xy = X = {a}. In this case,
8¢, = 64 € (6%). Suppose m = 1. Then ¢ = X; = XJ U X U X;.

If c € X07 then ¢ = a +b. Now, &, = 6337 = 68, + 8% € (6,). If ¢ € X,
then ¢ = as. Now 0f; = 0 = 6{407; € <5f1> If c € X§, then ¢ = sa. Now
0§ = 05 = 65,09, € (6%). Thelrefore7 ¢ € {a). Thus, 6f; € 6§ for m = 1.
Induction hypothesis: Suppose 6§ € (0§;) for all ¢ € Xj_1. Suppose ¢ = Xj, =
X1 UXk T UXE . Ifce X,S_l, then ¢ = x 4 y, for some z,y € X;_1. Now
501 =011V =67, +0Y, € (6%,). If c € X}, then ¢ = as, for some a € Xj_1. Now
0§, = 5 9 = 01105, € (6%4). If c € X} 4, then ¢ = sa, for some a € Xj_1. Now
£, =059 = 65,04 € (8%4). Therefore, ¢ € (a) implies §5; € (0f;) C (A). Similarly,
d € (b) implies §¢, € (6%)) C (B). Thus, §¢ = §%,6¢, € (AY(B) C AB C P*.
Therefore,

559 e Pt - (2)

Therefore, from (1) and (2), we have a contradiction. Thus, A C P* or B C
P*. (I

4. Conclusion

We have defined the notion of a matrix seminearring (abbr. M, (S)) over an
arbitrary seminearring S. We proved various properties of matrix maps over a
seminearring to obtain a one-one correspondence between the ideals of a semin-
earring and that of full ideals of matrix seminearring. We can extend the study to
different classes of prime ideals in matrix seminearrings and corresponding radical
properties.
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